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Preface

This volume contains the papers presented at the International Workshop on
Internet and Network Economics held during December 17–20, 2008, in Shang-
hai, China, for its fourth edition. WINE 2008 provided a forum for researchers
from different disciplines to communicate with each other and exchange their
researching findings in this emerging field.

WINE 2008 had ten invited speakers: Fan Chung Graham, Matthew Jackson,
Lawrence Lau, Tom Luo, Eric Maskin, Paul Milgrom, Christos Papadimitriou,
Herbert Scarf, Hal Varian and Yinyu Ye. There were 126 submissions. Each
submission was reviewed on average by 2.5 Programme Committee members.
The Committee decided to accept 68 papers. The programme also included 10
invited talks.

This final program contained papers covering topics including equilibrium,
information markets, sponsored auction, network economics, mechanism de-
sign, social networks, advertisement pricing, computational equilibrium, network
games, algorithms and complexity for games.

December 2008 Christos Papadimitriou
Shuzhong Zhang
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Éva Tardos Cornell University
Shanghua Teng Boston Univercity, Akamai Technologies Inc.

Tsinghua University, Microsoft Research
Vijay Vazirani Georgia Institute of Technology
Makoto Yokoo Kyushu University
Kiho Yoon Korea University
Yunhong Zhou HP Labs

Local Organization

WINE 2008 was organized by the Department of Management Science, Fudan
University, Shanghai, China.

External Reviewers

Saeed Alaei
Esteban Arcaute
Bahman Bahmani
Luca Becchetti
Dirk Bergemann
Vittorio Bilo’

Vincenzo Bonifaci
Konstantin Busch
Rahul Deb
Gabrielle Demange
Dominic Dumrauf
Robert Elsaesser



VIII Organization

Itay Fainmesser
Angelo Fanelli
Rainer Feldmann
Dimitris Fotakis
Martin Gairing
Donato Gerardi
Arpita Ghosh
Gagan Goel
Ashish Goel
Rica Gonen
Mingyu Guo
Nicole Immorlica
Atsushi Iwasaki
Alexis Kaporis
Chinmay Karande
Fuhito Kojima
Lucas Maestri
Aranyak Mehta
Henning Meyerhenke
Luca Moscardelli

Rong Pan
Panagiota Panagopoulou
Giuseppe Persiano
Georgios Piliouras
Tim Roughgarden
Matthias Ruhl
Amin Saberi
Yuko Sakurai
Florian Schoppmann
Ulf-Peter Schroeder
Aneesh Sharma
Paul Spirakis
Mukund Sundarajan
Tobias Tscheuschner
Angelina Vidali
Berthold Voecking
Kiho Yoon
Martin Zinkevich



Table of Contents

Invited Talks 1: Special Session

Mechanism Design Theory: How to Implement Social Goals . . . . . . . . . . . 1
Eric Maskin

Thirty Years of Chinese Economic Reform: Reasons for Its Success and
Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Lawrence J. Lau

Invited Talks 2: Plenary Session

Average Distance, Diameter, and Clustering in Social Networks with
Homophily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Matthew O. Jackson

Assignment Exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Paul Milgrom

Search Engine Ad Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Hal R. Varian

Computational Economy Equilibrium and Application . . . . . . . . . . . . . . . . 14
Yinyu Ye

Invited Talks 3: Tutorial Session

Four Graph Partitioning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Fan Chung Graham

Dynamic Spectrum Management: Optimization and Game Theoretic
Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Zhi-Quan (Tom) Luo

Some Recent Results in Algorithmic Game Theory . . . . . . . . . . . . . . . . . . . 17
Christos Papadimitriou

The Elements of General Equilibrium Theory . . . . . . . . . . . . . . . . . . . . . . . . 18
Herbert E. Scarf

Session A.1: Market Equilibrium

A Fast and Simple Algorithm for Computing Market Equilibria . . . . . . . . 19
Lisa Fleischer, Rahul Garg, Sanjiv Kapoor, Rohit Khandekar, and
Amin Saberi



X Table of Contents

A FPTAS for Computing a Symmetric Leontief Competitive Economy
Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Zhisu Zhu, Chuangyin Dang, and Yinyu Ye

Online and Offline Selling in Limit Order Markets . . . . . . . . . . . . . . . . . . . . 41
Kevin L. Chang and Aaron Johnson

Predictive Pricing and Revenue Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Bobji Mungamuru and Hector Garcia-Molina

Dual Payoffs, Core and a Collaboration Mechanism Based on Capacity
Exchange Prices in Multicommodity Flow Games . . . . . . . . . . . . . . . . . . . . 61

Luyi Gui and Özlem Ergun
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Vittorio Bilò, Angelo Fanelli, Michele Flammini, and
Luca Moscardelli

How Hard Is It to Find Extreme Nash Equilibria in Network Congestion
Games? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Elisabeth Gassner, Johannes Hatzl, Sven O. Krumke,
Heike Sperber, and Gerhard J. Woeginger

On the Road to PLS-Completeness: 8 Agents in a Singleton Congestion
Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Dominic Dumrauf and Burkhard Monien

Conflicting Congestion Effects in Resource Allocation Games . . . . . . . . . . 109
Michal Feldman and Tami Tamir

The Price of Malice in Linear Congestion Games . . . . . . . . . . . . . . . . . . . . . 118
Aaron Roth

Session C.1: Information Markets

Parimutuel Betting on Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Shipra Agrawal, Zizhuo Wang, and Yinyu Ye

Strategies in Dynamic Pari-Mutual Markets . . . . . . . . . . . . . . . . . . . . . . . . . 138
Tian-Ming Bu, Xiaotie Deng, Qianya Lin, and Qi Qi

Truthful Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Nicolas Lambert and Yoav Shoham

Correlated Equilibrium of Bertrand Competition . . . . . . . . . . . . . . . . . . . . . 166
John Wu



Table of Contents XI

Diffusion of Innovations on Random Networks: Understanding the
Chasm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Marc Lelarge

Session A.2: Nash Equilibrium I

An Efficient PTAS for Two-Strategy Anonymous Games . . . . . . . . . . . . . . 186
Constantinos Daskalakis

Equilibria of Graphical Games with Symmetries (Extended Abstract) . . . 198
Felix Brandt, Felix Fischer, and Markus Holzer

Equilibrium Points in Fear of Correlated Threats . . . . . . . . . . . . . . . . . . . . 210
Spyros C. Kontogiannis and Paul G. Spirakis

Performance Evaluation of a Descent Algorithm for Bi-matrix Games . . . 222
Haralampos Tsaknakis, Paul G. Spirakis, and Dimitrios Kanoulas

Worst-Case Nash Equilibria in Restricted Routing . . . . . . . . . . . . . . . . . . . 231
Pinyan Lu and Changyuan Yu

Session B.2: Network Games I

Stackelberg Routing in Arbitrary Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Vincenzo Bonifaci, Tobias Harks, and Guido Schäfer
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Mechanism Design Theory: How to Implement
Social Goals

Eric Maskin

Institute for Advanced Study, Princeton
maskin@ias.edu

Abstract. The theory of mechanism design can be thought of as the
engineering side of economic theory. One begins by identifying a social
or economic goal. The theory then addresses the question of whether or
not an appropriate institution or procedure (that is, a mechanism) could
be designed to attain that goal.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, p. 1, 2008.
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Thirty Years of Chinese Economic Reform:
Reasons for Its Success and Future Directions

Lawrence J. Lau1,2

1 President and Ralph and Claire Landau Professor of Economics
The Chinese University of Hong Kong

2 Kwoh-Ting Li Professor in Economic Development, Emeritus, Stanford University
lawrencelau@cuhk.edu.hk

Abstract. What are the principal reasons for the highly successful Chi-
nese economic reform that began in 1978? One may say that they are the
strong Chinese economic fundamentals-surplus labor, abundant savings,
huge domestic market, etc. But the strong fundamentals have always
been there, at least since the 1950s. Why did the Chinese economy not
take off earlier?

The introduction of the market system, first in the rural area, and
then in the urban area, must be regarded as the primary reason for
the success of the economic reform. But the former Soviet Union and
subsequently Russia also introduced the market system, with disastrous
economic results for the entire first decade. Why was China able to do
it while others failed?

Three important reasons can be identified: First, Chinese economic
reform is characterized by openness-China welcomed international trade
with and direct investment from all countries and regions, including
Hong Kong, Taiwan, and the United States, and with trade and di-
rect investment came technology, business models, and ideas that were
new to China. Second, the Chinese economic reformers are characterized
by their pragmatism-they are willing to try almost anything-whatever
works-but they will just as readily abandon whatever that proves not to
work. Third, Chinese economic reform has been implemented in such a
way that it is mostly Pareto-improving, that is, almost everyone is made
better off by the economic reform and no one is made worse off, which
maximizes support, minimizes opposition and preserves social harmony.

What are some future directions of reform? They should consist of
various ways to perfect the market mechanism in China. First, China
has reached a stage of development that it needs to make and keep the
markets truly competitive, through anti-monopoly laws and other means-
and this applies to the both the goods market and the factors (including
capital) market. When markets are not competitive, they may result in
outcomes that are worse than those under central planning. Second, the
markets can also be made more competitive, and hence more efficient, if
information asymmetry can be reduced or eliminated. Thus, the Chinese
Government can set standards for goods and services and assure qual-
ity through government-mandated and operated testing agencies. Third,

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 2–3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Thirty Years of Chinese Economic Reform 3

markets frequently fail when there is moral hazard. The Chinese Govern-
ment can reduce the incidence of moral hazard by limiting leverage and
requiring bonding. Fourth, the Chinese Government can also make the
market system more complete by establishing and maintaining socially
desirable markets that do not arise naturally without government inter-
vention, for example, a long-term market for bonds backed by qualified
long-term owner-occupied residential mortgages. Finally, the market sys-
tem is not equipped to redistribute, but redistribution is often necessary
on grounds of fairness and social harmony. The Chinese Government
should design an equitable tax system as well as undertake public in-
vestments in education, health care, environmental protection and mass
transportation so that the benefits of the continuing economic reform
can be shared by the majority of the people.



Average Distance, Diameter, and Clustering in
Social Networks with Homophily�

Matthew O. Jackson

Department of Economics, Stanford University and the Santa Fe Institute
jacksonm@stanford.edu

http://www.stanford.edu/∼jacksonm/

Abstract. I examine a random network model where nodes are catego-
rized by type and linking probabilities can differ across types. I show that
as homophily increases (so that the probability to link to other nodes of
the same type increases and the probability of linking to nodes of some
other types decreases) the average distance and diameter of the network
are unchanged, while the average clustering in the network increases.

Keywords: Networks, Random Graphs, Homophily, Friendships, Social
Networks, Diameter, Average Distance, Clustering, Segregation.

1 Introduction

Communication advances and the social networking via the Internet have made
it much easier for individuals to locate others with similar backgrounds and
tastes. This can affect the formation of social networks. How do such changes in
the ability of individuals to locate other similar individuals affect social network
structure? Answering this question requires having models of how homophily,
the tendency of nodes to be linked to other nodes with similar characteristics,
affects social network structure. Homophily is a well-studied and prevalent phe-
nomenon that is observed across all sorts of applications and attributes including
ethnicity, age, religion, gender, education level, profession, political affiliation,
and other attributes (e.g., see Lazarsfeld and Merton (1954), Blau (1977), Blalock
(1982), Marsden (1987, 1988), among others, or the survey by McPherson, Cook
and Smith-Lovin (2001)). Despite the extensive empirical research on homophily,
there is little that is known about how homophily changes a network’s ba-
sic characteristics, such as the average distance between nodes, diameter, and
clustering.

This paper examines the following questions. Given is a society of nodes that
are partitioned into a number of different groups where nodes within a group are
of the same “type” and nodes in different groups are of different types. A network
formation process is examined that can embody various forms of homophily:
the probability of links between pairs of nodes can depend on their respective
� Financial support from the NSF under grant SES–0647867 is gratefully acknowl-

edged. I thank Ben Golub for helpful conversations.
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types. Holding the degree distribution constant, how does such a network that is
formed with substantial homophily compare to a network formed when types are
ignored? One conjecture is that as homophily increases so that the probability of
links among nodes of similar types increases and the probability of links across
less similar types falls, the average distance and diameter of the network will
increase since the density of links across different types of nodes will be falling.
This conjecture turns out to be false. Even as the probability of links across types
falls, the average distance and diameter are not changed even in some extreme
cases where the relative probability a link between nodes of the same type is
arbitrarily more likely than a link among nodes of different types, provided some
non-vanishing fraction of a node’s links are still formed to nodes of other types.
In contrast, homophily can have a significant impact on clustering. It is shown
that substantial homophily can lead to nontrivial clustering, while a process with
the same expected degrees but no homophily exhibits no clustering.

2 A Model of Network Formation with General Forms of
Homophily and Degree Sequences

A network G = (N, g) is a graph that consists of a set N = {1, . . . , n} of a finite
number n of nodes along with a list of edges, g,1 which are the pairs of nodes
that linked to each other.

Given that the network might not be connected, I follow Chung and Lu (2002)
in defining average distance in the network to be the average across pairs of path-
connected nodes. In particular, let �g(i, j) be the number of links in the shortest
path connecting nodes i and j if there is such a path, and let �g(i, j) be infinity if
there is no path between i and j in g.2 Thus, the average distance in the network
is defined as3

AD(g) =

∑
{i,j}:�g(i,j) �=∞ �g(i, j)

|{{i, j} : �g(i, j) �=∞}|
.

The diameter of the network is diam(g) = max{i,j}:�g(i,j) �=∞ �g(i, j).
For the network formation processes considered here, the largest component

contains all but at most a vanishing fraction of nodes and so these definitions
are effectively the same whether we defined them as above, or just work with
the largest component of g which is either the whole network or almost all of it.

The clustering of a node i with degree of at least 2 is

CLi(g) =
|{{j, j′} : i �= j �= j′ �= i; {i, j} ∈ g, {i, j′} ∈ g, {j, j′} ∈ g}|

|{{j, j′} : i �= j �= j′ �= i; {i, j} ∈ g, {i, j′} ∈ g}| .

1 Formally, g ⊂ 2N such that each element in g has cardinality 2.
2 Standard definitions, such as path, are omitted. See Jackson (2008) for such defini-

tions.
3 Self-loops are allowed here, and so under these definitions if there is a self-loop then

a node is a distance of 1 away from itself. This is irrelevant to the results and simply
for convenience. It is easily seen that the results are the same if self-loops are ignored
or if self-distance is set to 0. If there are no links in the network, the AD expression
is 0/0 which can be set to take any value.
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The average clustering is the average of CLi across nodes i that have degree at
least 2.4

2.1 A General Random Network Model with Homophily

The following model is a generalization of the random network model from Chung
and Lu (2002) to allow nodes to be of different types and to allow heterogeneous
probabilities of linking across different types.

A set of nodes N = {1, . . . , n} is partitioned into K groups or types N1, . . . ,
NK . This partition captures the characteristics of the nodes, so that all nodes
with the same characteristics are in the same group Nk. Depending on the ap-
plication a type might embody ethnicity, gender, age, education, profession, etc.
in a social setting, or might involve characteristics of a business in a market
network, or might involve some physical characteristics of a node in a physical
network.

Also given is a degree sequence {d1, . . . , dn} which indicates the expected
degree or number of connections of each node. Let

D =
∑

i

di

and
d̃ =

∑
i

d2i /D.

Note that if di = d for all i, then d̃ = d.
Let Dk =

∑
i∈Nk

di be the total degree of all nodes of type k.
A random network is formed according to the following process. For each

pair of types k and k′ there is a parameter hkk′ ≥ 0. This parameter captures
the relative proclivity of groups k and k′ to link to each other. The parameters
satisfy

∑
k′ Dk′hkk′ = D for each k. A link between nodes i in group k and j in

group k′ is formed with probability

hkk′didj/D.

Conditions defined below ensure that this expression does not exceed 1.
In the case where hkk > hkk′ for all k and k′ �= k, then there is homophily, so

that nodes are relatively more likely to form their links to their own types than
to other types. If hkk′ = 1 for all k and k′ then types are irrelevant and the model
reduces to the usual Chung and Lu model. Otherwise, this allows for different
patterns of linkings between different types. If di = d for all i, then this is a
generalization of Erdös-Renyi random graphs where links are type-dependent.5

More generally, the degree distribution could vary across nodes, and power-law
networks are the special case where the frequency distribution of {d1, . . . , dn}
4 Set clustering to 0 if there are no such nodes.
5 Note, however, that this process allows for self-loops i may connect to i, although

the probability of this for any node i vanishes as n grows provided d2
i /D vanishes.
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has a power distribution where the frequency of degree d is of the form cd−γ for
some range of d.

An interesting case is where types have some social or spatial geography and
type k can be represented as a vector xk ∈ IRm for some m and then hkk′ is
decreasing in the distance between k and k′; for example of the form c− f(|xk−
xk′ |) where c is a constant and f is an increasing function. One can also consider
some hierarchy among the k’s with the relative probabilities depending on the
hierarchy (e.g., see Clauset, Moore and Newman (2008)). Another case of interest
is where types have a given probability of forming links to their own type and
a different probability of forming links all other types (e.g., see Copic, Jackson
and Kirman (2005) and Currarini, Jackson and Pin (2007)).

2.2 Admissible Models

The main results consider a growing sequence of network formation models,
and so all parameters are indexed by n, the number of nodes. The results use
some restrictions on variation in expected degrees across nodes and a minimum
bound on the proclivity to link across groups. A sequence of network formation
processes is said to be admissible if the following conditions are satisfied.

First, there exists h > 0 such that hkk′ (n) > h for all k and k′ for all large
enough n. This condition does not require that nodes of different types have a
probability of linking that is bounded below, as a node’s degree could be a fixed
number independent of n. This lower bound simply implies that any given node
spreads some of its links on types other than its own type. This still allows for
extreme homophily, as it can still be that hkk(n)→∞ and that the probability
of links with own type is becoming infinitely more likely than links with some
other types.

Second, the degree sequence satisfies the following:

• d̃(n) ≥ loga(n) for some a > 1 and log
(
d̃(n)

)
/ log(n)→ 0

• there exists c > 0 such that hc > 1, and M > 0, such that di ≤ Md̃(n) for
all i and n, and di ≥ c for all but o(n) nodes,.6

The first restriction is that the second-order average degree is growing with n,
but more slowly than n. The second requires that no node have an expected
degree that explodes relative to the average expected degree and that all but a
vanishing fraction of nodes have a lower bound on expected degree that is larger
than 1.

3 Diameter and Average Distance in the Model

Let AD(n,d(n),h(n)) and diam(n,d(n),h(n)) be the average distance and di-
ameter, respectively, of a graph randomly drawn according to the process above
6 Here, h is as defined in the restrictions on proclivity to link across types. These

conditions ensure that the degree sequence satisfies (i) and (ii) in Chung and Lu
(2000). They also guarantee (iii) setting U = N and noting that �d(n) ≤ M2D(n)/n.
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with n nodes, degree sequence d(n) = (d1(n), . . . , dn(n)), and homophily pa-
rameters h(n) = (hkk′ (n))kk′ ). This average distance and diameter are random
variables for each n. Similarly, let AD(n,d(n)) and diam(n,d(n)) be the aver-
age distance and diameter, respectively, of a graph randomly drawn according
to the process above with n nodes, degree sequence d(n) = (d1(n), . . . , dn(n)),
and without any homophily (so that hkk′ (n) = 1 for all k and k′).

Theorem 1. Consider an admissible sequence of network formation processes
(n,d(n),h(n)). Asymptotically almost surely

• AD(n,d(n),h(n)) = (1 + o(1)) log(n)/ log(d̃(n)), and so AD(n,d(n),h(n))
AD(n,d(n)) →

1,
• diam(n,d(n),h(n)) = Θ

(
log(n)/ log(d̃(n))

)
and so diam(n,d(n),h(n)) =

Θ (diam(n,d(n))).

Thus, the average distance and diameter of the admissible processes are not
affected by homophily. Even though there can be an arbitrarily increased density
of links within types, and substantial decrease in the density of links across types,
this does not impact average distance or the diameter in the network. In order
for homophily to affect these aspects of the network, one would have to have the
density of links across most types decrease at a level which vanishes relative to
overall degree. That is, suppose instead that nodes are grouped into evenly sized
groups (up to integer constraints) so that hkk′ (n) ≤ f(n) for all k and k′ with
k′ �= k for some f(n) such that f(n)nd̃(n)/K(n) is bounded above and where
K(n)/n is bounded away from 0. Then, it is easy to check that,7 almost surely,
AD(n,d(n),h(n))

AD(n,d(n)) →∞ and so diam(n,d(n),h(n))
diam(n,d(n)) →∞.

Proof of Theorem 1: Consider a network formation process such that each
node has expected degree hdi and hkk′ = 1 for all kk′. This is the process
(n, hd(n)), and the process (n,h(n),d(n)) is equivalent to a first running the
process (n, hd(n)) and then adding some additional links. Under the admissibil-
ity requirement here, (n, hd(n)) is admissible and specially admissible under the
definitions of Chung and Lu (2002). By Lemma 5 in Chung and Lu (2002), almost
surely the largest component of a random graph under the process (n, hd(n))
contains all but at most o(n) of the nodes. By Theorems 1 and 2 in Chung and
Lu (2002) the average distance and diameter of this process are almost surely

(1 + o(1)) log(n)/ log(hd̃(n)) = (1 + o(1)) log(n)/ log(d̃(n)),
7 A lower bound on the average distance is that of a graph where all nodes of a given

type are agglomerated to become a single node. There are K(n) nodes in this graph
and each of these type-nodes has degree of at most �dMf(n)n/K(n) which is bounded
above by some C. The average distance is at least order log(K(n))/ log(C) which
is proportional to log(n), provided this network has a giant component containing
all but at most a vanishing fraction of nodes. The average distance could only be
smaller than this if the connectivity across types drops so low so that the network
fragments to smaller components.
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and
Θ
(
log(n)/ log(hd̃(n))

)
= Θ

(
log(n)/ log(d̃(n))

)
,

respectively. Since the process (n,h(n),d(n)) is equivalent to a first running
the process (n, hd(n)) and then adding some additional links, it then follows
directly that a random graph generated in this way contains all but at most
o(n) of the nodes and has average distance and diameter of this process are
almost surely bounded above by (1 + o(1)) log(n)/ log(d̃(n)), and some factor
times log(n)/ log(d̃(n)), respectively.

Next, let us show that these are also lower bounds. Consider any network
where all nodes have degree no more than Md̃(n). Consider any node i. The
T -the neighborhood of i includes fewer than

T∑
t=1

(
Md̃(n)

)t

=

(
Md̃(n)

)t+1
−Md̃(n)

Md̃(n)− 1

nodes. Thus, in order to reach all nodes in the largest component from some node
in the largest component (which as argued above contains at least (1 − o(n))n
nodes) it takes at least T (n) = log((1 − o(1))n)/ log

(
Md̃(n)

)
steps to reach

every other node in the largest component, almost surely. Given that d̃(n)→∞,
it follows that T (n) ≥ (1−o(1)) log((n)/ log

(
d̃(n)

)
. The average distance is thus

almost surely at least
T (n)∑
t=1

(
Md̃(n)

)t

t/n.

This is at least (1− o(1))T (n), almost surely. Thus, the lower bound on average
distance is (1 − o(1)) log(n)/ log

(
d̃(n)

)
. The diameter is at least the average

distance, and so this is also a lower bound on diameter. The result follows by
bounding the realized degrees on nodes asymptotically almost surely.

4 Clustering

Note that in the model with no homophily if (maxi di(n))2/D(n)→ 0, then the
average clustering almost surely tends to 0 simply because the most probable
link has a probability that tends to 0. In contrast, if groups are relatively small
(of the order of average degree) and there is substantial homophily, then average
clustering does not vanish. Thus, homophilistic networks exhibit the character-
istics of the “small worlds” discussed by Watts and Strogatz (1998): nontrivial
clustering at the same time as having a diameter on the order of a uniformly
random graph.

Theorem 2. Consider a setting such that (i) there is some m > 0 such that for
large enough n, hkk(n)Dk(n)/D(n) > m for all k, (ii) maxi di(n)/maxk |Nk|
and mini di(n)/maxi di(n) are each Ω(1), and maxi di(n) > 2. Almost surely,
average clustering is Ω(1).
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The proof of Theorem 2 is straightforward and so only sketched here. Let
maxi di(n)/maxk |Nk| > m1 > 0 and mini di(n)/maxi di(n) > m2 > 0 for
all large enough n. The probability of a link between any two nodes of the same
type is at least

(m2 maxi di(n))2 mink hkk

D
>

(m2 maxi di(n))2m
maxkDk(n)

>
(m2 maxi di(n))2m

maxk |Nk(n)|maxi di(n)

> m2
2m1m > 0

for all large enough n. Given that there is a bound m3 > 0 so that each node
has an expectation of forming a fraction of at least m3 of its links within its own
group, and the clustering among pairs of nodes that it is linked to of own type
is at least m2

2m1m > 0, it follows that the expected clustering of any node is
bounded away from 0 (conditional on it having degree at least 2). Given that the
expected clustering of all nodes are bounded away from 0 (conditional on having
at least degree 2), and all nodes have expected degree bounded away from 0 and
so a non-vanishing fraction almost surely end up with degree of at least 2, it can
then be shown that the average clustering is almost surely above 0.

5 Discussion

The results here show that substantial homophily and bias in the way that
different types of nodes link to each other can be introduced without altering
the average distance or diameter of a network. On one level this might not have
been expected, and yet the proof of this is very simple and basically relies on
the fact that some rescaling of the degree of a node up to a fixed factor does not
alter the asymptotic average distance and diameter of the resulting networks.
This does not mean that this leaves the properties of the network unchanged, as
we have seen with clustering parameters. Also, as shown in Golub and Jackson
(2008), networks with substantial homophily can still behave quite differently, so
that even though diameter and average distance remain unchanged, the speed of
learning can decrease by orders of magnitude and mixing time on such networks
can correspondingly increase by orders of magnitude.
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Abstract. We analyze “assignment exchanges”- auction and exchange
mechanisms which are tight simplifications of direct Walrasian exchange
mechanisms. These simplifications are distinguished by their use of as-
signment messages, which parameterize certain substitutable preferences.
The “basic” assignment exchanges respect integer constraints, general-
izing the Shapley-Shubik mechanism for indivisible goods. Connections
are reported between the assignment exchanges, ascending multi-product
clock auctions, uniform price auctions for a single product, and Vickrey
auctions. The exchange mechanisms accommodate bids by buyers, sellers
and swappers and can support trading for certain kinds of complemen-
tary goods.
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Abstract. Auctions for search engine advertising have been one of the
most successful examples of economic mechanism design, at least in the
private sector. This talk will review some of the history, theory, and
practical issues surrounding these auctions.
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Abstract. The rise of the Internet and the emerging E-Commerce ap-
plications has created new economic markets of unprecedented scale.
They have introduced many cross-disciplinary challenges in mathemat-
ics and computer scientists, and engineering, one of which is the algo-
rithmic and complexity issue of economy market equilibrium theory. In
this talk, we examine the mathematical connections as well as the com-
putational equivalences between equilibrium and optimization, between
game equilibrium and market equilibrium, existence and NP-hardness,
and between exact computation and approximation. Being able to com-
pute equilibria numerically also significantly expands the applicability of
game/economy equilibrium theory to a wide range of decision problems.
We present applications of computational equilibrium from developing
communication network protocols in spectrum management and resource
allocation to adopting free trade policies in international trade between
nations.
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Abstract. We will discuss four partitioning algorithms using eigenvec-
tors, random walks, PageRank and their variations. In particular, we will
examine local partitioning algorithms, which find a cut near a specified
starting vertex, with a running time that depends on the size of the small
side of the cut, rather than on the size of the input graph (which can be
prohibitively large). Three of the four partitioning algorithms are local
algorithms and are particularly appropriate for applications arising in
connection with Webgraphs and Internet economics.
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Abstract. Achieving efficient spectrum usage is a major challenge in the
management of a complex communication system. With multiple users
having conflicting objectives who share a common spectrum, some of
whom may be hostile, careful resource allocation is essential for
the effective utilization of the available frequency. Conventionally, spec-
trum sharing is achieved via orthogonal transmission schemes whereby
the available frequency band is divided into multiple tones (or bands)
which are pre-assigned to all the users on a non-overlapping basis. How-
ever, such “static orthogonal spectrum sharing” approach can lead to
low bandwidth utilization. In fact, various recent spectrum occupancy
studies have demonstrated that a typical geographical region has wide
swathes of frequencies (up to 2/3 of the allocated radio spectrum) that
are not used at any given time. While the utilization of spectrum varies
with time, a significant amount of spectrum is available for opportunistic
wireless applications among secondary users.

Spectrum-sensing cognitive radio technology allows devices to dynam-
ically and automatically seek out and use the optimum frequencies and
bandwidth. To take advantage of the unused spectrum capacity, the users
dynamically adapt to the spectral environment and change transmission
or reception parameters on the fly. This allows for more efficient wireless
communication without causing harmful interference with legacy systems
or other devices using the same frequency bands. In these systems all
users are allowed to use all the tones simultaneously. In comparison with
the static spectrum sharing policies, this setup offers significantly greater
freedom in utilizing the spectrum. A major challenge in the development
of opportunistic spectrum sharing technology is to devise efficient algo-
rithms for the distributed management of frequency slots and transmit
power.

This tutorial will describe various optimization and game theoretic
formulations of the dynamic spectrum management and present some
recent results on its complexity, duality and approximation.
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Abstract. There are three major trends in the field of Algorithmic
Game Theory: computational mechanism design, the price of anarchy,
and the computation of equilibria; this talk describes one recent result
in each. We show computational complexity lower bounds on truthful
and approximately efficient mechanisms; we revisit the Roughgarden-
Tardos result on selfish routing when routing decisions are made by the
nodes, not the flows; and we show that Nash equilibria can be approx-
imated well in several broad, unexpected, and useful classes of games.
(Joint work with Costis Daskalakis, Michael Schapira, Yaron Singer, and
Greg Valiant).

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, p. 17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



The Elements of General Equilibrium Theory

Herbert E. Scarf

Yale University
herbert.scarf@yale.edu

Abstract. The lecture will be an introduction to the model of eco-
nomic equilibrium. The basic concepts: preferences, initial endowments
and market clearing prices will discussed - in general and by means of ex-
amples. I will indicate how fixed point theorems are used to demonstrate
the existence of equilibrium prices and sketch an algorithm for Brouw-
ers theorem. If time permits, there will be some remarks on equilibrium
models with production.
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Abstract. We give a new mathematical formulation of market equilib-
ria using an indirect utility function: the function of prices and income
that gives the maximum utility achievable. The formulation is a convex
program and can be solved when the indirect utility function is convex
in prices. We illustrate that many economies including
– Homogeneous utilities of degree α ∈ [0, 1] in Fisher economies —

this includes Linear, Leontief, Cobb-Douglas
– Resource allocation utilities like multi-commodity flows

satisfy this condition and can be efficiently solved.
Further, we give a natural and decentralized price-adjusting algorithm

in these economies. Our algorithm, mimics the natural tâtonnement dy-
namics for the markets as suggested by Walras: it iteratively adjusts a
good’s price upward when the demand for that good under current prices
exceeds its supply; and downward when its supply exceeds its demand.
The algorithm computes an approximate equilibrium in a number of it-
erations that is independent of the number of traders and is almost linear
in the number of goods. Interestingly, our algorithm applies to certain
classes of utility functions that are not weak gross substitutes.

1 Introduction

The market equilibrium model, common in economics, is that of a market with
m traders and n goods, where the traders are endowed with money or/and goods
and wish to optimize their utilities. Market equilibrium is defined by a price and
an allocation such that no trader has any incentive to trade and there is no excess
demand of any good. While the problem was originally formulated by Walras
[29] in 1874, the existence of such an equilibrium was established by Arrow and
Debreu [1] in 1954 using a fixed-point argument.

The result of Arrow and Debreu does not give much insight into the dy-
namics of the market. How does market find the equilibrium prices? What is
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the complexity of finding these prices? Interested in answering the first ques-
tion, economists focused on decentralized dynamics that converge to equilibrium.
Most notably, Samuelson [26] formalized Walras’ idea of tâtonnement as a set of
differential equations relating the adjustment of the price with excess demand.
Later, Arrow et al. and Nikaido and Uzawa [2,23] showed that in markets with
gross substitute property, the process proposed by Samuelson converges to an
equilibrium. The number of iterations of such a process depends on the utility
functions of the traders.

In computer science literature, the focus has been on designing polynomial-
time algorithms for several special cases using techniques such as primal-dual,
auctions algorithms and convex programming [9,7,17,13,15,10,30]. The surveys
of Vazirani [28] and Codenotti and Varadarajan [4] discuss these results. These
algorithms (with the notable exception of [8]1) are typically centralized.

This paper attempts to combine the advantages of the both approaches for a
restricted class of markets. We present a fast and relatively natural algorithm
for computing approximate equilibrium prices. The number of iterations required
by our algorithm to converge to approximate equilibrium prices is almost linear
in the number of goods and is independent of the number of traders. Another
desirable feature of our algorithm is its distributed nature: it does not need to
gather the information on utility functions and endowments of the traders in
a central place to compute the prices. It only offers the sellers a procedure for
updating the prices based on the difference of demand and supply of their good
that converges to market equilibria. In fact, except a normalization variable, the
only information passed between buyer and seller of a good is the current price
of the goods and the demand corresponding to the current price.

From an algorithm design perspective, our procedure is different from primal-
dual or auction algorithms in the sense that the prices (dual variables) do not
approach the equilibrium from below. The process may underestimate or over-
shoot the equilibrium prices several times before it converges. In that sense, our
algorithm is closest to the results of [12,24]. The analysis uses a new convex
program for characterizing equilibria. For that reason the class of markets for
which we can analyze our procedure is slightly more restricted than the class of
markets comprising weakly gross substitute goods. At the same time, it include
resource allocation markets, which are in fact not gross-substitute markets.

In particular, our algorithm applies to the market model for network conges-
tion control as a part of a larger class of resource allocation markets [18]. For
the case of multiple sources and sinks, the problem of determining, or discov-
ering, equilibrium prices using a tâtonnement or combinatorial process, appears
rather challenging, especially since there are no known combinatorial polyno-
mial time algorithms for solving the feasibility of multi-commodity flows in net-
works. Fortunately, approximate solutions are tractable as we illustrate in this
paper.

1 The result of [8] has a running time that is independent of both number of traders and
number of goods, but is dependent on some other market parameters. For example,
when all traders share linear utilities, the procedure in [8] may not converge.
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1.1 Results

The new convex program. We give a new formulation of the market equilibrium
problem using indirect utility function. An indirect utility function ũ of price
π ∈ �n

+ and budget (or income) e ∈ �+ gives the maximum utility achievable
under those prices and budget as follows:

ũ(π, e) = max{u(x) | x ∈ �n
+, π · x ≤ e}

where u is the utility function defined on allocation of goods. Although indirect
utility functions have been extensively used in Economics to study the behavior
of aggregate demand [20,27], here we use them to formulate and solve the market
equilibrium problem. Our formulation becomes a convex program if the indirect
utility functions are convex on a suitably defined set of prices and income. This
enables polynomial-time computation of (approximate) market equilibrium using
standard convex programming techniques.

We show that, in the Fisher setting, the indirect utility functions are convex
if the utility functions are homogeneous of degree 1. Such utility functions in-
clude linear, Leontief, Cobb-Douglas, CES, resource allocation markets. If the
utility function u is increasing in all its components, then a necessary and suf-
ficient condition for convexity of the corresponding indirect utility function is
(see Proposition 2.4 in [25]): −x·∂2u(x)x

∂u(x)x ≤ 2 for all x. Surprisingly, this condi-
tion has the same form as those for monotone utilities [7]. They turn out to be
a special case of monotone utilities for which market equilibrium can be com-
puted using ellipsoid method [7]. However, note that polynomial time convergent
tâtonnement processes are not known for monotone utilities.

The algorithm. A natural approach to computing the equilibrium price (as orig-
inally envisaged by Walras) is an iterative algorithm termed as tâtonnement
process where the prices of goods are updated locally as a function of excess
demand. Stability of these processes have been studied extensively in the litera-
ture [2,21] (see [22] for a survey). It has been shown that if the utility functions
satisfy the weak gross substitute (WGS) property then the continuous process
is stable and converges to market equilibrium. Polynomial-time convergence of
such a process was only recently established in exchange economies with WGS
utilities by the works of Codenotti et al. [7].

Our formulation enables us to design efficient processes similar to tâtonnement
that converge close to a market equilibrium in polynomial time whenever the in-
direct utility functions of traders are convex. This partially answers the question
raised in [18,19,7] on convergence of tâtonnement processes for a class of utility
functions that do not satisfy WGS, for example, Leontief and resource allocation
utilities. In order to obtain a (1 + ε) (weak) approximate market equilibrium,
our process requires every trader to perform at most O(ε−2n logn) computa-
tions of its demand. For multi-commodity flow resource allocation market, for
example, the demand oracle is the shortest-path computation under the given
edge-lengths (prices). Thus our algorithm needs Õ(kn) shortest path computa-
tions for a market with k commodities and n edges. This contrasts against the
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algorithm of [18] for single-source multi-sink markets that needs O(k2) max-flow
computations. We point out, however, that the algorithm of [18] computes an
exact equilibrium while we compute only an approximate equilibrium.

Organization. The rest of the paper is organized as follows. In Section 2, we
define the market equilibrium problem and formulate a mathematical program
using indirect utility functions. We also outline a convex programming technique
for solving this formulation if the indirect utility functions are convex. Section 3
then presents the prominent cases where we consider several utilities in Fisher
economy under which the indirect utility functions turn out to be convex. In
Section 4, we present our algorithm for computing approximate market equilibria
assuming convexity of indirect utility functions. Section 5 concludes with some
open directions.

2 An Alternate Formulation Using Indirect Utility
Functions

We first describe the exchange market model. Let us considerm economic agents
who represent traders of n goods. Let �n

+ (resp. �n
++) denote the subset of

�n where the coordinates are non-negative (resp. strictly positive). The jth
coordinate will stand for good j. Each trader i (i = 1, . . . ,m) is associated with

– a non-empty convex set Ki ⊆ �n which is the set of all “feasible” allocations
that trader i may receive (in many cases, Ki = �n

+),
– a concave utility function ui : Ki → �+ which represents her preferences for

the different bundles of goods, and
– an initial endowment of goods wi = (wi1, . . . , win)� ∈ Ki.

At given prices π ∈ �n
+, the trader i sells her endowment, and gets the bundle

of goods xi = (xi1, . . . , xin)� ∈ Ki which maximizes ui(x) subject to budget
constraint2 π · x ≤ π · wi. A market equilibrium is a price vector π ∈ �n

+ and
bundles xi ∈ Ki such that: xi ∈ argmax{ui(x) | x ∈ Ki, π · x ≤ π · wi} for all
i, and

∑
i xi ≤

∑
i wi. The above described market model is called an exchange

economy.
We make the following standard assumption on the utility functions:

Assumption 1. For π ∈ �n
+, any xi ∈ argmax{ui(x) | x ∈ Ki, π · x ≤ π · wi}

satisfies π · xi = π · wi.

We now define a notion of indirect utility function induced by a utility function.

Definition 2 (Indirect utility function). For trader i, the indirect utility
function ũi : �n

+×�+ → �+ gives the maximum utility achievable at given price
and income:

ũi(π, e) = max{ui(x) | x ∈ Ki, π · x ≤ e}.
The following theorem characterizes the set of all equilibria.
2 For two vectors x and y, we use x · y to denote their inner product.
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Theorem 3. The following program gives precisely the set of all market equi-
libria in the exchange economy.∑

i xi ≤
∑

i wi

ũi(π, π · wi) ≤ u(xi) for all i
π ∈ �n

+
xi ∈ Ki for all i.

(1)

Proof. From the definition, it follows that a market equilibrium satisfies the
above inequalities. Now for converse, consider a solution (π, x1, . . . , xm) of the
above program. From the second constraint and Assumption 1, it follows that
π · xi ≥ π · wi for all i. Furthermore from the first constraint, it follows that∑

i π · xi ≤
∑

i π · wi. This implies that π · xi = π · wi for all i and hence the
solution (π, x1, . . . , xm) is a market equilibrium.

Note that the program (1) is convex when, for all i, the function ũi(π, π ·wi) is a
convex function of π ∈ �n

+ and the utility function ui is concave. Unfortunately,
for many interesting utility functions ui, the corresponding indirect utility func-
tion ũi is not convex. It turns out, however, that in many cases (as illustrated
later in the paper), if we restrict the prices π to a carefully chosen convex set
Π ⊆ �n

+ that is guaranteed to contain an equilibrium price, the function ũi

becomes convex in π. Therefore the program (1) reduces to the following convex
program. ∑

i xi ≤
∑

iwi

ũi(π, π · wi) ≤ u(xi) for all i
π ∈ Π
xi ∈ Ki for all i.

(2)

In order to solve the above convex program using an ellipsoid algorithm, the
convex set Π needs to be given in terms of a membership oracle.

Solving Program (2). Assuming that the convex sets Π and Ki are bounded
and full dimensional,3 the convex program (2) can be solved to an arbitrary
degree of precision by an ellipsoid-like algorithm using the evaluation oracle for
the functions ui and ũi and membership oracles for Π and Ki. We omit details
here and refer the reader to Theorem 4.3.13 in [16].

3 Convexity of the Indirect Utility Functions

In this section, we give a class of Fisher economies in which the indirect utility
function ũi is convex in π over a set Π . The Fisher economy is a special case of
the exchange economy when Ki = �n

+ and the endowments wi of the traders are
proportional, i.e.,

wi = λiw

3 The economies considered in this paper have unbounded Π and Ki in their descrip-
tion. However one can usually obtain bounds on the largest value that an allocation
or a price can take. Moreover the cases that Π is not full dimensional can be handled
using standard projection techniques.
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where w ∈ �n
++ and λ1, . . . , λm ∈ �++. In this case we let Π = {π ∈ �n

+ |
π · w = 1}. Thus under any prices π ∈ Π , the income of trader i is fixed at λi.

We now quote a theorem of K.-H. Quah [25] which gives necessary and suf-
ficient conditions on the utility functions ui under which the indirect utility
functions ũi(π, λi) are convex in π ∈ Π . We drop the subscript i to simplify the
notation.

Proposition 1 (K.-H. Quah [25], Proposition 2.4). Assume that the utility
function u : �n

++ → � is continuous, quasi-concave, increasing in all arguments,
and has the property that for any x ∈ �n

++, the set {x ∈ �n
++ | u(x) ≥ u(x)} is

closed. Let λ ∈ �++ be a constant.

1. Then, ũ(π, λ) is convex in prices π if and only if the functions µx are convex
for all x, where µx : �++ → � is defined by µx(s) = u(x/s).

2. Suppose, in addition, that u is C2, a twice differentiable function. Then µx

is convex if and only if ψ(x) = −x·∂2u(x)x
∂u(x)x ≤ 2 for all x.

Remark 1. Contrast the condition ψ(x) ≤ 2 above with the condition ψ(x) < 4
which is sufficient to guarantee that the induced demand function is monotone [7].
Recall that the demand function x(π) is monotone if for any π, π′, we have
(π − π′) · (x(π) − x(π′)) ≤ 0. Thus if ũ is convex, the induced demand function
is monotone.

Corollary 4

1. A concave homogeneous utility function u of degree α where 0 ≤ α ≤ 1, i.e.,
u(sx) = sαu(x), results in convex indirect utility function ũ if u satisfies the
conditions in Proposition 1.

2. If utility functions u1 and u2 satisfy the conditions in Proposition 1 and
induce convex indirect utility functions, then so does u1 + u2.

Proof. For (1), note that µx(s) = s−αu(x) is a convex function of s. For (2),
note that if µ1,x and µ2,x are convex functions then so is µ1,x + µ2,x.

Note, however, that some natural homogeneous utility functions of degree one
(e.g., Leontief utilities and resource allocation utilities, defined later) do not
satisfy the conditions in Proposition 1, in particular, the condition that the
utility function is increasing in all arguments. However in the next theorem we
show that the homogeneous utilities induce a convex indirect utility function
even when they are not increasing in all arguments.

Theorem 5. If the utility function u : �n
+ → � is homogeneous (of degree one),

i.e., u(αx) = αu(x) for all α ∈ �+ and x ∈ �n
+, then the indirect utility function

ũ(π, λ) is convex in π for all λ ∈ �++.

Proof. Let price vectors π, π1, π2 ∈ �n
+ satisfy π = απ1 + (1 − α)π2 for some

0 ≤ α ≤ 1. Let x ∈ �n
+ be such that π·x = λ and u(x) = ũ(π, λ). Define x1 = λx

π1·x
and x2 = λx

π2·x . Note that π1 · x1 = π2 · x2 = λ and hence ũ(π1, λ) ≥ u(x1)
and ũ(π2, λ) ≥ u(x2). Using the homogeneity of u, we also get that u(x) =
π1·x

λ u(x1) ≤ π1·x
λ ũ(π1, λ) and u(x) = π2·x

λ u(x2) ≤ π2·x
λ ũ(π2, λ).
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Note that α(π1 · x) + (1 − α)(π2 · x) = λ. Now(
αλ

π1 · x
+
λ(1 − α)
π2 · x

)
=
(
αλ

π1 · x
+
λ(1 − α)
π2 · x

)(
α(π1 · x)

λ
+

(1− α)(π2 · x)
λ

)
= α2 + α(1 − α)

(
π1 · x
π2 · x

+
π2 · x
π1 · x

)
+ (1 − α)2

≥ α2 + 2α(1− α) + (1 − α)2

= 1.

To complete the proof we now observe

ũ(π, λ) = u(x) ≤ u(x)
(
αλ

π1 · x
+
λ(1 − α)
π2 · x

)
≤
(π1 · x

λ
ũ(π1, λ)

) αλ

π1 · x
+
(π2 · x

λ
ũ(π2, λ)

) λ(1 − α)
π2 · x

= αũ(π1, λ) + (1− α)ũ(π2, λ).

The set of homogeneous utility functions of degree one includes the follow-
ing well-studied utility functions. Here let a ∈ �n

+. Linear utilities u(x) = a · x,
Leontief utilities u(x) = minj∈S ajxj where S ⊆ {1, . . . , n}, Cobb-Douglas util-
ities u(x) =

∏
j x

aj

j assuming
∑

j aj = 1, CES utilities u(x) = (
∑

j ajx
ρ
j )

1/ρ for
−∞ < ρ < 1 and ρ �= 0, and nested CES utilities [5] [6].

It also includes the resource allocation utilities defined as follows. Let k
be a positive integer and let A ∈ �n×k

+ be a matrix and c ∈ �k
+ be a vector. The

resource allocation utility u : �n
+ → � is defined as

u(x) = max{c · y | y ∈ �k
+, Ay ≤ x}. (3)

The columns of matrix A can be thought of as “objects” that the trader wants
to “build”. A unit of an object l needs Ajl units of resource (or good) j and
accrues cl units of utility. The trader then builds yl units of object l such that
the total need for resources is at most x and the total utility c · y is maximized.
This framework includes interesting markets like

1. Multi-commodity flow markets (in directed or undirected capacitated net-
works). Here trader i wants to send maximum amount of flow from source
si to sink ti such that the total cost of routing the flow under the prices π is
at most her budget. The objects here are si-ti paths and the resources are
the edges.

2. Steiner-tree markets in undirected (resp. directed) capacitated networks.
Here trader i is associated with a subset Si of nodes and wants to build
maximum fractional packing of Steiner trees connecting Si (resp. fractional
arborescences rooted at some ri ∈ Si connecting Si to ri) such that the total
cost of building under the prices π is at most her budget. The objects here
are Steiner trees (resp. arborescences). Note that computing a profit maxi-
mizing demand in undirected Steiner-tree market is NP-hard. Therefore the
running times of the algorithms are only oracle-polynomial.
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From Corollary 4, the additive separable concave utilities also induce a
convex indirect utility functions: (1) u(x1, . . . , xn) =

∑
j ajx

ρj

j where aj ∈ �++
and 0 ≤ ρj ≤ 1; (2) u(x1, . . . , xn) =

∑
j log(1 + ajxj) where aj ∈ �++ [3] —

follows from the fact that log(1 + ajxj

s ) is a convex function of s.

4 The Algorithm

In this section, we present our algorithm to compute a weak approximate market
equilibrium defined as follows. To simplify the definition, we assume that Ki ⊆
�n

+, i.e., we let xij take only non-negative values. For some technical reason, we
assume that the set Π satisfies the following property: for any vector p ∈ �n

+,
there exists α ∈ �++ such that αp ∈ Π . Note that this requirement is satisfied
by the sets Π for the utilities in Fisher markets.

Definition 6 (Weak (1 + ε)-approximate market equilibrium). A price
vector π ∈ Π and bundles xi ∈ Ki for each trader i are called a weak (1 + ε)-
approximate market equilibrium in the exchange economy if

1. The utility of xi to trader i is at least that of the utility-maximizing bundle
under prices π: ui(xi) ≥ ũi(π, π · wi) for each i,

2. The total demand is at most (1+ ε) times the supply:
∑

i xi ≤ (1+ ε)
∑

iwi,
and

3. The market clears: π ·
∑

iwi ≤ π ·
∑

i xi.

Note that item 3 above follows directly from item 1 and Assumption 1. If Ki �⊆
�n

+, we use a standard technique of “shifting” the space so that xij are non-
negative. This, however, needs that Ki is bounded below and we know these
bounds. It also weakens the notion of approximate market equilibrium and we
omit the details from this extended abstract. Shifting has also been used to
address similar problems arising while solving linear programs with negative
entries [24].

Without loss of generality, we scale the endowments wi so that
∑

iwi = 1,
the vector of all ones. This also implies that we scale the vectors in Ki. We
emphasize that the algorithm also works without scaling; however the scaling
simplifies the presentation. The algorithm is given in Figure 1. Here δ > 0 is a
constant to be fixed later. The algorithm goes in N iterations. In each iteration,
we first scale the current price vector p so that it lies in Π . We then “announce”
this price vector and receive in response the utility-maximizing bundles xi ∈ Ki.
We then update the price vector p according to the aggregate demands Xj of
goods j as given in Step 2d.

Note that this update is essentially same as (within a (1 + δ) factor) to the
following natural update in terms of excess demand. Let Zj = Xj −

∑
i wij =

Xj − 1 be the excess demand of good j. We can update p as:

pj ← pj(1 + δσZj).

This is so because (1 + δσZj) ≈ (1 + δσXj)(1− δσ), which is in turn true since
Zj = Xj − 1 and δσ is small. The extra factor (1− δσ) is common to all goods j
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1. Initialize pj = 1 for 1 ≤ j ≤ n.
2. Repeat for N = n

δ
log1+δ n iterations:

(a) Find α > 0 such that αp ∈ Π . Announce prices π = αp.
(b) Each trader i computes xi ∈ argmax{ui(x) | x ∈ Ki, π · x ≤ π · wi}.
(c) Compute the aggregate demand X =

�
i xi and let σ = 1

maxj Xj
where Xj

denotes the aggregate demand of good j.
(d) Update for each good j: pj ← pj (1 + δσXj).

3. Output for each i: xi =
�N

r=1 σ(r)xi(r)
�N

r=1 σ(r)
where xi(r) and σ(r) are the values of

xi and σ in the rth iteration.
4. Output π =

�N
r=1 σ(r)π(r)
�N

r=1 σ(r)
where π(r) and σ(r) are the values of π̂ and σ in the

rth iteration.

Fig. 1. Algorithm for the convex program (2)

and is factored away in the price scaling step. The algorithm in the end outputs,
π and xi for all i, the weighted average of the prices and allocations computed
in N iterations.

Lemma 1. The outputs xi and π satisfy ui(xi) ≥ ũi(π, π · wi) for each i.

Proof. Since ũi(π, π · wi) is convex when π ∈ Π and ui(xi) is concave when
xi ∈ Ki , we have ũi(π, π ·wi) ≤

�
r σ(r)�ui(π(r),π(r)·wi)�

r σ(r) =
�

r σ(r)ui(xi(r))�
r σ(r) ≤ ui(xi).

The following main lemma about the output is proved below. The proof is
based on the standard application of “experts theorem” or “multiplicative up-
date” technique used previously in solving packing and covering linear pro-
grams [24,12,11].

Lemma 2. The outputs xi satisfy
∑

i xi ≤ 1
1−2δ

∑
iwi.

We set δ = ε
2(1+ε) so that 1

1−2δ = 1 + ε. The proof of Theorem 7 now follows
from Lemmas 1, 2, and Assumption 1 on the utility functions.

The main result of this section is summarized in the following theorem.

Theorem 7. Our algorithm computes a weak (1 + ε)-approximate market equi-
librium in an economy for which a set Π containing an equilibrium price is
known such that for each i, the indirect utility function ũi(π, π · wi) is a convex
function of π when restricted to π ∈ Π.

In the algorithm, each trader i makes O(ε−2n logn) calls to her “demand”
oracle: given prices π ∈ Π, compute xi ∈ argmax{ui(x) | x ∈ Ki, π · x ≤ π · wi}.

Proof of Lemma 2. Let x =
∑

i xi and let (x)j denote the jth coordinate of
x. To this end, let us define a potential Φ(r) =

∑
j pj(r) where pi(r) denote the

value of pi in the beginning of rth iteration. From the step 2d in the algorithm,
we have

Φ(r + 1) = Φ(r) + δσ(r)
∑

j

pj(r)Xj(r)
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where Xj(r) denotes the value of Xj in the rth iteration. Thus

Φ(r + 1)
Φ(r)

= 1 + δσ(r)
∑

j

pj(r)
Φ(r)

Xj(r) = 1 + δσ(r) ≤ exp(δσ(r)).

The second equality follows from the fact that
∑

j pj(r)Xj(r) = 1
α(r)

∑
j πj(r)

Xj(r) which is, by Assumption 1, equal to 1
α(r)

∑
j πj(r)

∑
i wij = 1

α(r)

∑
j πj(r)

=
∑

j pj(r) = Φ(r). Here α(r) is the value of α in rth iteration.
Thus after taking telescoping product, we get

Φ(N + 1) ≤ Φ(1) · exp

(
δ
∑

r

σ(r)

)
= n · exp

(
δ
∑

r

σ(r)

)
. (4)

On the other hand, observe that

Φ(N + 1) =
∑

j

pj(N + 1) =
∑

j

N∏
r=1

(1 + δσ(r)Xj(r))

≥
∑

j

exp

(
δ(1 − δ)

∑
r

σ(r)Xj(r)

)

≥ max
j

exp

(
δ(1− δ)

∑
r

σ(r)Xj(r)

)

= exp

(
δ(1− δ)max

j

∑
r

σ(r)Xj(r)

)
.

The first inequality follows from the elementary fact that 1 + µ ≥ exp(µ(1− δ))
for all 0 < µ < δ < 1

2 . Combining the above observation with (4), we get

δ(1− δ)max
j

∑
r

σ(r)Xj(r) ≤ logΦ(N + 1) ≤ logn+ δ
∑

r

σ(r).

Therefore,

max
j

(x)j = max
j

∑
r σ(r)Xj(r)∑

r σ(r)
≤ 1

1− δ +
(

logn
δ(1 − δ)

∑
r σ(r)

)
. (5)

Now we “charge” the second term on the right-hand-side in (5) to maxj(x)j as
follows. Note that at least one pj increases by a factor (1 + δ) in any iteration.
Thus after N = n

δ log1+δ n iterations, maxj pj(N + 1) ≥ n1/δ. Also

(x)j =
∑

r σ(r)Xj(r)∑
r σ(r)

=
log
∏

r exp(δσ(r)Xj(r))
δ
∑

r σ(r)
≥ log pj(N + 1)

δ
∑

r σ(r)
.

Thus maxj(x)j ≥ log n
δ2
�

r σ(r) . Putting all pieces together, we get

max
j

(x)j ≤
1

1− δ +
(
δmaxj(x)j

1− δ

)
.

Thus maxj(x)j ≤ 1
1−2δ .
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5 Future Work

Our definitions of approximate market equilibrium is weak because the bud-
get constraints of traders are satisfied only in the aggregate sense. Some of the
traders may be spending significantly more than their budget. Moreover, some
positively priced items may not be fully allocated. A notion of strongly approx-
imate market equilibrium may be defined on the lines of [13], where budget
constraints of no trader may exceed by a factor more than (1 + ε) and no item
with positive price is under-demanded. Under this definition it might be possible
to prove the “closeness” of the discovered prices to the equilibrium prices (see
e.g., [14]). If we set δ = O( ε mini λi�

i λi
), where λi is the income of trader i in a Fisher

economy, our tâtonnement algorithm obtains a strong (1 + ε) approximate mar-
ket equilibrium in the above sense in O(( ε mini λi�

i λi
)−2n logn) iterations. It will be

very interesting to develop a tâtonnement algorithm that converges to a strong
approximate market equilibrium in near linear number of iterations. Finally, it
is interesting to note that the continuous time version of our process can be de-
scribed as dπj

dt = πjZj where Zj =
∑

j xij−
∑

iwij is the excess demand of good

j. Under what conditions is this process or its “time-average” π̂j = 1
t

∫ t

τ=0 πjdτ
stable and does converge to the equilibrium?
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Abstract. We consider a linear complementarity problem (LCP) arisen
from the Arrow-Debreu-Leontief competitive economy equilibrium where
the LCP coefficient matrix is symmetric. We prove that the decision
problem, to decide whether or not there exists a complementary solution,
is NP-complete. Under certain conditions, an LCP solution is guaranteed
to exist and we present a fully polynomial-time approximation scheme
(FPTAS) for computing such a solution, although the LCP solution set
can be non-convex or non-connected. Our method is based on solving
a quadratic social utility optimization problem (QP) and showing that
a certain KKT point of the QP problem is an LCP solution. Then, we
further show that such a KKT point can be approximated with running
time O(( 1

ε
) log( 1

ε
) log(log( 1

ε
)) in accuracy ε ∈ (0, 1) and a polynomial in

problem dimensions. We also report preliminary computational results
which show that the method is highly effective.

1 Introduction

Given a real n by n matrix A, consider the linear complementarity problem
(LCP) to find u and v such that

ATu+ v = e, uT v = 0, (u �= 0, v) ≥ 0, (1)

where e is the vector of all ones. Note that uT v = 0 implies that uivi = 0 for
all i = 1, · · · , n. Also, u = 0 and v = e is a trivial complementary solution. But
we look for a non-trivial solution where u �= 0 (see Cottle at al. [5] for more
literature on linear complementarity problems).

In this note, we focus on the case that A is symmetric. We first prove that the
decision problem, to decide whether or not there exists such a complementary
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solution, is NP-complete. Under certain conditions, for example, that all entries
of A is non-negative, an LCP solution is guaranteed to exist. Then, we present a
fully polynomial-time approximation scheme (FPTAS) for computing a solution,
although the LCP solution set can be non-convex or non-connected.

Our method is based on solving a quadratic social utility optimization prob-
lem (QP) and showing that a certain KKT point of the QP problem is an LCP
solution. Then, we further show that such a KKT point can be approximated
with running time O((1

ε ) log(1
ε ) log(log(1

ε )) in accuracy ε ∈ (0, 1) and a polyno-
mial in problem dimensions. We also report preliminary computational results
which show that the method is highly effective in comparison with other well
known LCP solvers.

2 Connection to Competitive Market and Bimatrix
Game Equilibria

The LCP (1) rises from the Arrow-Debreu exchange competitive economy equi-
librium problem where it was first formulated by Léon Walras in 1874. In this
equilibrium problem everyone in a population of m traders has an initial endow-
ment of a divisible goods and a utility function for consuming all goods—their
own and others’. Every trader sells the entire initial endowment and then uses
the revenue to buy a bundle of goods such that his or her utility function is
maximized. Walras asked whether prices could be set for everyone’s goods such
that this is possible. An answer was given by Arrow and Debreu in 1954 [1] who
showed that, under mild conditions, such equilibrium would exist if the utility
functions were concave. In general, it is unknown whether or not an equilibrium
can be computed efficiently.

Consider a special class of Arrow-Debreu’s problems, where each of the n
traders has exactly one unit of a divisible and distinctive good for trade, and let
trader i, i = 1, ..., n, bring good i, which class of problems is called the pairing
class [13]. For given prices pj on good j, consumer i’s maximization problem is

maximize ui(xi1, ..., xin)
subject to

∑
j pjxij ≤ pi,

xij ≥ 0, ∀j.
(2)

Let x∗i denote a maximal solution vector of (2). Then, vector p is called the
Arrow-Debreu price equilibrium if there exists an x∗i for consumer i, i = 1, ..., n,
such that ∑

i

x∗i = e

where e represents available amount of goods on the exchange market.
The Leontief exchange economy problem is the Arrow-Debreu equilibrium

when the utility functions are in the Leontief form:

ui(xi) = min
j: aij>0

{
xij

aij

}
,
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where the Leontief coefficient matrix is given by

A =

⎛⎜⎜⎝
a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann

⎞⎟⎟⎠ .
It was proved that

Theorem 1. (Ye [13]) Let B ⊂ {1, 2, ..., n}, N = {1, 2, ..., n} \ B, ABB be
irreducible, and uB satisfy the linear system

AT
BBuB = e, AT

BNuB ≤ e, and uB > 0.

Then the (right) Perron-Frobenius eigen-vector pB of UBHBB together with
pN = 0 will be a Leontief economy equilibrium. And the converse is also true.

Theorem 1 has thus established a combinatorial algorithm to compute a Leontief
economy equilibrium by finding a right block B �= ∅, which is precisely a (non-
trivial) complementary solution to the LCP problem (1).

The LCP (1) is also connected to the bimatrix game equilibrium problem
specified by a pair of n×m pay-off matrices C and R, with positive entries, one
can construct a Leontief exchange economy with n+m traders and n+m goods
as follows.

Theorem 2. (Codenotti et al. [4]) Let (C,R) denote an arbitrary bimatrix game,
where assume, w.l.o.g., that the entries of the matrices C and R are all positive.
Let

AT =
(

0 C
RT 0

)
describe the Leontief utility coefficient matrix of the traders in a Leontief econ-
omy. There is a one-to-one correspondence between the Nash equilibria of the
game (C,R) and the market equilibria A of the Leontief economy.

Therefore, computing a bimatrix game equilibrium is also equivalent to comput-
ing a complementary solution of LCP (1). The reader may want to read Brainard
and Scarf [2], Gilboa and Zemel [8], Chen, Deng and Teng [3], Daskalakis, Gold-
berg ans Papadimitriou [7], and Tsaknakis and Spirakis [11] on hardness and
approximation results of computing a bimatrix game equilibrium.

3 Decision of the Existence of an LCP Solution

In general, it’s difficult to decide if LCP (1) has a complementary solution or
not, even when A is symmetric.

Theorem 3. Let A be a real symmetric matrix. Then, it is NP-complete to
decide whether or not LCP (1) has a complementary solution such that u �= 0.
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Proof. Given a symmetric matrix A, it’s NP-complete (see Murty and Kabadi
[10]) to decide if

∃u ≥ 0 such that uTAu > 0? (3)

The complement problem is to decide if or not for all u ≥ 0 one has uTAu ≤ 0,
or −A is co-positive plus.

We now prove that the decision problem (3) is equivalent to the problem that
if or not LCP (1) has a complementary solution u �= 0.

If (1) has a complementary solution u �= 0, then

0 = uT (e−Au) = eTu− uTAu.

Since u ≥ 0 and u �= 0, we have uTAu = eTu > 0.
On the other hand, if the answer to the decision problem (3) is “yes”, then

the maximal value of the following bounded quadratic problem:

(QP ) maximize uTAu (4)
subject to eTu = 1, u ≥ 0,

is strictly positive. Let u∗ be the global maximizer of the problem. Then, u∗

must satisfy the Karush-Kuhn-Tucker (KKT) conditions:

− 2Au+ λe = v (5)
uT v = 0,
eTu = 1,

(u, v) ≥ 0, λ free.

The first two equations in (5) imply that λ = 2(u∗)T Au∗

eT u∗ = 2(u∗)TAu∗ > 0. Thus,
ū = 2u∗

λ ≥ 0 is complementary solution of LCP (1) and ū �= 0.
The question remains: given symmetric A, is it easy to compute one if LCP (1)

is known to have a complementary solution? Note that, the complementary solu-
tion set of (1), even non-empty, is not convex nor even connected. For example,
let

AT =
(

2 1
1 2

)
. (6)

Then, there are three isolated non-trivial complementary solutions:

u1 = (1/2; 0), u2 = (0; 1/2), u3 = (1/3; 1/3).

In the next section, however, we develop a fully polynomial-time approxima-
tion scheme (FPTAS) to compute ε-approximate complementary solution for
LCP (1) when A is symmetric and

∑
i,j aij > 0, that is, the sum of all entries of

A is positive. Here, an ε-approximate complementary solution is a pair (u �= 0, v)
such that

ATu+ v = e, (u �= 0, v) ≥ 0,
uTv

ā
≤ ε,
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where ā is the largest entry in A:

ā = max
i,j
{aij} (> 0). (7)

In most applications, one can scale A such that ā = 1.

4 A Social Optimization and FPTAS

We consider a quadratic “social” utility function uTAu, which we like to max-
imize over the simplex {u : eTu = 1, u ≥ 0}. This can be written as the
quadratic programming problem of QP (4) in the previous section.

Since eTAe > 0 so that LCP (1) has at least one non-trivial complementary
solution. Further more, the maximal value of QP (4) is strictly greater than 0
but bounded above by ā (recall that ā is the largest entry of A). These facts,
together with the proof of Theorem 3, lead to

Lemma 1. Let A be symmetric. Then, every KKT point u of problem (4), with
uTAu > 0, is a (non-trivial) complementary solution for LCP (1).

In [14], an interior-point potential reduction algorithm was proved to be a FP-
TAS for computing an ε-approximate KKT point of general quadratic program-
ming with bounded feasible region. It can be adapted in solving QP (4) in a
running time bounded by O((n4

ε log 1
ε + n4 log n)(log 1

ε + logn)) arithmetic op-
erations. The algorithm reduces the potential function

P (u) = ρ log
(
ā− uTAu

)
−

n∑
j=1

log(uj),

where ρ = (2n +
√
n)/ε, by a constant each iteration from the initial point

u0 = 1
ne, till u becomes an ε-approximate KKT point.

Note that

P (u0) = ρ log
(
ā− 1

n2 e
TAe

)
+ n log(n),

and for any u ∈ {u : eTu = 1, u > 0},

−
n∑

j=1

log(uj) ≥ n log(n).

Thus, P (u) < P (u0) implies that

ρ log
(
ā− uTAu

)
< ρ log

(
ā− 1

n2 e
TAe

)
or

uTAu >
1
n2 e

TAe > 0,

that is, any KKT point u generated by the algorithm must have uTAu > 0. To
conclude, we have
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Theorem 4. There is a FPTAS to compute an ε-approximate non-trivial com-
plementary solution of LCP (1) when A is symmetric and eTAe > 0. Moreover,
such a solution is an ε-approximate equilibrium of the symmetric Leontief econ-
omy when all entries of A are positive.

5 Preliminary Computational Results

Here, we computationally compare three type methods to solve the comple-
mentarity problem of (1): 1) the QP-based potential reduction algorithm (re-
ferred as QP) presented in this paper; 2) a homotopy-based path-following
algorithm method (referred as HOMOTOPY) developed in Dang at al. [6]; 3)
Mixed Complementarity Problem (MCP) general solvers PATH (Ferris and Mun-
son, http://www.gams.com/dd/docs/solvers/path.pdf) and MILES (Rutherford
http://www.gams.com/dd/docs/solvers/miles.pdf), where both solvers use a
Lemke type algorithm that is based on a sequence of pivots similar to those
generated by the simplex method for linear programming; see Lemke [9].

If one applies Lemke’s algorithm (PATHS or MILES) directly to solving LCP
(1), it will return the trivial solution u = 0, v = e. To exclude it, we rewrite
LCP (1) into an equivalent homogeneous LCP as follows:

Mz + q = w, zTw = 0, (z, w) ≥ 0, (8)

where z, w ∈ Rn+1,

M =
(
−AT e
eT 0

)
∈Mn+1, q =

(
0n

−1

)
.

Then, we can obtain a solution for LCP (1) from a complementary solution
of LCP (8). However, the standard Lemke algorithm may not be able to solve
LCP (8) either, since it may terminate at the second iteration with a non-
complementary “secondary-ray” solution. Thus, as shown below, commonly used
LCP solver PATH or MILES seems cannot successfully solve LCPs (8) most of
times.

Both QP and HOMOTOPY are coded in MATLAB script files, and all solvers
are run in the MATLAB environment on a desktop PC (2.8GHz CPU). For the
QP-based potential reduction algorithm, we set ε = 1.e − 8. After the termi-
nation, we use the support of u, {i : ui ≥ 1.e − 5}, to recalibrate an “exact”
solution (to the machine accuracy) for LCP (1).

For different size n ( n = 20 : 20 : 100, 100 : 100 : 1000, 1500 : 500 : 3000), we
randomly generate 15 symmetric and sparse matrices A of two different types
(uniform in [0, 1] or binary {0, 1}) and solve them by the three methods. In the
following tables, “mean sup” the average support size of u and “max sup” the
maximum support size of u in the 15 problems, “mean iter” the average number
of iterations of QP and Homotopy algorithms (each iteration solves a system of
linear equations), and “mean time” the average computing CPU time in seconds.

From our preliminary computational results, we can draw few conclusions.
First, LCP (1), although the matrix A is symmetric, seems not an easy problem
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Table 1. QP for solving uniform symmetric matrix LCP

n mean sup mean iter mean time max sup
20 4.1 39.5 0.1 5
40 4.5 46.0 0.1 5
60 4.5 47.9 0.1 5
80 4.9 47.5 0.2 6

100 5.3 48.2 0.3 7
200 5.5 53.5 1.2 6
300 5.6 59.3 3.4 8
400 5.7 55.1 5.9 7
500 5.9 62.5 11.3 7
600 5.7 58.8 16.0 7
700 5.8 58.8 23.4 7
800 5.8 62.6 33.8 8
900 5.7 65.1 47.3 7

1000 6.3 65.0 60.2 7
1500 6.1 71.5 187.2 8
2000 5.9 73.5 411.9 7
2500 6.4 74.6 774.5 8
3000 6.2 78.7 1404.2 8

Table 2. HOMOTOPY for solving uniform symmetric matrix LCP

n mean sup mean iter mean time max sup
20 4.1 37.7 0.2 5
40 4.4 52.7 0.4 5
60 4.4 58.3 0.8 6
80 4.6 68.2 1.4 6

100 5.3 72.6 2.2 7
200 4.9 108.9 14.0 6
300 5.5 127.7 49.3 8
400 5.5 160.5 111.9 7
500 5.7 159.7 181.6 7
600 5.5 182.5 317.0 6
700 5.9 202.9 515.6 7
800 5.5 208.9 706.3 6
900 5.7 231.7 1039.2 7

1000 5.9 267.2 1644.0 7
1500 5.9 305.5 4726.4 7
2000 5.7 307.1 10105.2 6

Table 3. PATH for solving uniform symmetric matrix LCP

n mean sup mean time max sup
20 8.7 0.1004 12
40 13.8 0.3406 23

n≥60 fail to solve
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Table 4. QP for solving binary symmetric matrix LCP

n mean sup mean iter mean time max sup
20 11.8 35.2 0.1 13
40 16.6 43.3 0.1 20
60 21.1 44.4 0.2 23
80 22.1 46.9 0.3 25

100 23.9 53.3 0.5 27
200 30.0 54.5 1.7 34
300 32.5 66.9 5.2 35
400 34.1 65.1 9.5 38
500 35.4 67.1 16.1 39
600 36.0 82.9 31.4 39
700 37.9 68.0 35.4 42
800 37.8 74.9 55.4 41
900 37.8 78.1 76.5 43

1000 38.7 82.1 106.6 42
1500 40.0 84.9 305.3 43
2000 42.4 91.4 702.2 45
2500 42.9 94.7 1382.8 47
3000 43.9 99.5 1959.4 48

Table 5. HOMOTOPY for solving binary symmetric matrix LCP

n mean sup mean iter mean time max sup
20 11.7 48.6 0.2 14
40 16.2 68.3 0.5 21
60 20.6 75.3 0.9 24
80 22.9 84.0 1.7 26

100 24.3 92.9 2.9 27
200 31.3 111.1 14.6 39
300 32.3 130.4 51.1 39
400 32.4 108.2 79.9 34
500 34.8 153.6 263.7 41
600 34.4 144.8 451.3 37
700 35.6 184.0 572.3 38
800 36.5 208.0 1628.1 37
900 37.2 261.2 4733.4 41

1000 37.2 502.8 5370.1 38

Table 6. PATH for solving binary symmetric matrix LCP

n mean sup mean time max sup
20 8.2 0.0445 12
40 10.2 0.3229 17

n≥60 fail to solve
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to solve. Secondly, the QP-based FPITAS algorithm lives up with its theoret-
ical expectation and it is numerically effective. Thirdly, the homotopy-based
algorithm seems able to solve sizable problems, although its computational com-
plexity is not proven to be a PITAS. Finally, as mentioned earlier, the general
LCP solvers, PATH and MILES, may terminate with a “secondary-ray” solution
at the second Lemke pivot, therefore fail to solve LCP (8). As a result, in our nu-
merical experiments MILES can solve none of our test problems, and PATH can
only solve a small number of test problems with size no more than 50. (PATH
use an alternative default pivoting rule and it switches to original Lemke’s pivot
rule only when the default rule fails or the users force to do so.)

In particular, for the simple example (6) with three isolated non-trivial com-
plementary solutions u1 = (1/2; 0), u2 = (0; 1/2), u3 = (1/3; 1/3), all three
methods above get the same solution (1/3; 1/3).

6 Further Remarks

We make few final remarks and open questions.
First, is symmetric LCP (1) in the PPAD class described by [3] and [7]?
Secondly, by restricting A being symmetric for bimatrix game setting de-

scribed in Section 2, we must have R = C, that is, the two payoff matrices are
identical. But in this case, a trivial, pure-strategic, and Pareto-optimal bimatrix
game equilibrium is to simply play the largest entry in C. Thus, it remains to
be seen if the QP-based approach offer a PTAS for computing a bimatrix equi-
librium with a larger support. Note that the constant-approximation result of
Tsaknakis and Spirakis [11] was indeed based on computing a KKT point of a
social QP problem.

Thirdly, an important direction is to study the LCP problem (1) where A is
not necessarily symmetric. In this case, even all entries of A being non-negative
may not guarantee the existence of a (non-trivial) complementary solution; see
example:

AT =
(

0 2
0 1

)
.

Finally, the computational results based on randomly generated data show
that the support of u is relative small. Is there a theoretical justification for this
fact or observation?
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Abstract. Completely automated electronic securities exchanges and
algorithms for trading in these exchanges have become very important
for modern finance. In [4], Kakade et al. introduced the limit order mar-
ket model, which is a prevalent paradigm in electronic markets. In this
paper, we consider both online and offline algorithms for maximizing
revenue when selling in limit order markets. We first prove that the stan-
dard reservation price algorithm has an optimal competitive ratio for this
problem. This ratio is not constant, and so we consider computing solu-
tions offline. We show that the offline optimization problem is NP-hard,
even for very restricted instances. We complement the hardness result
by presenting an approximation scheme that runs in polynomial time for
a wide class of instances.

1 Introduction

Electronic exchanges are very important venues for trading many different classes
of financial securities. With the widespread use of such markets, a technique
known as algorithmic trading has become popular among financial institutions
and institutional investors who seek to buy or sell large amounts of a particular
security. Consider, for instance, a pension fund that would like to sell many
shares of a particular stock. Typically, such an investor would not sell large
amounts of stock himself by just submitting an order to a stock exchange, but
rather would seek the expertise of a broker (e.g. an investment bank) to perform
the transaction on his behalf. A standard strategy for the broker is to break the
large order into many smaller orders and to submit the orders gradually over a
given time horizon, with the obvious goal of maximizing his total revenue.

Advances in financial technology have automated this process, and the pension
fund’s entire trade can now be effected by computer with little human interven-
tion: computer programs can choose how to divide the large order into smaller
orders, choose at what time and at what price to submit the smaller orders, and
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then actually execute the transactions on an electronic market. Sophisticated
algorithms for such large trades are offered by most large investment banks and
by many smaller firms specializing in financial technology.

The manner in which an electronic market itself executes the various orders
from clients can also be complex. One of the most important electronic exchange
paradigms is the electronic communication network (ECN), which implements a
limit order market. Prominent ECNs for trading equities and equity derivatives
are operated by NASDAQ, Instinet, and NYSE-Euronext.

In a limit order market, buyers and sellers submit limit orders to buy or sell
a commodity; these orders have semantics such as “I would like to buy v shares,
but I am only willing to pay p USD or less for each share.” The market matches
buyers and sellers based on a transparent function of the orders submitted. Often,
the input order stream is available to market participants, and so algorithms
should be conscious of this market microstructure in order to effectively trade.

In this paper, we will study natural theoretical computer science questions
motivated by algorithmic trading in limit order markets. We consider both on-
line and offline algorithms for placing sell orders in limit order markets, with the
goal of maximizing the revenue generated by selling volume N of a particular
commodity (e.g. a stock). This problem domain was introduced into the theo-
retical computer science literature by Kakade, Kearns, Mansour and Ortiz in [4],
although online trading algorithms in much simpler market models have been
studied for many years.

1.1 The Trading Model: The Mechanics of Limit Order Markets

In a limit order market, market participants submit limit orders, which consist
of three-tuples: σ = 〈θ, p, v〉. The parameter θ specifies whether the order is to
buy or to sell; p denotes the least competitive price the market participant is
willing to accept, that is, the lowest price per share that is acceptable for a sell
order, or the highest price per share for a buy order; and v denotes the volume,
that is, the number of shares to transact.

A sell order σ1 = 〈S, p1, v1〉 can be “matched” to a buy order σ2 = 〈B, p2, v2〉
if p1 ≤ p2. If σ1 and σ2 transact and v1 > v2, then σ2 will be filled, but σ1 will
only be partially filled: its volume will be reduced to v1 ← v1 − v2. If v1 < v2,
then σ1 will be filled, and for σ2, we have v2 ← v2 − v1. Observe that when
p1 < p2, any price p ∈ [p1, p2] would be acceptable to both parties. Limit order
markets use the convention that the transaction will occur at the limit price of
the order that arrived first. With this convention, it is advantageous to be the
second of the two matched orders to arrive.

At any time step, buy and sell orders that have been submitted but that have
not yet been paired with suitable counterparties are stored in the buy order book
and the sell order book, respectively. Orders in the book are sorted according to
their prices, with the most competitive orders at the “top” of the book (i.e. in
the buy order book, orders with the highest price are at the top; in the sell order
book, orders with the lowest price are at the top). Ties are broken by placing
the order that arrives first higher in the book. An important property of the two
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books is that the prices of all orders in the buy book are lower than the prices
of all orders in the sell book, since the books consist of orders that have not yet
been matched.

When a new sell order σs = 〈S, ps, vs〉 arrives, it is compared with the top
order in the buy book, say σb = 〈B, pb, vb〉. If ps > pb, then no transaction can
occur and σs will be placed in the sell book according to the rules specified in
the previous paragraph. If pb ≥ ps, then min {vb, vs} shares are sold at price pb

per share. If vs ≥ vb, then σb has been filled and is removed from the buy book,
while the volume of σs is adjusted accordingly and a new matching buy order is
sought. If vs < vb, then the order σs is filled, and the volume of σb is adjusted
accordingly. An arriving buy order would be processed in an analogous fashion.
The state of the book is public knowledge in many ECNs and can therefore be
exploited by sophisticated traders.

Table 1.

Buy orders Sell orders
Price Volume Price Volume
102.20 100 102.55 200
102.00 500 102.93 300

Table 1 is an example of buy and sell
order books. If a new sell order arrived
at price 102.00 and volume 50, then it
would transact with the buy order at
price 102.20. The volume of this buy order
would be reduced by 50.

1.2 The Trading Problem

The trading over the course of the time horizon is represented by time steps
t = 1, . . . n. At time step t, order σt is placed by some market participant (not
the algorithm). As each order arrives, executions occur and the book is updated
as described above.

The problem that we consider is to design an algorithm that inserts sell orders
into this stream in order to maximize its revenue. At each time step t, the
algorithm may place orders before the arrival of σt. It cannot sell a total volume
of more than N , nor can it submit buy orders.

We will consider both online and offline algorithms for this problem. In the
online problem, the algorithm observes the market orders over time and, as they
come in, must insert its own orders. The standard measure of quality of an online
algorithm is defined by its competitive ratio. A randomized profit-maximizing
algorithm has a competitive ratio at most c > 0 if, for all input sequences Σ,
E [Rev] ≥ 1

c · OPT, where OPT is the revenue that results from an optimum,
offline placement of orders on input Σ and E [Rev] is the expected revenue of
the algorithm. We refer the reader to the book by Borodin and El-Yaniv [1] for
an introduction to online algorithms.

1.3 Our Contributions

We show that the standard online reservation price algorithm yields a competi-
tive ratio of e logR ≤ 2.72 logR in the order book model, where R = pmax/pmin
is the price ratio between the highest and lowest possible prices in the order
stream. This competitive ratio is optimal, in the sense that any randomized al-
gorithm must have competitive ratio at least 1

2 logR. All logarithms are base e.
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Our bound on the competitive ratio is an improvement over the O(logR logN)
bound for the reservation price algorithm by Kakade et al. [4], because our bound
has no dependence on N .

Since no online selling algorithm can achieve a competitive ratio that is
o(logR), we examine maximizing revenue in the offline case. We prove that this
optimization problem is NP-hard by reducing from knapsack, even for the re-
stricted case where market participants only submit orders with three distinct
prices. We also show that a simple dynamic programming algorithm will find
the optimum solution. Like knapsack, the running time is pseudopolynomial:
polynomial in N and the largest volume of any order (which in general can be
exponential in the size of the input) when the number of distinct prices that mar-
ket participants may submit is a fixed constant k. We then prove that the input
volumes can be adjusted so that running the dynamic programming algorithm
on the adjusted input will yield a polynomial-time approximation scheme when
there is a fixed constant k of distinct prices. The running time with approxima-
tion ration 1−ε is polynomial in n, 1/ε and R . We note that all securities indeed
only have a constant number of possible prices (e.g. US equities are traded in
multiples of $.01), although this constant is admittedly large.

The offline optimization problem is a natural and theoretically interesting
question to consider. Although it cannot immediately be applied to the real
online problem faced by a trader, nonetheless these results could be of interest
to a broader audience. The NP-hardness of computing the offline optimum even
with knowledge of the entire order stream is a very strong statement about the
intractability of optimization, for any conceivable context.

Offline algorithms have many potential applications. For instance, an approxi-
mation algorithmcanbe used for studying historical data, and the output of the ap-
proximationalgorithmcanbeusedto compare the realizedperformanceofa trading
algorithm to its theoretical optimum. Also, an offline algorithm could be coupled
with an appropriate statisticalmodel for generating sample paths of the future evo-
lution of market microstructure in order to design realizable trading strategies.

Finally, we generalize some of our results to the buying case.

1.4 Related Work in Theoretical Computer Science

Online algorithms for selling in limit order markets were first introduced by
Kakade, Kearns, Mansour and Ortiz in [4]. Kakade et al. considered selling al-
gorithms that seek to optimize revenue, as well as selling algorithms that seek
to sell shares at the average price of the market (the Volume Weighted Average
Price, which is a popular benchmark for commercially available trading algo-
rithms). Even-Dar, Kakade, Kearns, and Mansour also considered the stability
of limit order dynamics in [3].

The limit order market is a generalization of simpler online trading models.
El-Yaniv, Fiat, Karp, and Turpin in [2] considered the one-way trading, time
series search and two-way trading problems in this framework. This work was
later extended by Lorenz, Panagiotou, and Steger in [5].
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1.5 Preliminaries

The input order stream will be denoted by Σ = σ1, . . . , σn, where order σt =
〈θt, pt, vt〉 arrives at time t. The algorithm’s sequence of sell orders is represented
by a set

{
σA

i

}
, where σA

t denotes a sell order that is placed right before the arrival
of σt ∈ Σ at time t. If the algorithm places a set of sell orders ΣA in the order
sequence Σ, we will denote the new order stream by Σ ·ΣA.

If the limit prices of all orders in the input stream fall into the interval
[pmin, pmax], which is known to the algorithm, then R = pmax/pmin is the price
ratio. In our paper, we will refer to Lemma 5.3 by Evan-Dar et al. [3]. The lemma
is most easily stated for the case where all orders have unit volume:

Lemma 1 (Stability Lemma [3]). Suppose all orders have unit volume, and
the order stream Σ′ is derived from Σ by inserting a single order σ. (1) If σ is
not executed in Σ′, then the sets of executed orders in Σ and in Σ′ are identical.
(2) If σ is executed in Σ′, then at most 1 order (as specified by id) was executed
in Σ but not in Σ′. Conversely, at most 1 order (other than σ) was executed in
Σ′ but not in Σ.

From a high-level perspective, the stability lemma states that if we insert an
extra order into the order sequence, it will not affect the set of executed orders
by very much.

2 Optimal Online Algorithms

We show in this section that the reservation price algorithm for selling in the
order book model has an optimal competitive ratio. This algorithm was origi-
nally considered for the max-search problem (also called the time-series search
problem) by El-Yaniv et al. [2] and later by Lorenz, Panagiotou and Steger in
[5] and by Kakade et al. in [4] for selling in the order book model.

The reservation price algorithm is: pick an integer i uniformly at random
between 0 and �logR� and place an order to sell all N shares of stock at price
eipmin at time t = 0, where R is the price ratio.

Theorem 2. The reservation price algorithm for selling in the order book model
has competitive ratio e logR. Furthermore, any randomized algorithm must have
competitive ratio at least 1

2 logR.

Proof. We first prove that the reservation price algorithm has competitive ratio
at most e logR. Let pres = eipmin be the reservation price randomly chosen
by the algorithm. Suppose p1, . . . , pN are the prices realized for the sale of the
N shares by the optimal solution, ΣA, and let OPT =

∑n
1 pi be the optimal

revenue. Let Pi = {pj : pres ≤ pj ≤ e · pres} be the set of prices of executed
orders that are within a factor of e of the price pres.

Claim. The reservation price algorithm will sell at least |Pi| shares at price pres.
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The main idea of the proof, which is omitted for space, is that if σR
0 = 〈S, pres, N〉

is the order placed by the reservation price algorithm, then in the set of execu-
tions of Σ · (

{
σR

0
}
∪ΣA), σR

0 will execute |Pi| shares, since it will have a higher
priority than the orders in Pi. It follows that if σR

0 is placed by itself, it will
realize at least as much revenue.

With probability 1/ logR, the reservation price algorithm will choose reserva-
tion price pres ← eipmin. Then the expected revenue of the algorithm is

�log R	∑
i=0

1
logR

|Pi| eipmin ≥
�log R	∑

i=1

∑
pj∈Pi

pj

e logR
=

OPT
e logR

.

Thus, the competitive ratio of the reservation price algorithm is at most e logR.
In order to establish the lower bound, we observe that it is straightforward

to reduce the online max-search problem to our problem of selling in a limit
order market. In this problem, a player observes a sequence of prices and tries to
select the highest one. The 1

2 logR lower bound on the competitive ratio for any
randomized algorithm for max-search proved by Lorenz et al. in [5] establishes
the lower bound for limit order markets. ��

3 NP-Hardness of the Offline Problem

We prove the NP-completeness of optimal selling by reduction from Knapsack.
Our reduction is to the special case of instances in which only three different
prices occur, ph, pm, pl, where ph ≥ pm ≥ pl.

We will use several facts about the structure of the optimum solution in the
three-price case.

Lemma 3. There exists an optimal solution that places all its high-price sell
orders at time t = 0. The number of such orders can be arbitrarily large.

Lemma 4. There exists an optimal solution that places all its low-price orders
immediately after the last execution it realizes at either price ph or price pm.

Lemma 5. There exists an optimal solution that only places a medium-price
order immediately after an execution occurs at a high price.

Lemma 6. There exists an optimal solution, such that if we attempt to insert
another medium-price order after an execution at a high price, then the algorithm
will achieve one less execution at a high price, except when this occurs after the
last execution at a high price.

The proofs of these lemmas show that any optimal solution can easily be con-
verted to satisfy these properties.

We will reduce the NP-complete Knapsack problem to offline selling. An
input to Knapsack IK is a set of n pairs, (wi, vi), a capacity C, and a value V .
It is in the language if there exists a subset S ⊆ [n] such that

∑
i∈S vi ≥ V and
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i∈S wi ≤ C. Let v∗ = maxi(vi) and let W =

∑
iwi. We can assume that all

numbers in the instance are positive integers, and that v∗ > 1.
The three prices in the selling instance we will create are pl = 1, pm =

(C + 1)v∗, and ph = (C + 1)v∗ + 1. Let ai = (C + 1)(wiv
∗ − vi) and bi =

((C + 1)(wiv
∗ − vi) + wi)(C + 1)(v∗). For 1 ≤ i ≤ n, let Σi be the following

sequence of limit orders:

1. 〈B, pm, ai + wi〉 2. 〈S, pl, wi〉 3. 〈B, pl, wi〉 4. 〈S, pm, ai〉 5. 〈B, ph, ai + bi〉

Let Ω be the following order sequence:

1. 〈S, pl,W − C〉 2. 〈B, pm, pmW 〉

Let Σ be the concatenated order sequence (Σ1, . . . , Σn, Ω). The total volume
of buy orders in Σ is N =

∑
i(2ai + 2wi + wipm + bi). N will be the number of

shares to sell. The revenue to raise will be R = ph

∑
i(ai +bi)+p2mW +(C+1)V .

Then IS = (Σ,N,R) is an input to the offline selling problem. It is in the
language if R revenue can be obtained by selling at most N shares.

Lemma 7. If there exists a solution S ⊆ [n] to IK with total value V , then there
exists a solution to IS with revenue of at least R.

Proof Sketch: Given S, first insert the order σA
0 = 〈S, ph,

∑
i(ai + bi)〉 at the be-

ginning of Σ. σA
0 executes with every high-price buy order, which yields revenue

ph

∑
i(ai + bi). If i ∈ S, insert the order σA

i = 〈S, pm, ai + wi〉 at the beginning
of Σi. When σA

i is added, then ai + wi sales are made by σA
i at the medium

price, and ai less sales are made from the high-price buy order at the end of Σi.
Therefore the change in revenue from σA

i is pm(ai + wi) − ph(ai) = (C + 1)vi.
Finally, insert the order σA

n+1 = 〈S, pm, pmW 〉 after subsequence Σn, and insert
σA

n+2 = 〈S, pl, C〉 at the end of Ω. Regardless of the previous insertions, the rev-
enue from σA

n+1 and σA
n+2 is p2mW + pl

(
C −

∑
i∈S wi

)
≥ p2mW . Then the total

revenue obtained is at least ph

∑
i(ai + bi) + p2mW + (C + 1)V = R. �

Next we prove the converse of Lemma 7. By Lemma 3, we can assume that the
optimal solution for IS places a large sell order at price ph at the beginning of Σ.
Observe that in the resulting execution, that sell order executes at the high price
after every subsequence Σi. By Lemma 5, we can assume that all medium-price
orders in the optimal solution are each inserted at the beginning either of some
Σi or of Ω. Let S ⊆ [n] be the set of Σi subsequences for which this happens.
Finally, by Lemma 4, we can assume that any low-price order is inserted at some
point after the last high-price or medium-price order is inserted.

Lemma 8. For i ∈ S, there is an optimal solution in which the medium-price
order inserted at the beginning of Σi has volume ai + wi.

Proof Sketch: Let σA
i = 〈S, pm, v〉, i ∈ S, be the medium-price order inserted at

the beginning of Σi. If v > ai + wi or v ≤ ai, decreasing v increases high-price
sells and decreases medium-price sells, for a net gain in revenue. Otherwise, v can
be increased to ai +wi without reducing high sells, contradicting Lemma 6. �
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Lemma 9. There is an optimal solution in which any low-price order is inserted
after the Σn subsequence.

Proof Sketch: Suppose instead that the low-price order σA
l is inserted before Σi.

Consider moving σA
l to the beginning of Σi. If σA

l reduces the volume of high-
prices transactions before Σi, this move would increase net revenue. Otherwise,
the move maintains revenue. �

Lemma 10. There exists an optimal solution with the order 〈S, pm, pmW 〉 in-
serted at the beginning of Ω and the order

〈
S, pl, C −

∑
i∈S wi

〉
inserted at the

end.

Proof Sketch: By Lemmas 4, 5 and 10, the solution places a low-price order in Ω
that may be preceded by a medium-price order. Inspection shows that including
the medium-price order is optimal. �

We can see by inspecting Ω that the payoff of the orders described in Lemma 10,
expressed as a function of the volume of the low-price buy book, is:

ρ(l) =
{
p2mW + pl(C − l) 0 ≤ l ≤ C
p2mW − pm(l − C) C < l ≤W. (1)

Lemma 11. We can assume that
∑

i∈S wi ≤ C.

Proof. Suppose instead that
∑

i∈S wi > C. Consider removing the medium-
price order at the beginning of Σi, i ∈ S. The sequence loses the pm(ai + wi)−
ph(ai) = (C+1)vi revenue from that order. The transactions in Σj subsequences
are unaffected, but at the end of each there is an additional wi volume in the
buy book at the low price. Equation 1 shows that this volume increases the
revenue obtained by at least (C + 1)v∗. Therefore the total change in revenue
is nonnegative, and we can convert this sequence into an optimum such that∑

i∈S wi ≤ C.

Finally, we can show that the optimal revenue of IS can give us a lower bound
on the value of optimal subsets in IK.

Lemma 12. If there exists a solution to IS with revenue of at least R, then
there exists a solution to IK with total value at least V .

Proof. If
∑

i∈S vi ≥ V , then, by Lemma 11, S is a solution to IK of value at
least V . Suppose otherwise, that

∑
i∈S vi < V . The solution receives ph

∑
i(ai +

bi) revenue from the initial high-price sell order. It receives (C + 1)
∑

i∈S vi ≤
(C + 1)(V − 1) revenue from the medium-price orders in S. We can see from
Equation 1 that it receives no more than p2mW + pl(C) revenue from the two
orders in Ω. This accounts for all of the revenue R′ of the solution. However,
R′ −R = (C + 1)(V − 1) + pl(C)− (C + 1)V < 0, contradicting the assumption
of the lemma. ��

Theorem 13. The decision version of optimal offline selling is NP-complete.
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Proof. The decision version of the offline selling problem is in NP, because
we can calculate the revenue of a solution by running the limit order market
algorithm on the total sequence. Also, the previous lemmas show that the input
to Knapsack is in the language if and only if its reduction is a member of the
offline selling problem language. ��
In contrast to the three-price case, it can be shown that if there are only two
prices in the order sequence, the problem can be solved exactly in O(n) time.
The algorithm simply places one high-price sell order at the beginning and then
tries all positions for the low-price order.

4 Offline Algorithms and Approximation Schemes

In this section, we present approximation schemes for the offline selling problem.
The general approach to our algorithm is similar to the FPTAS for knapsack,
but the technical details are more involved. We first give a pseudopolynomial
dynamic programming algorithm. Then we show that this algorithm can be used
in an approximation scheme by reducing and rounding the order volumes. The
approximation scheme will have running time polynomial in 1/ε, the maximum
price ratio R, and n, if the number of prices at which market participants can
submit orders is a fixed constant.

4.1 Pseudopolynomial Time Dynamic Programming Algorithm

A simple dynamic programming algorithm can compute the optimal placement
of sell orders in polynomial time, under the assumption that the volume of each
limit order is 1, and that the number of distinct prices at which the market
participants can place orders is at most a fixed constant k.

The input to the dynamic programming subproblem is given by: (1) Times t1
and t2, such that t1 ≤ t2. (2) The initial buy and and sell order books at time
t1: Bt1 , St1 . (3) The final order books at time t2: Bt2 , St2 . (4) m, the number of
shares to be sold by the algorithm between times t1 and t2.

Each subproblem is then: Given buy and sell order books Bt1 and St1 at
time t1 (prior to the arrival of order σt1), find the optimum placement of orders
between times t1 and t2 (inclusive), such that the buy and sell order books at
the end of time t2 are Bt2 and St2 and that the number of shares sold by the
algorithm between times t1 and t2 is at most m.

Theorem 14. For the case where each order has unit volume, the dynamic pro-
gramming algorithm will find an optimal solution in time O(N3k+5n3k+5), where
k is the number of distinct prices.

The details of the algorithm and its analysis follow standard dynamic program-
ming techniques. This algorithm can be used with orders of arbitrary volume,
which adds an additional factor in the runtime.

Corollary 15. If the volume of each order is unrestricted, the dynamic program-
ming algorithm will run in time O(n2N3k+5(nV )3k+3), where V is the maximum
volume of any order.
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4.2 PTAS for the Arbitrary Volume Case

We now show how the input can be preprocessed in two steps so that the dynamic
programming algorithm from the previous section can compute a solution with
revenue at least (1− ε)OPT in time O

(
n12k+16 (R/ε)6k+8

)
, for input sequences

with arbitrary volumes in each order.

Step 1: Reduce to the Significant Volume Case.
Our first step will be to modify the instance to ensure thatN is at least a fraction
of the total volume of all orders, which we call the significant volume condition.
Σ satisfies this condition if (n + 1) ·N ≥ V , where V is the maximum volume
of any order in Σ.

Lemma 16. Given an order stream Σ, we can construct an order stream Π
such that

1. If V is the maximum volume of any order πi ∈ Π, then (n+ 1) ·N ≥ V .
2. If ΣA is any set of sell orders with total volume at most N placed by the

algorithm, it will realize the same revenue in Π ·ΣA as in the original input
Σ ·ΣA.

We assume that there is at least one order in the original sequence Σ, σi =
〈ti, pi, vi〉 ∈ Σ such that vi ≥ N · (n + 1). Since a selling algorithm will only
transact N shares, intuitively its action should have very little effect on order
σi, which contains many more shares.

Let transΣ(σi) denote the set of orders that are matched with σi in the evo-
lution of the order sequence Σ. Let unexΣ(σi) denote the volume of σi that
is unexecuted in the evolution of Σ. Let matchΣ(σi, σj) denote the number of
shares of σi that are matched with σj in the order sequence Σ.

Lemma 17. Let ΣA be any set of orders placed by the algorithm with an aggre-
gate volume of at most N . Then for any σi, σj ∈ Σ,

matchΣ·ΣA(σi, σj) ≥ matchΣ(σi, σj)−N.

The lemma follows from applying the Stability Lemma to the transactions be-
tween σi and σj .

Lemma 17 implies that σi and σj have excess volume that is, in some sense,
superfluous to the problem of selling at most N shares. We eliminate these in a
new order sequence Π .

For each order σi ∈ Σ, where σi = 〈θi, pi, vi〉, we create order πi such that
πi = 〈θi, pi, v

′
i〉, where v′i = vi −

∑
σj∈transΣ(σi) max(matchΣ(σi, σj) − N, 0) −

max(unexΣ(σi)−N, 0). With these new volumes,

vol(πi) ≤ vol(σi)−
∑

j

matchΣ(σi, σj)− unexΣ(σi) + (n+ 1)N = (n+ 1)N.

Thus, the modified input sequence Π = π1, . . . , πn satisfies Condition 1 of
Lemma 16. Condition 2 follows from Lemma 17.
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Step 2: Round Volumes.
Recall that V is the maximum volume of any order. We now assume that our
input has been reduced to the significant volume case, where (n + 1) ·N ≥ V .
Let M = ε ·N/(nR). In the second preprocessing step, we round the volume of
every order in Σ to the nearest multiple of M . The volume of each order will be
changed by at most M/2 and the number of possible values for the volume of an
order will be V/M = nV R/(Nε) ≤ n(n + 1)R/ε. Let Σ′ be the input sequence
of orders with rounded volumes.

Lemma 18. Finding the optimum solution to Σ′ will induce a solution with
revenue at least (1− ε)OPT for the original input sequence Σ.

Proof. We may assume that N is at most the aggregate volume of all buy orders
in Σ. Then, OPT ≥ pmin · N , because the algorithm could place the order
〈S, pmin, N〉 at the beginning and sell to the first N buy orders. We first prove
that there exists a solution with revenue at least (1− ε/2)OPT for Σ′. Let ΣA

be an optimum set of sell orders for the input sequence Σ. We may assume that
the realized price for every order in ΣA is the same as the price of the order.

Recall that our rounding scheme changed the volume of each order by at most
M/2. The Stability Lemma therefore implies that the total volume of shares that
are executed in Σ · ΣA but not in Σ′ · ΣA is at most n ·M/2. Therefore, there
are at most n ·M/2 shares that the algorithm sold in Σ ·ΣA but did not sell in
Σ′ ·ΣA. The total revenue lost is at most

pmax ·
nM

2
=
ε

2
· pmin ·N ≤

ε

2
·OPT.

An analogous argument will prove that the optimum solution on Σ′ with
revenue OPT′ will induce a solution on Σ with revenue at least (1− ε/2)OPT′.
It can then be inferred that the optimum solution for Σ′ will induce a solution
on Σ with revenue at least (1 − ε)OPT. ��

We combine the two preprocessing steps with the dynamic programming algo-
rithm to obtain an approximation scheme that runs in polynomial time when
the number of price levels k is constant.

Theorem 19. For any ε > 0, dynamic programming with preprocessing will
yield an algorithm with approximation ratio at least 1 − ε that runs in time
O
(
n12k+16 (R/ε)6k+8

)
.

5 Extension to Buying

In the buying case, the algorithm’s task is to insert buy orders into the order
sequence in order to buy at least N shares, with the goal of minimizing the total
cost of the trade.

We note that there is an asymmetry between the profit maximization (selling
case) and the cost minimization (buying case) online trading problems. The
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results of Steger et al. [5] for the min-search problem imply that no algorithm
can achieve a competitive ratio better than O(

√
R). For improved guarantees, we

consider offline algorithms. The dynamic programming algorithm can be easily
modified to the buying case. During the rounding step , however, we must set
M = αN/n, for any α > 0.

Theorem 20. Let OPT be the cost of the offline optimum solution that buys
exactly N shares. For any α > 0, the dynamic programming with preprocessing
will yield an algorithm that buys at least (1−α)N shares with cost at most OPT.
The algorithm runs in time O

(
n12k+16 (1/α)6k+8

)
.
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Abstract. Predictive pricing (e.g., Google’s “Smart Pricing” and Yahoo’s “Qual-
ity Based Pricing”) and revenue sharing are two important tools that online ad-
vertising networks can use in order to attract content publishers and advertisers.
We develop a simple model of the pay-per-click advertising market to study the
market effects of these tools. We then present an algorithm, PRICINGPOLICY,
for computing an advertising network’s best response i.e., given the predictive
pricing and revenue sharing policies used by its competitors, what policy should
an advertising network use in response? Using PRICINGPOLICY, we gain insight
into the structure of optimal predictive pricing and revenue sharing policies.

1 Introduction

Google’s “Smart Pricing” [4] and Yahoo’s “Quality-Based Pricing” [9] are examples of
a practice we refer to as predictive pricing. The idea behind predictive pricing in pay-
per-click advertising is to charge the same advertiser different prices for click-throughs,
depending on which publisher the click-through originated from. For example, an ad-
vertiser who bid on the keyword “camera” might be charged less for a click-through
from a travel website than one from a photographer’s blog, since the latter would (os-
tensibly) be more targeted to potential camera purchasers than the former. Advertising
networks use predictive pricing to attract publishers and advertisers to their network.

Revenue sharing, which is the practice of paying out a fraction of earned revenues to
the publishers where click-throughs originate, is another tool used by advertising net-
works to attract traffic. Revenue sharing is the reason publishers display advertisements
alongside their content in the first place. In this paper, we study how an online advertis-
ing network can apply predictive pricing and revenue sharing “optimally” – that is, in a
manner that maximizes the advertising network’s profits.

The sheer size of the online advertising market makes this problem interesting and
important. Although predictive pricing and revenue sharing can help advertising net-
works attract and retain lucrative traffic, applying these tools suboptimally can mean
that a network is “leaving money on the table” (either by paying out an unnecessarily
large revenue share, or by attracting less- or lower-quality traffic than they could be).
And in a market that, by most estimates, is worth several billions of dollars, the losses
due to suboptimal pricing policies can be tremendous. Advertising networks that cur-
rently do not apply predictive pricing should feel compelled to start – our results suggest
that they are yielding a significant advantage to their competitors.

The practice of predictive pricing in the pay-per-click advertising market is relatively
new. To the authors’ knowledge, there has been no formal analysis thus far of how to
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apply predictive pricing and share revenue properly. Recent research on “click quality”
has focused on a related (but orthogonal) problem i.e., click fraud [2,3,6,8]. Click fraud
relates to whether a given click-through is valid or invalid. Predictive pricing, on the
other hand, focuses on the probability that a valid click-through becomes a conversion
i.e., the conversion rate. Also, techniques for fighting click fraud are typically not ap-
plied on a per-publisher basis (apart from simple blacklisting). Predictive pricing, on
the other hand, allows for very fine-grained publisher-level control.

1.1 Overview

We begin by constructing a model of the online advertising market as a game between
content publishers, advertising networks and advertisers. We then derive an expression
for an advertising network’s best-response function. That is, if an advertising network
knows the predictive pricing and revenue sharing policies of its competitors, what policy
should the network choose in response, in order to maximize its profits? The expression
we derive for the best-response is implicit – it is the solution to a difficult optimization
problem. We then present an algorithm, PRICINGPOLICY, for solving this optimization
problem, yielding a best-response predictive pricing and revenue sharing policy.

Finally, we apply PRICINGPOLICY toward answering some qualitative questions
about predictive pricing:

– Is it always optimal to charge less for lower-quality traffic? (Yes.)
– Should an advertising network always try to attract as much traffic as it can, regard-

less of traffic quality? (No.)
– If a network is better at targeting, can it offer a lower revenue share? (Yes.)
– Does predictive pricing harm publishers, as has been conjectured in online forums?

(Yes and no – it harms low-quality publishers and helps high-quality publishers.)

In principle, the best-response function can be used as a “subroutine” for computing
equilibrium policies for advertising networks (an equilibrium is, by definition, a fixed
point of the networks’ best-response functions). However, we believe that the practical
value of our algorithm lies in computing best responses, rather than equilibria. It pre-
scribes actions that networks can take “today” in response to their competitors, rather
than waiting for equilibria to unfold. Thus, our focus will be on finding best responses.

2 Model

For brevity, we present only a brief overview of our model here. For a complete de-
velopment, we refer the reader to [7]. Table 1 gives the reader a sense of the various
quantities involved in our model.

We model the pay-per-click (PPC) advertising market as a one-shot dynamic game
between three classes of players: content publishers, advertising networks and adver-
tisers. Content publishers (or, publishers) publish websites and display advertisements
alongside their content. Advertisers design advertisements (or, ads) and bid on key-
words that describe the interests of their target market. Advertising networks (or, net-
works) act as intermediaries, auctioning off click-throughs (or, clicks) to advertisers and
delivering relevant ads to publishers upon request.
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Table 1. Summary of notation used in our model

Symbol Description

I, J, K Number of publishers, networks and advertisers (respectively)

Vi Volume of clicks on publisher i’s site
βPub

i Conversion rate of publisher i’s traffic
cij Fraction of publisher i’s clicks sent to ad network j

yk Advertiser k’s revenue per conversion
Rk Advertiser k’s target ROI
βAdv

k Effectiveness of advertiser k’s ads
vkj Advertiser k valuation of ad network j’s clicks

βNet
j Network j’s skill at matching publishers and advertisers
θj Network j’s expected auction revenue per click
κj Network j’s “nominal” auction revenue per click
ηj Network j’s total profit

ηmax
j Network j’s maximum possible profit
gij Predictive pricing factor applied to publisher i’s traffic by network j

hj Revenue share paid out by network j

g1 Length-I vector whose ith element is gi1

C I-by-J matrix whose (i, j)-element is cij

G−1 Predictive prices chosen by all networks other than network 1
h−1 Revenue shares chosen by all networks other than network 1

Each time a user visits a publisher’s site and clicks on an ad, the advertiser pays
the network a small amount. The network then pays out a fraction of this amount to
the publisher where the click originated. A small fraction of clicks eventually become
conversions e.g., a product purchase, or a sign-up to an email list. The advertiser earns
some revenue each time a click becomes a conversion.

Predictive pricing affects how much the advertiser is billed by the network, whereas
the revenue share determines what fraction of this revenue is paid out to the publisher.
For concreteness, suppose each publisher i receives Vi clicks on his website. Suppose
cij ∈ [0, 1] is the fraction of these clicks that publisher i sends to network j. The total
number of clicks that publisher i sends to network j is then:

Vicij (1)

For each click coming from publisher i, network j bills advertisers for only a fraction
gij ∈ [0, 1] of a click i.e., advertisers receive a (1− gij) discount. The fraction gij is
the predictive pricing factor1 that network j applies to publisher i’s traffic. The effective
number of clicks publisher i is paid for by network j is then:

Vicijgij (2)

Of each dollar of revenue from advertisers, network j pays out a fraction hj ∈ [0, 1]
to publishers. The fraction hj is referred to as the revenue share. Suppose θj is the

1 The term “predictive pricing” alludes to network j’s prediction about the quality of publisher
i’s traffic (i.e., accounting for click-through rates, click fraud and conversion rates).
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expected auction revenue per click on network j. Then, the total revenue to publisher i
from network j is:

Vicijgijhjθj (3)

We refer to {gij ∀i} and hj together as network j’s pricing policy.
Our one-shot dynamic game is, therefore, comprised of two steps:

1. In the first step, each network j selects and announces its pricing policy (i.e., its
revenue share, hj , and predictive pricing factors, {gij ∀i}).

2. In the second step, each publisher i decides which networks to sell its clicks on (i.e.,
its allocations, {cij ∀j}). Simultaneously, each advertiser k decides how much it is
willing to pay for clicks from each network j (i.e., its valuations, {vkj ∀j}).

After the second step, payoffs are realized: a) publishers sell clicks (i.e., display ads) on
their chosen networks, and b) advertisers pay the networks, who then pay the publishers.

3 Optimal Pricing Policies

Network j’s goal is to maximize its own profit, ηj . In [7], it is shown that:

ηj = βNet
j

(∑
i

Viβ
Pub
i cij

)
(1− hj)κj (4)

Clearly, network j’s profit depends on the decisions made by publishers and advertisers
(see Table 1). However, the networks act first in our game: publishers and advertisers
observe the networks’ decisions in the first step before deciding on their allocations and
valuations in the second step. In other words, the outcome in the second step (i.e., pub-
lishers’ allocations and advertisers’ valuations) is the market’s reaction to the first-step
outcome (i.e., networks’ pricing policies). Therefore, to maximize profit, each network
j will: a) assume that an equilibrium will be played in the second step, and b) choose a
pricing policy that induces the most profitable equilibrium in the second step2.

Network j’s profit depends not only on j’s pricing policy, but also on the pricing
policies chosen by competing networks in the first step. For example, if the revenue
share hj offered by network j is relatively low, then very few publishers may send
traffic to j (i.e., cij = 0 for most i), leading to a low ηj . If hj were relatively high, more
publishers may choose network j, but ηj might be low again since j would be paying
out too large a fraction of revenues to publishers. Therefore, network j must account
for the actions of all other networks when choosing its own pricing policy.

We will now compute the best response for network 1, holding the policies of all
other networks fixed, and assuming an equilibrium in the second step3. It can be shown
that network 1’s best response is a solution to the following optimization problem:

2 For a given first-step outcome {gij ∀(i, j)} and {hj ∀j}, an equilibrium in the second step is
defined as a scenario where every advertiser k chooses its valuations {vkj ∀j} optimally and
every publisher i chooses its allocations {cij ∀j} optimally.

3 Our choice of network 1 is without loss of generality. Obviously we can compute the best
response for any network j in a similar manner.
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maximize η1 ≡ βNet
1

(∑
i

Viβ
Pub
i ci1

)
(1 − h1)κ1

subject to Xij = Vigijhjθj ∀(i, j)∑
j

cijXij = max
j
Xij ∀i∑

j

cij = 1 ∀i

θj = κjaj ∀j

aj = βNet
j

(∑
i Vicijβ

Pub
i

)
(
∑

i Vicijgij)
∀j

0 ≤ gi1, h1, cij ≤ 1 ∀(i, j) (5)

The objective in (5) is an expression for network 1’s profit (see (4)). The first three con-
straints encode the assumption that each publisher chooses allocations optimally in the
second step. The fourth and fifth constraints say that advertisers also choose valuations
optimally. Thus, the first five constraints together imply that there is an equilibrium in
the second step between publishers and advertisers. The final constraint gives ranges
for the decision variables we are interested in.

Network 1’s optimization problem (5) is highly non-convex, so even feasible points
are not easy to find. One of our main contributions is an iterative algorithm, which we
call PRICINGPOLICY, for finding approximate solutions to (5).

In [7], we show how to construct a geometric programming (GP) relaxation of (5)
around a given point (h1,g1,C). GPs are log-convex [1], and therefore can be solved
globally and efficiently. PRICINGPOLICY works by solving a sequence of these GPs.
It outputs a sequence of feasible (but not-necessarily optimal) points, where each point
yields weakly higher profits for network 1 than the previous point. The sequence of
solutions to the relaxed problem converge to an approximate solution to (5).

4 Experiments

Using PRICINGPOLICY, we can gain some interesting insights into the structure of
best-response pricing policies.

Our first experiment examines whether networks that apply predictive pricing gain a
competitive edge, compared to networks that do not. Consider a market with J = 2 net-
works and I = 20 publishers. Each publisher i receives 100 clicks (i.e., Vi = 100 ∀i),
and the quality of i’s traffic, βPub

i , is linear in i with values ranging from 0.25% to 5%4

(i.e., βPub
i = 0.0025i). The networks are equally effective at matching up publishers

and advertisers i.e., βNet
1 = βNet

2 = 1.0. We assume κ1 = κ2 = 10, which means the
auction mechanisms used by each network are also equally efficient.

We used PRICINGPOLICY to compute the best-response pricing policy for network
1, assuming network 2 does not use predictive pricing (i.e., gi2 = 1 ∀i) and offers

4 Such a range is realistic – 5% would be considered a high conversion rate in practice.
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Algorithm 1. PRICINGPOLICY

Require: G−1, h−1, T
1: Select arbitrary initializations h

(0)
1 and g(0)

1
2: Use fixed-point iteration to compute second-step equilibrium, C(0), assuming other networks

play (h−1,G−1) and network 1 plays
�
h

(0)
1 ,g(0)

1

�

3: for t ∈ 1, . . . , T do
4: Solve GP-relaxation of (5) to find an optimal point (h′

1,g
′
1,C

′) that is “close to”�
h

(t−1)
1 ,g(t−1)

1 ,C(t−1)
�

, assuming other networks play (h−1,G−1)

5:
�
h

(t)
1 ,g(t)

1 ,C(t)
�

← (h′
1,g

′
1,C

′)
6: end for
7: Use fixed-point iteration to recompute second-step equilibrium, C(T ), assuming other net-

works play (h−1,G−1) and network 1 plays
�
h

(T )
1 ,g(T )

1

�

8: return
�
h

(T )
1 ,g(T )

1 ,C(T )
�

publishers a revenue share of 50% (i.e., h2 = 0.5). To solve the GP-relaxation of (5) in
line 4 of PRICINGPOLICY, we used CVX, a package for specifying and solving convex
programs [5]. We initialized the algorithm with random choices of g1 and h1.

Figure 1(a) shows the revenue share h(t)
1 output at each iteration t, as well as the

market share 1
I

∑
i c

(t)
i1 , estimated profit η̂(t)

1 and actual profit η(t)
1 at each iteration5. The

“estimated profit” is computed using the estimated allocations C(t) output by iteration
t of PRICINGPOLICY, whereas the “actual profit” is computed using the actual second-

stage equilibrium allocations that would result if network 1 played
(
h

(t)
1 ,g

(t)
1

)
.

From Figure 1(a), we see that the algorithm converges after roughly T = 50 iter-
ations. The estimated profit tracks the actual profit reasonably well – in this case it is
an underestimate of the actual profit, but in other experiments we ran it was an overes-
timate. As iterations progress, h(t)

1 steadily decreases – PRICINGPOLICY recommends

progressively better predictive prices g(t)
1 , allowing network 1 to offer progressively

lower revenue shares. Observe that the algorithm converges to a revenue share of 29%,
which is much lower than the 50% being offered by network 2. Despite offering a lower
revenue share, network 1 manages to attract 74% market share. Thus, the use of predic-
tive pricing is giving network 1 a significant advantage.

It may seem surprising that the market share in Figure 1(a) is also falling across
iterations. The lowest-quality (i.e., lowest βPub

i ) publishers are essentially being driven
from network 1 to network 2. Figure 1(b), which shows the final set of predictive prices
g(T )

1 , suggests why these publishers leave network 1. Advertisers are being charged
very low prices (i.e., low gi1) for traffic from low-quality publishers (i.e., low βPub

i ).
Consequently, network 1 offers to pay these low-quality publishers very little for their
traffic, causing them to choose network 2 instead.

5 From (4), note that η1 ≤
��

i Viβ
Pub
i

�
κ1β

Net
1 ≡ ηmax

1 , which is the maximum possible profit
network 1 can attain in any outcome. Thus, in Figures 1(a) and 2, we normalize profits by ηmax

1 .
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Fig. 1. The effects of predictive pricing
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Fig. 2. The effect of network 1’s skill at matching publishers and advertisers (i.e., βNet
1 )

Observe that the optimal predictive prices in Figure 1(b) are increasing in i, and
consequently in the conversion rate, βPub

i . That is, advertisers are being charged less for
traffic from publishers whose conversion rate is lower. We ran several other experiments
(not discussed here), and found that the optimal gi1 was increasing in βPub

i in every case.
Essentially, a “lemons market” effect is avoided on network 1 as a result of predictive

pricing. The lack of low-quality publishers on network 1 raises the average quality of
network 1’s traffic, causing advertisers’ bids to increase. The high-quality publishers
get paid more per click, and are willing to settle for a lower revenue share as a result.

Our second experiment considers the impact of targeting (i.e., βNet
j ) on market out-

comes. In particular, if a network is more effective than its competitors at matching
publishers with advertisers, does it translate to higher profits for that network? Consider
a market with J = 3 networks and I = 20 publishers. We assume βPub

i = 0.000125i2

i.e., βPub
i is quadratic in i, with values ranging from 0.0125% to 5% (there are many low-

quality publishers and a few high-quality ones). Networks 2 and 3 are equally skilled at
matching i.e., βNet

2 = βNet
3 = 1.0. We assume that gi2 = 20βPub

i (i.e., network 2 uses a
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predictive pricing rule that is linear in publisher i’s conversion rate), and network 3 sets
gi3 = 1 ∀i (i.e., it does not use predictive pricing). Network 2 offers a lower revenue
share than network 3, i.e., h2 = 0.5 and h3 = 0.6.

We computed optimal pricing policies for network 1, for various values of βNet
1 rang-

ing from 0.7 to 1.3. Recall that βNet
1 greater than (less than) 1.0 means that network 1

is better (resp., worse) at targeting than networks 2 and 3. Figure 2 shows network 1’s
optimal revenue share h∗1 and its resulting profits (normalized by ηmax

1 ). As we might
expect, network 1 earns higher (lower) profits when βNet

1 is higher (resp., lower). From
Figure 2, we see that network 1 is able to offer a lower revenue share when βNet

1 is
higher, since network 1 is generating more conversions for advertisers, causing bids
(and consequently publishers’ revenues) to increase.

5 Conclusion

Using PRICINGPOLICY, we found that predictive pricing and revenue sharing can be
very effective tools for advertising networks to attract publishers and advertisers, espe-
cially if their competitors are not using predictive pricing. It is not necessarily optimal
to attract as much traffic as possible – quality can be just as important as quantity. Being
more effective at matching publishers and advertisers can increase a network’s profits,
so improving their matching algorithms may be a worthwhile investment for networks.
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Abstract. Given a network in which the edge capacities and the com-
modities are owned by the players, a cooperative multicommodity flow
(MCF) game (N, v) can be defined such that v(S), the value of a sub-
coalition S, is the maximum profit achievable within S by shipping its
commodities through the sub-network owned by its members. In this pa-
per, we study MCF games under a partially decentralized setting where
the players make their own routing and resource exchange decisions given
a set of capacity prices determined by a central authority.

Keywords: Multicommodity Flow Game, Dual Payoffs, Core, Mecha-
nism Design, Exchange Prices.

1 Introduction

A network is called a collaborative one if its users share with each other the
resources on the edges or nodes. Examples of such resource sharing occur in
transportation networks where vehicle capacities or in communication networks
where bandwidth are shared. Generally speaking, a routing plan which max-
imizes the social welfare, such as the total network throughput, is desirable.
However, the network users aim at maximizing their own revenues. These issues
are tackled by cooperative game theory via flow game models. In [4], a flow game
is defined on a directed network G in which every edge is owned by a unique
player and there exist a unique source and sink. The value of a sub-coalition
is the maximum flow that can be pushed through the network owned by its
members. The multicommodity flow (MCF) game is a generalization in that the
underlying network has multiple sources and sinks. In this paper, we study a
recent model of MCF games with multiple owners of the capacities on a single
edge which generalizes the existing models.

A cooperative game theory framework assumes that a centralized overseer
manages all the edge capacities and routing decisions, and then distributes the
total revenue in a fair manner. However in real life applications which tend to
be decentralized to a certain extent, the capacity management and commod-
ity routing decisions are commonly made by individual users. Therefore, it is
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important to understand how to design the incentives within the network such
that individual players, motivated solely by self-interests, end up following the
socially optimal routing plan even under a decentralized setting. In [1], a collab-
oration mechanism based on capacity exchange prices is proposed to serve this
purpose. Players must pay for the edge resources they use at pre-determined
unit prices, and at the same time, receive their shares of the money charged
on each edge proportional to their ownership levels. These prices alter the final
revenue of network users and modify their behaviours. This approach is not only
practical, but also has been shown to be effective in [1].

However, cooperation within the grand coalition will be vulnerable if some
sub-coalition does not profit enough. In game theory, the notion of the core is
used to characterize the collection of all fair allocations of the total revenue such
that each sub-coalition gets at least as much as it can achieve playing alone.
Much effort has been devoted to characterize the core in cooperative games ([2]
[14]). One of the well-known results concerns the Linear Production (LP) Game
studied by Owen in [7], in which the value of a sub-coalition can be found by
solving a linear program. In [7] it is concluded that in a LP-game, an allocation
in the core can be obtained by solving a dual linear program, but in general the
core is not fully described by such dual payoffs.

In this paper, a partially decentralized MCF game with multiple owners on
a single edge is studied under the collaboration mechanism based on capacity
exchange prices introduced in [1]. With a set of good exchange prices, each
player’s net payoff naturally provides an allocation of the value of the grand
coalition. This paper focuses on the relationship of such profit allocations arising
from a multicommodity network operated under a capacity exchange economy,
and the core of the MCF game defined on the network. It shows that the dual
payoffs can be achieved by the careful design of the exchange prices but not every
fair allocation in the core can be realized in this way. Furthermore, it is proven
in [1] that if all edges are uniquely owned, both the social optimum and a fair
allocation in the core can be guaranteed under good exchange prices. This paper
further generalizes the above result by showing that even with multiple owners of
the resources on a single edge, the conclusion still holds under certain conditions.
We also give an example that provides insights into how diseconomies arise from
multiple ownership of edge capacities and their impact on players’ payoffs.

2 Notation and Preliminaries

2.1 A Multicommodity Flow Game

The formulation of the MCF Game used in this paper is mainly from [1]. For-
mally, a MCF Game is defined on a directed graph G = (V,E). Let N be the set
of players. Each commodity type is described as a triplet (o, d, i) such that o and
d are the corresponding source and sink, and i is the player who owns demand
to be shipped from o to d. Let d(o,d,i) be the amount of the existing demand of
commodity (o, d, i) and r(o,d,i) be the unit revenue of it.DS = {(o, d, i)|∀i ∈ S} is
the demand set of coalition S. Denote DN as D. Each edge e ∈ E has a capacity
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ce, which is the maximum amount of flow allowed on e. Player i owns a fraction
of γi

e of the capacity on edge e. Let γS
e =

∑
i∈S γ

i
e be the fraction of capacity on

edge e owned by coalition S. Obviously, γN
e =

∑
i∈N γ

i
e = 1 ∀e.

For modelling convenience, we introduce a fictitious edge (d, o, i) from node
d to node o for every commodity type (o, d, i). Let f (o,d,i)

e be the amount of
commodity (o, d, i) shipped through the edge e. Let IEdges(v) = {(u, v), ∀u}
and OEdges(v) = {(v, w), ∀w}. The value of the coalition S, v(S), is defined to
be the optimal value of the following linear program:

P (S) : v(S) = max
∑

(o,d,i)∈DS

f
(o,d,i)
(d,o,i) r(o,d,i) (1)

s.t.
∑

{e:e∈IEdges(v)}
f (o,d,i)

e −
∑

{e:e∈OEdges(v)}
f (o,d,i)

e ≤0 ∀v∈V ∀(o, d, i)∈DS (2)

∑
(o,d,i)∈DS

f (o,d,i)
e ≤ ceγS

e ∀e ∈ E (3)

f
(o,d,i)
(d,o,i) ≤ d(o,d,i) ∀(o, d, i) ∈ DS (4)

f ≥ 0 . (5)

After solving the above linear program for every sub-coalition, we define a
MCF game (N,v), where N is the number of players and v is the value of coali-
tions. An allocation in the core of such a game, i.e., the set C = {x|

∑
i∈N xi =

v(N);
∑

i∈S xi ≥ v(S), ∀S ⊂ N}, can be efficiently computed by solving the
dual problem of P (N). Mathematically, if we denote the optimal dual solutions
associated with constraints (3) and (4) in P (N) as α∗

e , ∀e ∈ E, and β∗(o,d,i),
∀(o, d, i) ∈ D, then the dual payoff, as defined in (6), is in the core.

x = {xi =
∑
e∈E

α∗
eceγ

i
e +

∑
(o,d,i)∈Di

β∗(o,d,i)d(o,d,i)} . (6)

However, it is a known fact that in a MCF game defined above, the core is not
fully characterized by the dual payoffs in general [1]. Moreover, such an allocation
scheme requires a central planner to take full control over the operations of the
resources, and to allocate the revenue obtained as a result in the grand coalition
exactly in the way as described in (6), which is not realistic in most applications.

2.2 A Collaboration Mechanism Based on Exchange Prices

Consider the MCF game defined in 2.1 under a decentralized setting. Players
make their own routing decisions and interact with each other via capacity ex-
changes which are commonly paid in dollars per unit in market applications. In
order to achieve the collaborative optimum, a centralized authority intervening
minimally may design a price system on the edge capacities to provide enough
incentives for the selfish players to choose the social optimal routing for their
commodities.
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Formally, tag the edge capacities with a set of exchange prices ¯cost = {coste}.
All players pay for all the edge resources they use, and at the same time get part
of the revenue generated by capacity exchanges on every edge proportional to
their ownership levels. We model the behaviour of each player by assuming that
one makes the routing decision as if he could route all the flow in the network.
Such assumption leads to results with desirable properties even in more complex
applications. Mathematically, a coalition S solves the following linear program
PS

¯cost to maximize his payoff as in (7) under the same constraints as in P (N).

max
∑

(o,d,i)∈DS

f
(o,d,i)
(d,o,i) r(o,d,i) +

∑
e∈E

coste[γS
e

∑
(o,d,i)/∈DS

f (o,d,i)
e − (1− γS

e )
∑

(o,d,i)∈DS

f (o,d,i)
e ] (7)

s.t. (2)− (5) in P (N) . (8)

A good set of exchange prices makes the social optimum most attractive to
every sub-coalition. The following definition captures this idea. Let f∗ be the
socially optimal routing solution, which is also the optimal solution to P (N).

Definition 1. A set of exchange prices ¯cost is inverse feasible with respect to
f∗ if f∗ is an optimal solution to PS

¯cost for all sub-coalitions S ⊂ N .

In [1], it is shown that the set of inverse feasible exchange prices can be identi-
fied efficiently by solving a linear program. Specifically, a set of inverse feasible
exchange prices must satisfy a set of constraints

⋃
i∈N I

i, which contains all the
dual constraints and complementary slackness constraints associated with f∗

and the problem P i
¯cost for every player i.1

Theorem 1. A set of exchange prices ¯cost is inverse feasible if and only if⋃
i∈N I

i with ¯cost as parameter is feasible. Such exchange prices always exist
given any MCF game defined in 2.1. (from [1])

3 Achieving Allocations in the Core by the Mechanism
Based on Exchange Prices

With a set of inverse feasible exchange prices ¯cost, the payoff of player i is

xi =
∑

(o,d,i)∈Di

f
∗(o,d,i)
(d,o,i) r(o,d,i)+

∑
e∈E

coste[γi
e

∑
(o,d,i)/∈Di

f∗(o,d,i)
e −(1−γi

e)
∑

(o,d,i)∈Di

f∗(o,d,i)
e ] .

(9)
Because the total profits earned from edge capacity exchanges summed over

all the players is 0, {xi} as in (9) naturally provides an allocation of the amount∑
(o,d,i)∈D f

∗(o,d,i)
(d,o,i) r(o,d,i) = v(N) as defined in (1)-(5). In other words, inverse

feasible exchange prices can serve as a practical tool to realize profit allocations
in a MCF game under decentralized settings. This section deals with the problem
of how to design the exchange prices such that the resulting profits of players
happen to be identical to some allocation in the core.
1 See the full paper on the author’s webpage for the complete description of

�
i∈N Ii.
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3.1 Dual Payoffs

The dual optimal solutions associated with P (N) are important in the sense that
every element of it defines a fair payoff allocation in the core [7]. They are also
termed as market prices in [3] to emphasize on their economic interpretation.
In this section, they are further shown to be inverse feasible in the mechanism
based on exchange prices. The full result is introduced in Theorem 2.2

Theorem 2. In a MCF game defined in 2.1, the payoff vector induced under
the mechanism based on exchange prices is identical to the dual payoff defined
in (6) if the exchange prices are set to be the market prices of edge capacities.

Theorem 2 is closely related to the economic notion of competitive equilibrium
studied in the Edgeworth model of exchange economy such as in [2], [12], [13].
Please refer to a recent working paper by the authors for details.

3.2 An Arbitrary Allocation in the Core

Although all the dual payoffs can be achieved under the mechanism based on
exchange prices as explained in the previous section, this cannot be slated for
an arbitrary allocation in the core. Consider the following simple MCF game.

Example 1. A network has two nodes o and d and an edge e from o to d. There
are 2 players. Each player owns 0.5 units of capacity on e. Player I has 0.4 units
and Player II has 0.7 units of demands to be shipped from o to d. The unit
revenue of either commodity is 1.

By simple calculations we conclude that the exchange price on e is inverse
feasible if and only if it is 1. So only the dual payoff [0.5, 0.5] can be achieved
under the mechanism based on exchange prices. However, since v(I) = 0.4,
v(II) = 0.5 and v(I ∪ II) = 1, there are infinitely many solutions in the core
that cannot be realized in this way.

To conclude, given a MCF game, let D be the set of dual payoffs as in (6), C
be the core, and I be the set of allocations induced by inverse feasible exchange
prices. It is always true that D ⊂ C and D ⊂ I. However, generally speaking,
C �⊂ I, and it is also easy to find a counter example to I ⊂ C (see Examples 2
in section 4.2).

4 The Inverse Feasible Exchange Prices and the Core

While inverse feasibility ensures that every selfish player chooses to follow the
social optimum when he plays within the grand coalition, the resulting allocation
must be in the core to sustain the stability of the grand coalition. In general,
it is hard to tell whether the allocation generated by an arbitrary set of inverse
feasible exchange prices is in the core. In [1], it is proven that under the assump-
tion of unique ownership of the edge capacities, inverse feasibility automatically
guarantees the long-term cooperation of all players, i.e., I ⊂ C.
2 See the full paper on the author’s webpage for the proof of Theorem 2.
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Theorem 3. If each edge of the network has an unique owner, the payoff vector
x = {xi} given by (9) lies in the core of the multicommodity flow game as long
as the set of exchange prices in use is inverse feasible. (from [1])

However, as it is mentioned in [15], diseconomies can arise when an arc is not
owned by a unique player, and when diseconomies exist desirable properties of
a flow game may be violated. In order to further understand the relationship
between the core and the allocations induced by inverse feasible exchange prices
under a more general setting, multiple ownership of the capacities on a single
edge is allowed here. It is concluded that only a certain type of edges is needed
to be uniquely owned in order to reach the conclusion in Theorem 3.

4.1 A Single Sub-coalition Problem

Our analysis begins by studying the payoff to a particular sub-coalition S. First
we introduce some notation. let MS = {e|0 < γS

e < 1}. Let f(−S) denote one
feasible solution to P (N \ S) (1)-(5) and define the utilized capacity on edge
e within the coalition N \ S to be u−S

e =
∑

(o,d,i)/∈DS f(−S)(o,d,i)
e . If u−S

e =
ce(1− γS

e ), we say that there are no excess resources within N \S under f(−S).

Theorem 4. If there exists a solution f(−S) under which there are no excess
resources within N \ S on every edge in MS, then under every set of inverse
feasible exchange prices, xS ≥ v(S).

Proof. The theorem is proven by showing that, under our assumption, there is
a feasible routing for S such that the payoff induced is guaranteed to be no less
than v(S). See the full paper on the author’s webpage for the complete proof. ��

v(S)

money S pays on resources 
owned by its members 

money paid by N \ S for capacities 

o

xS

a b c 

payoff under a feasible routing for S

Fig. 1. An illustration of the proof of Theorem 4

Fig. 1 illustrates the main idea of the proof to Theorem 4. It also explains
the relationship between xS and v(S), which largely depends on the payments
made and gains received from capacity exchanges. Specifically, if a single edge
e is owned by multiple players and is also used by at least one of its owners
who, after joining the grand coalition, will be paying for his own resources on
e which should be free for him, i.e., ab > 0 in Fig. 1. Hence diseconomies arise
from multiple ownership of edge capacities. The power of the unique ownership
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condition lies in the fact that it guarantees any sub-coalition to not pay for edge
capacities owned by its members, i.e., ab = 0, hence always leads to I ⊂ C.

Meanwhile, it should be noticed that the capacity exchange mechanism en-
ables players to earn extra profits from other parties. The key effect of the
no-excess-resources condition in Theorem 4 is to guarantee that there exists a
feasible way for the coalition S to route the flows such that the money paid by
N \ S covers the amount S pays on its own resources, i.e., ac ≥ ab in Fig. 1.
In this way the diseconomies resulting from multiple ownership can be remedied
and xS ≥ v(S) whenever a set of inverse feasible exchange prices is used.

However, no such conclusions can be made in general. In fact, the condition
in Theorem 4 is sometimes necessary to obtain the conclusion.

4.2 On Excess Resources

The following example illustrates how the payoff to coalition S induced by inverse
feasible exchange prices is affected by the excess resources within N \ S, so that
xS ≥ v(S) is violated.

Example 2. A network has only two nodes o and d and an edge e from o to
d. Player I owns ceγ1

e units of the capacity, but his demand exceed the total
capacity, i.e., d(o,d,1) > ce. On the other side, Player II owns no shipping demand
but only ce(1− γ1

e ) units of capacity. The unit revenue is r(o,d,1) = 1.
Obviously the collaborative optimal solution is to ship ce units of Player I’s

demand. Denote the exchange price as ¯cost. Consider the objective functions in
P 1

¯cost and P 2
¯cost. We conclude that ¯cost is inverse feasible iff 0 ≤ ¯cost ≤ 1

1−γ1
e
.

Calculate Player I’s payoff under an inverse feasible exchange price ¯cost.

x1 = ce[1− ¯cost(1− γ1
e)] (10)

= v(1) + ce(1− γ1
e )(1 − ¯cost) . (11)

By (11), x1 < v(1) if ¯cost > 1. Since Player I owns a positive fraction of capac-
ity on e, 1 < 1

1−γ1
e
. Hence, any inverse feasible exchange price in the nonempty

interval (1, 1
1−γ1

e
] leads to x1 < v(1).

Fig. 2 illustrates how Player I accumulates his profit as the shipping amount
increases if ¯cost > 1. The line segment ob demonstrates the situation in which
all resources in use are exchanged at a price of ¯cost. By (10), Player I earns a
unit profit of 1− ¯cost(1 − γ1

e ) from his shipping business, hence the slope of ob
is 1− ¯cost(1− γ1

e ) which is nonnegative by inverse feasibility. From this point of
view, Player I benefits from the excess resources owned by Player II. However,
(11) implies that the profit accumulation process can also be understood in
another way. At first, Player I plays alone to use up his own resources with a
unit profit 1, which is the slope of the line segment oa. Then he joins the coalition
and ships more using the capacities owned by Player II. By (11), the unit profit
he actually earns after joining the grand coalition, which is the slope of ab, is
1− ¯cost. Hence, the excess resources owned by Player II in fact undermines the
total profit of Player I since 1− ¯cost is negative when ¯cost > 1.
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x 

y 

v(1) 

x1 

ce ce�e
1o 

a

b

Fig. 2. Payoff accumulation of player I in Example 2, where x denotes the shipping
amount as well as the resources used on e, and y denotes the profit earned

Notice the condition in Theorem 4 is necessary in Example 2 to guarantee x{I} ≥
v({I}) when an arbitrary inverse feasible exchange price is used.

4.3 A Sufficient Condition for I ⊂ C

By considering every sub-coalition using Theorem 4, we can easily derive the
following sufficient condition for every set of inverse feasible exchange prices to
induce a payoff vector in the core.

Theorem 5. If ∀i ∈ N , ∀e ∈
⋃

i∈N Mi, there exists a feasible solution f(i) to
P (i), under which there are no excess resources within {i} on e, then every set
of inverse feasible exchange prices leads to a payoff allocation vector in the core.

Theorem 5 requires that the edges are uniquely owned only if there exists some
player who cannot use up his own resources on them by his shipping demands.
As the assumption of unique ownership of edge capacities implies

⋃
i∈N Mi = ∅,

Theorem 3 is indeed an extreme case of Theorem 5.

5 Open Problems

In section 3.1, it has been shown that the implementation of the collaborative
mechanism with market prices as exchange prices promotes cooperation among
selfish players. However, this approach sometimes results in allocations with
undesirable properties. Because the market price of every partially used edge
should be zero, players who own resources on those edges are very likely to
provide free service to edge users if the exchange prices are indeed set to be
the market price. This phenomenon might deviate players’ behaviours from the
social optimum, thus is a serious drawback. Our present study finds a cutting
plane algorithm to correct the exchange prices so that the problem is tackled.
We also consider the resulting allocations and study their properties.

Another open problem concerns the fact that there are many examples in
which C ⊂ I and the core can be fully described by inverse feasibility. The open
problem is to characterize the situation under which this desirable result is true.
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Abstract. We consider congestion games with linear latency functions
in which each player is aware only of a subset of all the other players.
This is modeled by means of a social knowledge graph G in which nodes
represent players and there is an edge from i to j if i knows j. Under
the assumption that the payoff of each player is affected only by the
strategies of the adjacent ones, we first give a complete characterization
of the games possessing pure Nash equilibria. We then investigate the
impact of the limited knowledge of the players on the performance of
the game. More precisely, given a bound on the maximum degree of G,
for the convergent cases we provide tight lower and upper bounds on
the price of stability and asymptotically tight bounds on the price of
anarchy. All the results are then extended to load balancing games.

Keywords: Algorithmic Game Theory, Nash Equilibrium, Price of An-
archy, Price of Stability, Congestion Games, Social Knowledge.

1 Introduction

Congestion games constitute a well-known class of non-cooperative games in
which a set of facilities E is available to the players and the strategy set of each
player i can be any Si ⊆ 2E. The cost of each facility e ∈ E (usually called
the latency of e) is a function of the number of players using e and the latency
experienced by each player i is the sum of the latencies of all the facilities used
by i.

Congestion games have been introduced by Rosenthal [17] in 1973. By defining
an elegant potential function he showed that they always possess (and always
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converge to) pure Nash equilibria [16]. In the last decade, they have come across
the analysis of the Computer Science community with the purpose of charac-
terizing the complexity of computing their pure Nash equilibria and evaluating
their suboptimality in terms of price of stability and anarchy. One of the most
interesting and studied special cases is the class of the linear congestion games,
in which the latency of each resource e is defined as a linear function of the
number of players using e.

A major concern related to the model of multiplayer games is given by the
fact that it is always assumed that each player knows all the context parame-
ters, is aware of the existence of all the other ones and, more important, of the
consequences of their choices in the definition of her payoff. Such interdepen-
dent effects clearly represent the core of each non-cooperative game, but with a
huge number of players in highly dynamic and distributed environments such a
global knowledge might be unfeasible. Therefore, Harsanyi in his two pioneering
works on games with incomplete information [11,12] introduced Bayesian games,
where players may have different types and are uncertain about each others types
according to a probability distribution over all possible type profiles. Bayesian
congestion games have then been studied in [2,7,8,9,10]. Recently, Koutsoupias
et al. applied a similar model to load balancing games [13].

Along the line of incomplete information, a further realistic step is to assume
that each player is aware only of the strategies played by a subset of players
representing somehow her neighborhood. The idea of exploiting and modeling
the locality of mutual influences constitutes the basis of another famous class of
games, called graphical games. These games have been introduced in [14] with
the main purpose of providing a succinct form for representing non-cooperative
games in the cases in which the payoff of a player is influenced only by the choices
performed by a relative small subset of the players in the game. General non-
cooperative games, in fact, are usually represented in normal form by using n
matrices each of sizemn, where n is the number of players andm is the number of
strategies available for each player (assuming for simplicity that all the strategy
sets have the same cardinality). In graphical games, a game is represented by
a social knowledge graph G with n nodes and a set of n matrices. Each player
corresponds to a node in the graph and the set of her neighbors in G to all
players directly influencing with their choices her payoff. When the maximum
degree in G is small, say a constant ∆, each of the payoff matrices will have size
equal to m∆.

In this paper we push this idea a little further by associating a given game a
social knowledge graph in such a way that the payoff matrices of the resulting
game will be determined on the basis of those of the initial game and of the
neighborhoods yielded by the topology of the social knowledge graph.

1.1 Related Work

After Rosenthal’s seminal paper [17], in [15] it was shown that congestion games
are isomorphic to exact potential games. The price of anarchy of general con-
gestion games is known to be arbitrarily high and cannot be better than n (the
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number of players in the game). Thus, a lot of research has been devoted in
the study of linear congestion games with respect to two different social func-
tions: the total latency, that is the sum of all the latencies, and the maximum
experienced latency. In [1,4] it is shown, among the various results, that in case
of total latency social cost the price of anarchy of pure Nash equilibria is 5/2,
while for mixed Nash equilibria or pure Nash equilibria of weighted players it is
2.618. Moreover, in [4] it is also shown that the price of anarchy of the maximum
latency social cost is Θ(

√
n). The price of stability of linear congestion games

has been studied in [5] where it was shown that for the total latency social cost
it is between 1 + 1√

3
≈ 1.577 and 1.6. Such a value has been fixed to 1 + 1√

3
in [3].

1.2 Our Contribution

We analyze the impact of the social knowledge among the players on congestion
games with linear latency functions. Under the assumption that the payoff of
each player is affected only by the strategies of the adjacent ones in the social
knowledge graph, we first give a complete characterization of the games possess-
ing pure Nash equilibria. Namely, if the social graph G is undirected the game is
an exact potential game and thus isomorphic to a classical congestion game. As
a consequence, it always converges and possesses Nash equilibria. We then show
that if G is directed an equilibrium is not guaranteed to exist, but the game is
always convergent and an equilibrium can be found in polynomial time if G is
acyclic, even if finding the best equilibrium remains an intractable problem.

We then investigate the impact of the limited knowledge of the players on the
performance of the game. More precisely, given a bound ∆ on the maximum de-
gree of G, for all the convergent cases we bound the respective prices of stability
and anarchy.

Such results are determined for the social cost functions (i.) total presumed
latency, that is the one the players believe to pay due to the fact that they are
only aware of the existence of their neighbors, (ii.) maximum presumed latency,
(iii.) total perceived latency, i.e. actually experience due to all and not only the
known players using the same facilities and (iv.) maximum perceived latency.

All the results are then extended to load balancing games, that is congestion
games in which every pure strategy consists of a single facility.

We provide tight and asymptotically tight bounds for 31 of the 32 arising
cases. Such results are summarized in Tables 1 and 2, where G(∆) and

−→AG(∆)

Table 1. Presumed latencies: bounds for congestion and load balancing games

PoSsum, PoSmax PoAsum, PoAmax

G(∆) 2, Θ(∆ + 1) Θ(∆ + 1), ∆ + 1
−→AG(∆) Θ(∆ + 1), ∆ + 1 Θ(∆ + 1), ∆ + 1
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Table 2. Perceived latencies: bounds for congestion and load balancing games

Congestion games Load balancing games

PoSsum, PoSmax PoAsum, PoAmax PoSsum, PoSmax PoAsum, PoAmax

G(∆) n, n ÷ n
√

∆ + 1 Θ(n(∆ + 1)) n, Θ(n) Θ(n)
−→AG(∆) Θ(n(∆ + 1)) Θ(n(∆ + 1)) Θ(n) Θ(n)

are the classes of all the symmetric (or undirected) and directed acyclic social
graphs with maximum node degree bounded by ∆, respectively.

In some sense our result seems contradictory: the more players know, the worse
the prices of stability and anarchy are. This is actually true for ∆ approaching
to n, with the worst case being ∆ = n/2. Note also that, in all our lower bound
constructions, ∆ is upper bounded by a constant fraction of the number of
players. However, in the case of perceived latencies, it is possible to see that if
every player knows at least a certain number of other players ∆, that is if ∆ is
a lower bound on the minimum degree, then as ∆ ≥ n/2 approaches n all the
prices gradually tend to O(n). For ∆ < n/2 all our results coincide with the ones
where ∆ is the maximum degree, as dummy players can be added using only
dummy facilities of null cost so as to induce social graphs of minimum degree
at least ∆. Another crucial observation is that better bounds can be obtained
for specific social graphs. In fact, for the undirected complete graph constant
bounds derive directly from the classical congestion game.

Besides the particular results, our framework is particularly effective in mod-
elling situations in which users choices are done a priori or modified during a
preprocessing phase under partial knowledge of the arising system performance
in the following operating phase, during which preemption or alternative strat-
egy selections are not allowed or yield excessive costs. As an example, we have
particular routing protocols, real traffic networks and in general contexts in
which users must subscribe conflicting services in advance. More in general, the
framework can be applied to all non-cooperative games in which a complete
knowledge among the players cannot be achieved or can be guaranteed up to
a limited extent. Thus, we believe that it will possibly capture future research
attention.

2 Model

A graphical congestion game is defined by a tuple H = 〈G =
(N,M), E, (Si)i∈N , (fe)e∈E〉 where G = (N,M) is a directed graph, called social
knowledge graph, N = {1, . . . , n} is a set of n players, E is a set of facilities,
Si ⊆ 2E is a set of pure strategies for player i, each consisting of a set of facil-
ities, and fe is the latency function for the facility e depending on the number
of players using e.
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Roughly speaking, the graph G defines the social knowledge among the play-
ers. In fact, the players j adjacent to a player i in G, that is such that (i, j) ∈M ,
are all and only the ones whose strategy choices are known by i and can poten-
tially influence her strategy choice. This models the fact that a player may be
not aware of the choices of all the other players, and thus her choices are affected
only by the strategies played by a restricted neighborhood. Clearly, any complete
symmetric social graph induces a classical congestion game.

Let δi(G) be the (out-)degree of player i in G, and
−→G (∆) be that class of

all the social graphs with maximum node degree bounded by ∆. Moreover, let
G(∆) and

−→AG(∆) be the subclasses of the symmetric (or undirected) graphs and
of the directed acyclic graphs in

−→G (∆), respectively.
The pure strategy profile (state) set of the game is S =

∏
i∈N Si. Given a pure

strategy profile s = (s1, s2, . . . , sn) ∈ S, we denote with Ge(s) the subgraph of
G induced by the set of players using facility e, i.e. Ge(s) = (Ne(s),Me(s))
where Ne(s) = {i ∈ N : e ∈ si} and Me(s) = {(i, j) ∈ M : i, j ∈ Ne(s)}. Let
ne(s) = |Ne(s)| and me(s) = |Me(s)| be the number of nodes and arcs in Ge(s)
respectively, and δi

e(s) be the degree of node i in Ge(s). The cost of player i in
the strategy profile s is ci(s) =

∑
e∈si

fe(ni
e(s)), where ni

e(s) is the number of
nodes adjacent to i in Ge(s), i included, that is ni

e(s) = δi
e(s)+1 = |{j ∈ Ne(s) :

j = i ∨ (i, j) ∈Me(s)}|.
We focus on the case in which the latencies of the facilities are linear func-

tions with nonnegative coefficients, i.e. fe(x) = αex + βe, with αe, βe ≥ 0,
for any e ∈ E. Moreover, we consider four different social cost functions of
a strategy profile s : the total presumed social cost Csum

PR (s) =
∑

i∈N ci(s) =∑
e∈E

∑
i:e∈si

fe(ni
e(s)) given by the sum of all the players’ costs, the maxi-

mum presumed social cost Cmax
PR (s) = maxi∈N ci(s) = maxi∈N

∑
e∈si

fe(ni
e(s)),

that is the maximum players’ cost, the total perceived social cost Csum
PE (s) =∑

e∈E

∑
i:e∈si

fe(ne(s)) =
∑

e∈E ne(s)fe(ne(s)), i.e., the total cost due to the
actual congestion of the facilities, and finally the maximum perceived social cost
Cmax

PE (s) = maxi∈N

∑
e∈si

fe(ne(s)).
The objective of a player i is to choose the pure strategy minimizing her own

cost, given the strategy of the players adjacent to i in G. Given a strategy profile
s = (s1, s2, . . . , si, . . . , sn), we denote as s⊕s′i = (s1, s2, . . . , s′i, . . . , sn) the strat-
egy profile obtained from s if player i changes her strategy from si to s′i. A (pure)
Nash equilibrium is a pure strategy profile such that no player can reduce her cost
by seceding in favor of a better strategy, given the strategies of the other players.
More formally, a Nash equilibrium is a pure strategy profile s = (s1, s2, . . . , sn)
such that ∀i ∈ N and strategy s′i ∈ Si, it holds ci(s) ≤ ci(s⊕ s′i). Denoting with
N the set of all the possible Nash equilibria, the price of anarchy (PoA) of a game
H for the total presumed latency social cost is defined as the worst case ratio
among the Nash versus optimal performance, i.e., PoAsum

PR (H) = maxs∈N Csum
PR (s)

OPT sum
P R (H) ,

where OPT sum
PR (H) = mins∈S C

sum
PR (s). On the other hand the price of stabil-

ity (PoS ) of H is defined as the best case ratio among the Nash versus opti-
mal performance, i.e., PoSsum

PR (H) = mins∈N Csum
PR (s)

OPT sum
P R (H) . PoAmax

PR (H), PoAsum
PE (H),
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PoAmax
PE (H), PoSmax

PR (H), PoSsum
PE (H) and PoSmax

PE (H) can be defined accord-
ingly. In the following, when clear from the context, we will drop the indices
sum and max and the argument H from the notation.

3 Existence, Convergence and Complexity

In this section, we focus on the existence and convergence to Nash equilibria and
completely characterize the complexity of finding a generic Nash equilibrium and
an optimal one. We first consider undirected social knowledge graphs.

Theorem 1. Every graphical linear congestion game defined over an undirected
social graph is an exact potential game, and thus always converges to a Nash
equilibrium.

Proof. Given the strategy profile s = (s1, s2, . . . , sn), the potential function es-
tablishing the result is Φ(s) =

∑
e∈E Fe(s), where Fe(s) = αe (me(s) + ne(s)) +

βene(s).
Let i be a player reducing her cost by changing her strategy from si

in s to s′i, thus yielding a new strategy profile s′ = s ⊕ s′i. The change
of the potential function, Φ(s′) − Φ(s), is then equal to

∑
e∈s′

i\si

(Fe(s′)− Fe(s)) −
∑

e∈si\s′
i
(Fe(s)− Fe(s′)) =

∑
e∈s′

i\si

(
αe(δi

e(s
′) + 1) + βe

)
−∑

e∈si\s′
i

(
αe(δi

e(s) + 1) + βe

)
=
∑

e∈s′
i\si

(
αen

i
e(s

′) + βe

)
−
∑

e∈si\s′
i

(
αen

i
e(s)+

βe) = ci(s′)− ci(s). ��
We now turn our attention to directed social knowledge graphs, by first showing
that each game converges to a Nash equilibrium and an equilibrium can be
efficiently determined.

Theorem 2. Each graphical congestion game defined over a directed acyclic
social graph converges to a Nash equilibrium. Moreover, there always exists a
sequence of at most n best replies which can be computed in polynomial time
ending to a Nash equilibrium.

Notice that the above theorem holds for any latency function, and this is in
contrast with the hardness for the undirected case, where the PLS completeness
follows from [6] by restricting to complete social graphs. However, the following
theorem shows that for directed social graphs determining an equilibrium with
minimum social cost remains an intractable problem. We simply refer to social
cost, since slight modifications of the same reduction apply to all the four social
functions.

Theorem 3. Given a graphical linear congestion game with directed acyclic so-
cial graph and an integer k > 0, determining whether there exists a Nash equi-
librium with social cost at most k is an NP-complete problem.

On the other hand, if the social graph contains cycles, Nash equilibria might not
exist.

Theorem 4. There exists a graphical linear congestion game defined over a
directed social graph not admitting any Nash equilibrium.
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4 Presumed Social Cost

In this section we first analyze the prices of stability and anarchy with respect
to the social cost Csum

PR (s) =
∑

i∈N ci(s), and then sketch how to extend our
results to the max presumed latency social cost.

We provide matching and asymptotically matching upper and lower bounds
for the games defined over the social graphs always guaranteeing the convergence
to Nash equilibria, i.e. undirected and directed acyclic graphs.

We first focus on graphical games defined over undirected social graphs, and,
by exploiting the potential function defined in Theorem 1, we prove that the
price of stability is equal to 2, regardless of the maximum degree of the social
graph.

Theorem 5. For any graphical linear congestion game H defined over an undi-
rected social graph, PoSsum

PR (H) ≤ 2.

Theorem 6. For any ε > 0 there exists a graphical linear congestion game H
with an arbitrarily large number of players defined over an undirected social graph
such that PoSsum

PR (H) ≥ 2− ε.

As the following theorems state, both the price of anarchy of graphical linear
congestion games defined over undirected social graphs and the price of stability
of graphical linear congestion games defined over directed acyclic social graphs
cannot be upper bounded by a constant, but are linear in ∆. Notice that if the
social graph has no edges, the price of anarchy is trivially 1, since in any Nash
equilibrium all the players experience the lowest possible cost. Thus, for clarity
of presentation, in the following we focus on graphical games defined on graphs
belonging to G(∆) ∪ −→AG(∆) with ∆ > 0.

Theorem 7. For any ∆ > 0 there exists a graphical linear congestion game H
with an arbitrarily large number of players defined over a social graph G ∈ G(∆)
such that PoAsum

PR (H) ≥ 2∆+1
3 .

Theorem 8. For any ∆ > 0 there exists a graphical linear congestion game H
with an arbitrarily large number of players defined over a social graph G ∈ −→AG(∆)
such that PoSsum

PR (H) ≥ ∆+1
2 .

The following theorem provides asymptotically matching upper bounds on the
price of anarchy for undirected social graphs, and on the prices of stability and
anarchy for directed acyclic social graphs.

Theorem 9. Given any graphical linear congestion game H defined over a social
graph G ∈ G(∆) ∪ −→AG(∆), PoAsum

PR (H) ≤ 1 +∆.

By combining Theorem 9 with Theorem 7 and Theorem 8, respectively, we have
that the price of anarchy for undirected and directed acyclic social graphs is
Θ(∆+ 1), as well as the price of stability for directed acyclic social graphs.
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Let us finally sketch how to extend our results to the max presumed latency
social function.

Exactly matching bounds on the price anarchy can be shown by very similar
arguments and constructions; the same holds for the price of stability of games
defined over directed acyclic social graphs (see Table 1). Different results hold
for the price of stability of games defined over undirected social graphs. In fact,
the potential function argument of Theorem 5 cannot be applied to establish
the same upper bound. However, while a trivial ∆+ 1 upper bound is given by
the price of anarchy, an asymptotically matching lower bound is established in
the following theorem.

Theorem 10. For any ∆ > 0 there exists a graphical linear congestion game H
with an arbitrarily large number of players defined over a social graph G ∈ G(∆)
such that PoSmax

PR (H) ≥ ∆+1
2 .

5 Perceived Social Cost

In this section we first analyze the prices of stability and anarchy with respect
to the social cost Csum

PE (s) =
∑

e∈E ne(s)fe(ne(s)), in which we are interested
in minimizing the sum of the latencies actually perceived by the players. We
then sketch how to extend our results to the maximum perceived latency social
function.

Again we provide matching and asymptotically matching upper and lower
bounds for the games defined over the social graphs always guaranteeing the
convergence to Nash equilibria, i.e. undirected and directed acyclic.

We first focus on the price of stability of graphical games defined over undi-
rected social graphs. By the same potential function technique of Theorem 5, we
prove that it is equal to n regardless of the maximum degree of the social graph.

Theorem 11. For any graphical linear congestion game H defined over an undi-
rected social graph, PoSsum

PE (H) ≤ n.

Theorem 12. For any ε > 0 there exists a graphical linear congestion game
H with an arbitrarily large number of players defined over an undirected social
graph such that PoSsum

PE (H) ≥ n− ε.

We now show that there exist graphical congestion games defined on undirected
social graphsG for which the price of anarchy is Ω(n(∆+1)), and that there exist
graphical congestion games defined on directed acyclic social graphs for which
this bound holds even for the price of stability. Notice that if the social graph
has no edges, by the same arguments in the proof of Theorem 12, the prices of
stability and anarchy are lower bounded by n. Thus, for clarity of presentation,
in the following again we focus on graphical games defined on graphs belonging
to G(∆) ∪ −→AG(∆) with ∆ > 0.

Theorem 13. For any ∆ > 0 there exists a graphical linear congestion game H
with an arbitrarily large number of players defined over a social graph G ∈ G(∆)
such that PoAsum

PE (H) = Ω(n(∆+ 1)).
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Proof. Let us consider a graphical linear congestion game H with n = 2kd play-
ers, where d = �∆/3� and k is an arbitrarily large integer. The social graph of
the game is G = (N0 ∪ N ′

0 · · · ∪ Nk−1 ∪ N ′
k−1,M0 ∪M ′

0 ∪ · · · ∪Mk−1 ∪M ′
k−1)

(see Figure 1(b)), where for every h = 0, . . . , k − 1, Nh = {p1h, . . . , pd
h},

N ′
h = {q1h, . . . , qd

h}, Mh = {{pi
h, p

j
(h+1) mod k} | i, j ∈ {1, . . . , d}} and M ′

h =

{{pi
h, q

j
(h+1) mod k} | i, j ∈ {1, . . . , d}}. The set of facilities is E = {e} ∪ E0 ∪

. . . ∪ Ek−1, where for every h = 0, . . . , k − 1 Eh = {e1h, . . . , edh}, and for every
l = 1, . . . , d the latency functions are fel

h
(x) = x; moreover, fe(x) = dx. Each

player pl
h has the strategy set {{elh}, E(h+1) mod k} and each ql

h has the strategy
set {{elh}, {e}} (see Figure 1(a)). For the sake of clearness, we refer to the first
strategy of each strategy set as the small strategy, and to the second one as the
big strategy.

Clearly, if each player chooses her small strategy, the achieved social cost is
equal to 4kd; thus OPTPE ≤ 4kd.
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Moreover, the strategy profile s̄ in which each player chooses her big strategy
is a Nash equilibrium; in fact, each player pl

h has a cost equal to d in s̄, and
she would experience a presumed cost equal to d+ 1 by changing her strategy.
Moreover, each player ql

h has a cost equal to d in s̄, and she would experience
a presumed cost equal to d + 1 by changing her strategy. The perceived social
cost of s̄ is lower bounded by the sum of the latencies on facility e, that is equal
to d(kd)2 = k2d3. Therefore, the price of anarchy of H is at least Ω(kd2) =
Ω(n(∆+ 1)). ��
Theorem 14. For any ∆ > 0 there exists a graphical linear congestion game H
with an arbitrarily large number of players defined over a social graph G ∈ −→AG(∆)
such that PoSsum

PE (H) = Ω(n(∆+ 1)).

The following theorem provides asymptotically matching upper bounds on the
price of anarchy for undirected social graphs, and on the prices of stability and
anarchy for directed acyclic social graphs.

Theorem 15. Given any graphical linear congestion game H defined over a
social graph G ∈ G(∆) ∪ −→AG(∆), PoAsum

PE (H) = O(n(∆+ 1)).

Notice that by combining Theorem 13 and Theorem 14 with Theorem 15 we can
derive a price of anarchy Θ(n(∆+ 1)) for undirected social graphs and prices of
stability and anarchy Θ(n(∆ + 1)) for directed acyclic social graphs. Moreover,
for∆ = n

2 , Theorem 15 combined with the following theorem provides an exactly
matching bound to the price of anarchy for undirected social graphs, expressed
in the number of players.

Theorem 16. There exists a graphical linear congestion game H with an arbi-
trarily large number of players defined over an undirected social graph such that
PoAsum

PE (H) = n2

4 .

Again, for the maximum perceived latency social function the same bounds on
the price anarchy can be shown by very similar arguments and constructions; the
same holds for the price of stability of games defined over directed acyclic social
graphs (see Table 2). The potential function argument of Theorem 11 cannot be
applied to establish the same upper bounds on the the price of stability. However,
while an Ω(n) lower bound still holds by the same construction of Theorem 12,
the following theorem improves upon the trivial O(n(∆+1)) upper bound given
by the price of anarchy. It exploits a novel technique showing that a high price of
stability for the maximum perceived social function would imply a high price of
stability for the total perceived social function, thus contradicting Theorem 11.

Theorem 17. Given any graphical linear congestion game H defined over a
social graph G ∈ G(∆), PoSmax

PE (H) ≤ n
√
∆+ 1.

6 Load Balancing Games

In this section we sketch how to extend our results to load balancing games, that
is congestion games in which every pure strategy consists of a single facility.
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Almost all the previous results implicitly consider load balancing instances,
with the exception of the lower bounds established in Theorem 13 and 14 for
the perceived latencies. Both for the total and the maximum perceived latency,
lower bounds equal to n come directly from the respective price of stability con-
structions, that in fact are load balancing ones and hold for games defined over
both undirected and directed acyclic social graphs. The following two theorems
show corresponding asymptotically matching upper bounds.

Theorem 18. Given any graphical linear load balancing game H defined over
a social graph G ∈ G(∆) ∪ −→AG(∆), PoAsum

PE (H) ≤ 8n.

Proof. Given any Nash Equilibrium s, for every i = 1, . . . , n let ci(s), or simply
ci, be the latency of player i in s, and c∗i be the latency of i in a fixed optimal
strategy profile s∗. Without loss of generality, let us assume that players are non-
increasingly ordered with respect to the ratio between the latency at equilibrium
and the one at optimum, i.e. c1

c∗
1
≥ · · · ≥ cn

c∗
n
. Consider the largest index r such

that cr

c∗
r
≥ PoAPE

2 . Then
∑r

j=1 cj ≥
�n

j=1 cj

2 = CPE(s)
2 , as otherwise

∑n
j=r+1 c

∗
j ≥∑n

j=r+1
2cj

PoAPE
>
�n

j=1 cj

PoAP E
=
∑n

j=1 c
∗
j , getting a contradiction.

Moreover, since
∑r

j=1 cj ≥
�n

j=1 cj

2 , there must exist a facility e having latency
function fe(x) = αex + βe with at least half of the clients using it at Nash
equilibrium belonging to the first r players. Let J = {j1, . . . , jn′

e
} be the set of

such n′e players, and ne be the overall number of players using facility e at Nash
equilibrium, with n′e ≥

⌈
ne

2

⌉
. Consider all the facilities e1, . . . , ek used by at least

one player of J in s∗ . For every h = 1, . . . , k, let feh
(x) = αeh

x + βeh
be the

latency function of eh and oh > 0 be the number of players of J using eh in s∗.
We consider two distinct cases.
If (αe +βe)PoAPE ≤ 2(αene +βe), it clearly follows that PoAPE ≤ 2ne ≤ 2n.
It remains to analyze the case in which (αe + βe)PoAPE > 2(αene +

βe). Since players in J cannot unilaterally decrease their latencies, αe +
βe ≤ αeh

(neh
+ 1) + βeh for every h = 1, . . . , k, where neh

is the num-
ber of players using facility eh in s. Moreover, αeh

oh + βeh
= c∗

j̄
≤

2cj̄

PoAPE
= 2(αene+βe)

PoAPE
, because j̄ < r is a player belonging to J . By combin-

ing the last two inequalities, it follows that neh
+ 1 ≥ PoAPEoh(αe+βe−βeh

)
2(αene+βe)−βeh

PoAP E
.

Summing up over all h = 1, . . . , k, recalling that (αe + βe)PoAPE >

2(αene + βe),2n ≥
∑k

h=1 (neh
+ 1) ≥

∑k
h=1

oh((αe+βe)PoAPE−βeh
PoAPE)

2(αene+βe)−βeh
PoAPE

≥∑k
h=1

oh(αe+βe)PoAPE

2(αene+βe) ≥
∑k

h=1
ohαePoAP E

2αene
= PoAPE

2ne

∑k
h=1 oh ≥ n′

ePoAP E

2ne
≥

PoAPE

4 , as n′e ≥ ne

2 .
Therefore, PAPE ≤ 8n. ��

By exploiting a similar technique it is possible to prove the following theorem.

Theorem 19. Given any graphical linear load balancing game H defined over
a social graph G ∈ G(∆) ∪ −→AG(∆), PoAmax

PE (H) ≤ 2n.
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As a consequence of the above theorems and discussion, while for the presumed
latencies all the bounds coincide with the congestion game ones (Table 1), the
tight results shown in Table 2 hold.
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Partial Knowledge. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708,
pp. 609–620. Springer, Heidelberg (2007)

14. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical Models for Game Theory. In:
Proc. of UAI, pp. 253–260. Morgan Kaufmann, San Francisco (2001)

15. Monderer, D., Shapley, L.S.: Potential Games. Games and Economic Behavior 14,
124–143 (1996)

16. Nash, J.: Equilibrium Points in n-person Games. Proceedings of the National Acad-
emy of Sciences 36, 48–49 (1950)

17. Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria.
International Journal of Game Theory 2, 65–67 (1973)



How Hard Is It to Find Extreme Nash Equilibria
in Network Congestion Games?

Elisabeth Gassner1,�, Johannes Hatzl1, Sven O. Krumke2, Heike Sperber2,��,
and Gerhard J. Woeginger3,���

1 Graz University of Technology, Institute of Optimization and Discrete
Mathematics, Steyrergasse 30, Graz, Austria
{gassner,hatzl}@opt.math.tu-graz.ac.at

2 University of Kaiserslautern, Department of Mathematics, P.O.Box 3049,
67653 Kaiserslautern, Germany

{krumke,sperber}@mathematik.uni-kl.de
3 Eindhoven University of Technology, Department of Mathematics and Computer

Science, P.O.Box 513, 5600 MB Eindhoven, The Netherlands
gwoegi@win.tue.nl

Abstract. We study the complexity of finding extreme pure Nash equi-
libria in symmetric (unweighted) network congestion games. In our con-
text best and worst equilibria are those with minimum respectively
maximum makespan. On series-parallel graphs a worst Nash equilibrium
can be found by a Greedy approach while finding a best equilibrium is
NP-hard. For a fixed number of users we give a pseudo-polynomial algo-
rithm to find the best equilibrium in series-parallel networks. For general
network topologies also finding a worst equilibrium is NP-hard.

Keywords: Network congestion game, unsplittable flow, makespan ob-
jective, extreme equilibria, complexity.
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In the last years there has been a lot of interest in algorithmic game theory
combining aspects of game theory and computer science. Driven by growing de-
mand for faster and larger communication networks more and more questions
were asked: How do non-cooperative users interact in such networks where in-
creasing load on individual parts of the network causes a degradation in service,
often in the form of reduced transfer speed? How does this congestion effect
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users? Classical game theory provides qualitative answers such as existence of
equilibria, states of the network in which all users are satisfied, and computer
scientists added more quantitative question and concepts. It is a well known fact
(cf. Pigou [1]), that in general selfish non-cooperative behaviour does not lead to
social optimal outcome. Papadimitriou [2] coined the term price of anarchy for
the ratio of the social cost of a worst Nash equilibrium and the minimal social
cost. The KP-Model named after Koutsoupias and Papadimitriou [3] describes
the situation in which users of possibly different size assign their traffic to par-
allel links with linear latency functions. For pure assignments this corresponds
to uniform/related machines in scheduling. Fotakis et al. [4] came up with the
question whether a best or worst pure equilibrium w.r.t. to makespan can be
computed efficiently and established that in the KP-Model both problems are
strongly NP-hard. Gairing et al. [5] added that it is even hard to approximate
the worst equilibrium social cost on identical links while there is a PTAS for the
best equilibrium social cost. Fischer and Vöcking [6] considered the worst mixed
equilibrium.

The hardness proofs for extreme equilibria stated above are based on the
users’ different sizes, i.e., the amounts of unsplittable traffic they send through
the network and the close relationship to scheduling and bin-packing problems.
The question arises whether finding extreme Nash equilibria for unit-size users
is substantially easier as for the unit-size case the corresponding scheduling and
bin-packing instances become polynomially solvable. We will show that most
versions of finding extreme equilibria are still NP-hard even for unit-size users.
Up to now the complexity status of finding extreme equilibria with respect to the
makespan was only considered for the KP-Model. However, in this case finding
extreme equilibria for unit-size users is trivial because even for arbitrary non-
decreasing latency functions on parallel links all Nash Equilibria have equal and
minimal makespan as shown by Epstein et al. [7].

The game describing unit-size users sending their unsplittable traffic through
arbitrary directed networks with latency functions on edges is called network
congestion game and was already studied in the 1970’s by Rosenthal [8]. He
established that the more general congestion games possess pure strategy Nash
equilibria. Fabrikant et al. [9] established that for symmetric (single-commodity)
network congestion games an arbitrary equilibrium can be computed in polyno-
mial time, but for asymmetric network congestion games or general symmetric
congestion games it is PLS-complete to find an equilibrium. Fotakis et al. [10]
introduced that the greedy approach yields a pure Nash equilibrium not only on
parallel links but also on series-parallel graphs.

Contribution. We consider (unweighted) network congestion games with arbi-
trary non-decreasing latency functions on edges. Our negative results need only
linear latencies �e(x) = aex.

We establish that finding a best or a worst Nash equilibrium concerning
makespan social cost is not equally hard in the following meaning: We prove
that on series-parallel graphs finding a best equilibrium is NP-hard. It is strongly
NP-hard if the number of users is part of the input and weakly NP-hard
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otherwise. Moreover, we suggest a pseudo-polynomial time algorithm that de-
termines a best Nash equilibrium on series-parallel graphs if the number of users
is fixed. This indicates that this problem is not strongly NP-hard. In contrast to
this we show that a worst pure equilibrium is found by the Greedy approach of
Fotakis et al. [10] on these graphs.

In general networks also finding a worst equilibrium is NP-hard. In fact, we
prove it to be NP-hard in the strong sense already for two users on an acyclic
network with linear latencies.

Road Map. The paper is organized as follows: Section 2 introduces our notation
and preliminary results such as existence of pure equilibria and computation of
an arbitrary equilibrium. In Section 3 we discuss our results on finding a worst
Nash equilibrium and in Section 4 for a best Nash equilibrium, respectively.

2 Preliminaries

We consider N users of the same size, i.e., each routing the same amount of
unsplittable flow from a single source s to a single sink t through a directed
graph G = (V,E). The edges of G are equipped with non-decreasing latency
functions �e : N0 → R+

0 for all e ∈ E modelling the congestion effects. An
instance of the game is thus given by (G = (V,E), (�e)e∈E , s ∈ V, t ∈ V,N). By
scaling the latency functions appropriately we assume without loss of generality
all users to have unit size.

Let P denote the set of all simple s-t-paths in G and thus the strategy set
of all users. In our context a flow is a function f : P → N0 that assigns integer
values to paths in the network. The latency on a path is the sum of the latencies
on its edges that depends on the total flow on the edge:

�P (f) :=
∑
e∈P

�e

⎛⎝ ∑
P ′∈P: e∈P ′

fP ′

⎞⎠ (1)

We denote by fe :=
∑

P∈P: e∈P fP the flow on edge e uniquely induced by
the flow f defined on paths. Note that there may be different so-called flow-
decompositions or flows on paths that correspond to the same flow on edges.
Example 1 shows that we need the information about paths for modelling the
users’ behaviour in our game.

A Nash equilibrium is a stable situation in which no user wants to deviate
from her chosen path because she cannot decrease her experienced latency this
way:

Definition 1 (Nash Equilibrium, Nash Flow). A flow on paths f=(fP )P∈P
is at Nash equilibrium, if and only if for all paths P1, P2 with fP1 > 0 we have

�P1(f) ≤ �P2(f̃) with f̃P =

⎧⎪⎨⎪⎩
fP − 1 if P = P1

fP + 1 if P = P2

fP otherwise
. (2)
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Existence of Nash Equilibria. Rosenthal [8] used the following potential
function Π : F → R defined on the set of feasible flows F to prove the existence
of pure Nash equilibria in network congestion games:

Π(f) =
∑
e∈E

fe∑
i=1

�e(i) (3)

Flows corresponding to local optima of this potential function constitute Nash
equilibria. Fabrikant et al. [9] establish that one equilibrium can be computed
in polynomial time because a min-cost flow in the following instance MCF(G)
minimizes Rosenthal’s potential function and is thus a Nash flow.

Definition 2 (Min-cost Flow Instance, MCF(G)). Given a network con-
gestion game (G = (V,E), (�e)e∈E , s ∈ V, t ∈ V,N) construct the corresponding
min-cost flow instance as follows:

For every edge e ∈ E we need N copies with costs cei = �e(i), i = 1, . . . , N .
The capacities of all edges are 1 and we send N units of flow from s to t.

Observe that every path decomposition of every optimal solution of the min-cost
flow instance MCF(G) yields a Nash equilibrium as the negative cycle optimality
condition for optimal min-cost flows directly implies that no user wants to deviate
from her chosen strategy. However, not every Nash equilibrium is also an optimal
solution of the min-cost flow instance (cf. Examples 3 and 4).

Note that there are instances and Nash flows (not global but local optima
of Rosenthal’s potential) such that a different path decomposition of the flow
on edges induced by a Nash flow is not again Nash (cf. Example 1). Thus, it is
necessary to have the information about the flow on paths as the output of the
game.

Example 1 (Nash equilibria and flow decompositions). Consider the instance
given in Figure 1 in which two users travel from s to t. The latency functions
are given as edge labels. In order to distinguish parallel edges (s, u) (or (u, t)),
we call them upper and lower edge between s and u (u and t).

Observe that the flow sending the first user on edge (s, t), the second user on
the path consisting of the upper edge from s to u and the lower edge from u to
t and the third user on the path containing the so far unused edges is a Nash
equilibrium. The flow on every edge is equal to 1.

But if we change the flow decomposition and send the second user on both
upper and the third on the lower edges this last user becomes unsatisfied be-
cause she would be better off changing to edge (s, t). Hence, not every path
decomposition of a flow on edges yields a Nash equilibrium.

s u t

x

2x

x

2x

1.5x

Fig. 1. Nash equilibrium property might depend on flow decomposition (Example 1)
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Social Cost. In this paper, we consider minimizing the makespan as the social
objective function. This notion comes from scheduling and is a priori only ap-
plicable to parallel link networks. Flows minimizing the following more general
makespan definition are sometimes also called min-max flows.

Definition 3 (Makespan, Social Cost). Given a flow on paths f = (fP )P∈P
the makespan is given by

Cmax(f) := max
P∈P:fP >0

�P (f). (4)

Epstein et al. [7] showed that on parallel links all Nash equilibria have equal
makespan but this does not hold in general:

Example 2 (Nash equilibria with different non-optimal makespans). Consider the
instance given in Figure 2 for two users. If every edge is used by exactly one user
and the paths are alternating between upper and lower edges then an optimal
solution with makespan 12 is achieved. Observe that in any Nash equilibrium
there is exactly one user on every edge between s and u1 and between u1 and u2
and there are two users on the upper edges between u2 and u3 and between u3
and t. A best Nash equilibrium with makespan 13 can be obtained if both users
alternate between upper and lower connection on the first two edges. However,
one user may also choose the lower connections on both first edges. This yields
again a Nash equilibrium, which is worst and has makespan 14.

s u1 u2 u3 t

2x

3x

2x

3x

2x

5x

2x

5x

Fig. 2. Instance with several Nash equilibria

As in general the makespan of different Nash equilibria as well as an optimum
makespan are not equal, we are now interested in computing two extreme Nash
equilibria.

Extreme Nash Equilibria. We introduce the following two problems of finding
a best or worst pure equilibrium, respectively.

Worst Nash Equilibrium (W-NE for short):
Given: Network congestion game (G = (V,E), (�e)e∈E , s ∈ V , t ∈ V , N)
Output: Nash equililbrium f with maximal makespan amoung all Nash

equilibria.

Best Nash Equilibrium (B-NE for short):
Given: Network congestion game (G = (V,E), (�e)e∈E , s ∈ V , t ∈ V , N)
Output: Nash equililbrium f with minimal makespan amoung all Nash

equilibria.

Note that the decision versions of these two problems are in NP for acyclic
networks G as in those networks for a given flow f a longest path w.r.t. to the
fixed edge lengths �e(fe) can be computed in polynomial time [11].
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Unfortunately, it can be shown that in general neither a best nor a worst Nash
equilibrium is an optimal solution of MCF(G):

Example 3 (Best Nash flow not optimal in MCF(G)). Reconsider the instance
of Example 2 and observe that the unique solution of MCF(G) is the Nash
equilibrium with makespan 14 and thus not the best one.

Example 4 (Worst Nash flow not optimal in MCF(G)). In case of the worst
Nash equilibrium consider the instance given in Figure 3 for two users:

s

u1 u2

u3 u4

t

x

x
x

x

x

x

0

0

Fig. 3. The unique worst Nash equilibrium does not imply an optimal min-cost flow
(Example 4)

The optimal solution f∗ of MCF(G) for the graph given in Figure 3 is unique
and has a unique path decomposition sending one user on Q1 = (s, u1, u4, t) and
Q2 = (s, u3, u2, t) each with makespan Cmax(f∗) = 2. However, f with fP1 =
fP2 = 1 where P1 = (s, u1, u2, t) and P2 = (s, u3, u4, t) is a Nash equilibrium
with Cmax(f) = 3.

The fact that in general no worst Nash equilibrium is an optimal min-cost flow
in MCF(G) is quite interesting because in the special case of series-parallel
graphs there always exists a worst Nash equilibrium that is an optimal solu-
tion of the min-cost flow problem MCF(G). This follows from the result that the
Greedy approach determines a worst Nash equilibrium in series-parallel graphs
(cf. Section 3).

Series-Parallel Graphs. As already mentioned we consider not only arbitrary
network topologies but also series-parallel networks. Series-parallel graphs can be
defined inductively. A single edge e = (s, t) is series-parallel with start terminal
s and end-terminal t by definition. Let Gi be series-parallel with start-terminal
si and end-terminal ti (i = 1, 2). Then the graph S(G1, G2) obtained by iden-
tifying t1 as s2 is a series-parallel graph, with s1 and t2 as its terminals (series
composition). And the graph G = P (G1, G2) obtained by identifying s1 as s2
and also t1 as t2 is a series-parallel graph (parallel composition). This graph has
s1(= s2) and t1(= t2) as its terminals (cf. [10]).

This class of graphs has some very nice properties: Bein et al. [12] established
that the Greedy approach solves the min-cost flow problem in series-parallel
graphs. Combined with the min-cost flow instance introduced by Fabrikant et
al. [9] this yields that the greedy approach of iteratively assigning the users to
a shortest path with respect to the latency induced by the current flow plus an
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additional user on every edge yields a Nash equilibrium on series-parallel graphs.
This result was also obtained by Fotakis et al. [10] who call this algorithm GBR
(greedy best response) and we keep this notation.

3 Worst Pure Nash Equilibrium

In this section the complexity status of determining a worst Nash equilibrium
is investigated. We prove that a Greedy strategy solves the problem on series-
parallel graphs and show strong NP-hardness for the problem on general graphs.

Special Case of Series-Parallel Graphs. In the following we show that the
Greedy Best Response (GBR) algorithm introduced by Fotakis et al. [10] always
leads to a worst Nash equilibrium in series-parallel graphs. The idea of this algo-
rithm is as follows: If one considers a setting where the users arrive consecutively,
a new user routes her path such that her personal latency is minimized given
the flow induced by the users currently in the network. This choice is irrevo-
cable, i.e., no user can change the strategy in the future. More formally, let us
denote by

L+(f) := min
P∈P

∑
e∈P

�e(fe + 1) (5)

the minimum latency for a new (N+1)st user given a flow f sending N users
from s to t. According to GBR the new user chooses her path PN+1 such that
the latency of PN+1 is L+(f). If a flow f ′ is obtained by a given flow f where a
single user is added according to GBR we use f ′ = f ⊕PN+1. For series-parallel
graphs it has been shown in [10] that if f is an arbitrary Nash equilibrium then
f ′ = f⊕PN+1 is again a Nash equilibrium. Note that this property does not hold
in general graphs. As a consequence GBR always leads to a Nash equilibrium if
all users have the same size and the underlying network is series-parallel. In this
paper, we strengthen this result and show that the obtained Nash equilibrium
is always a worst Nash equilibrium. This holds for all latency functions that
are non-decreasing. The next lemma, which is a key point in order to prove our
result, has already been used implicitly in [10]. It states that if we start with
a Nash equilibrium and add one more user according to GBR then the latency
of the new user is not less than the latency of all the previous users in the new
flow.

Lemma 1. Let G = (V,E) be a series-parallel graph and f a Nash equilibrium
for N users. If we choose PN+1 ∈ P according to GBR we obtain a new Nash
equilibrium f ′ = f ⊕ PN+1 such that

�PN+1(f
′) = Cmax(f ′).

The next two lemmata are dealing with the two compositions in the definition of
series-parallel graphs. In fact, we give a characterization of a Nash equilibrium
in S(G1, G2) and P (G1, G2). Before the results are stated the following notation
is introduced. Let Gi be a series-parallel graph and fi : Pi → N0 a flow in Gi for
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i = 1, 2. Then the set of all simple s-t-paths in P (G1, G2) is given by P1 ∪ P2.
We define a new flow f in P (G1, G2) by f := f1 ∪ f2, where f : P1 ∪ P2 → N0
and f |Pi = fi for i = 1, 2.

Lemma 2. Let fi be a flow in a series-parallel graph Gi for i = 1, 2. Then
f = f1 ∪ f2 is a Nash equilibrium in P (G1, G2) if and only if the following
conditions are satisfied:

1. fi is a Nash equilibrium in Gi for i = 1, 2,
2. L+

G1
(f1) ≥ Cmax(f2) and L+

G2
(f2) ≥ Cmax(f1).

We want to establish a similar result for the series composition. Therefore let
Gi be series-parallel and fi : Pi → N0 a flow in Gi for i = 1, 2 for N users. Let
us assume without loss of generality that the users choose the paths P1, . . . , PN

(Q1, . . . , QN) in G1 (G2). For each permutation φ of {Q1, . . . , QN} we can obtain
a new flow f in S(G1, G2) if we define a new path for user i by P̄i = Pi ∪Qφ(i).
The set of all flows that can be obtained this way will be denoted by f1 ⊗ f2.

Lemma 3. Let fi be a flow in Gi for i = 1, 2. Let f ∈ f1 ⊗ f2 then f is a Nash
flow in S(G1, G2) if and only if fi is a Nash equilibrium in Gi for i = 1, 2.

Using these lemmata we are able to prove the following theorem by induction on
the composition steps. The detailed proof is omitted due to space restrictions.

Theorem 1. If G is a series-parallel graph then the Nash equilibrium obtained
by GBR is a worst Nash equilibrium.

Complexity Status on General Graphs. Before proving NP-hardness of the
problem of finding a worst Nash equilibrium, we consider a related problem that
is called Blocking Path problem:

Blocking Path Problem (BlockP for short):
Given: Digraph G = (V,E) with source s ∈ V and sink t ∈ V .
Question: Does there exist an s-t-path P ∈ P such that after deleting the

edges of P there is no path from s to t?

Theorem 2. The Blocking Path Problem is strongly NP-complete even on acyclic
networks.

The proof is a reduction from 3SAT and due to lack of space postponed to
the full version of this paper. The Blocking Path Problem is used to show that
determining a worst Nash equilibrium in general networks is NP-hard even for
two users.

Theorem 3. Determining a Worst Pure Nash equilibrium is strongly NP-hard
even for two users on acyclic networks and with linear latency functions.

Proof. Consider an instance I(BlockP) of the strongly NP-complete Blocking
Path problem. Let G = (V,E) be the acyclic network of instance I(BlockP) with
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s, t ∈ V . An instance of I(W-NE) of determining a worst pure Nash equilibrium
is defined as follows: I(W-NE) is defined on a graph G′ = (V,E′) which contains
the same vertex set as G and E′ = E∪{(s, t)}. Since G′ is acyclic it is possible to
define a bijective function π : V → {1, . . . , n} such that π(i) < π(j) if (i, j) ∈ E.
Given any such bijection π the latency functions are given by

�e(x) = (π(j)− π(i))x, e = (i, j) ∈ E.
Observe that due to this definition of the latency functions of edges in G every
path from s to t is a shortest path with respect to the edge lengths �e(1). Let
L∗ be the length of a shortest path from s to t in G with respect to edge lengths
�e(1) for e ∈ E. Then the latency of (s, t) is defined by �(s,t)(x) = (L∗ + 1

2 )x.
We show that there exists a blocking path P ∗ for I(BlockP) if and only if

the answer to the decision problem corresponding to I(W-NE) is “yes” for K =
L∗ + 1

2 , i.e. there exists a Nash equilibrium f in G′ with cost Cmax(f) ≥ L∗ + 1
2 .

Given a blocking path P ∗ in I(BlockP) we construct a feasible flow f in G′ by
sending one user on P ∗ and the other on edge (s, t) inducing Cmax(f) = L∗ + 1

2 .
Observe that indeed both users are satisfied and this flow constitutes a Nash
equilibrium.

On the other hand, assume that there exists a Nash equilibrium f with
makespan Cmax(f) ≥ L∗ + 1

2 . Analysing the different cases of flow values on
(s, t), the Nash property of f together with the lower bound on Cmax(f) tell us
that in this setting one user is sent over (s, t) and one on a path P ∗ in G′. The
fact, that the user on (s, t) does not want to change to G′ implies that P ∗ is in
fact a blocking path. ��

4 Best Pure Nash Equilibrium

In this section, we show several complexity results concerning the problem of
determining a best Nash equilibrium. All results given in this section hold even
for series-parallel graphs. We show that computing a best Nash equilibrium for
N users is strongly NP-hard if N is part of the input. If the number of users
is fixed then the problem remains weakly NP-hard. At least for series-parallel
graphs this result is best possible because there exists a dynamic programming
algorithm with pseudo-polynomial running time.

Strong NP-Hardness Result. In this subsection, we prove that finding a best
Nash equilibrium on series-parallel graphs is strongly NP-hard if the number of
users is part of the input. We show this by a reduction of the corresponding
decision problem to the numerical 3-dimensional matching problem, which is
known to be strongly NP-complete (see [11]).

Numerical 3-Dimensional Matching (N3M for short):
Given: Disjoint sets X,Y, Z, each containing m elements, a weight w(a)

for all elements a ∈ X ∪ Y ∪ Z and a bound B ∈ Z+.
Question: Does there exist a partition of X ∪ Y ∪ Z into m disjoint sets

A1, . . . , Am such that each Aj contains exactly one element from
each of X , Y and Z and

∑
a∈Ai

w(a) = B for all 1 ≤ i ≤ m.
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Theorem 4. Determining a best Nash equilibrium is strongly NP-hard on series-
parallel graphs if the number of users is part of the input.

Proof. Consider an instance I(N3M) of N3M. Observe that we may assume
without loss of generality that w(a) < 2w(b) and w(b) < 2w(a) for each pair
a, b ∈ X . Otherwise a large number M can be added to all elements in the set
X and to B until the desired condition is satisfied. An analogue property holds
for Y and Z.

Based on this instance we construct the following series-parallel graph G =
(V,E): Let V = (s, u, v, t) and for each element in the set X (Y , Z) we introduce
a directed edge from s to u (u to v, v to t). The latency function of an edge e is
given by �e(x) = w(a)x where w(a) is the weight of the corresponding element
in the instance I(N3M).

Observe that in a best Nash equilibrium every edge is used by exactly one user.
Hence, there is a one-to-one correspondence between the subsets Ai i = 1, . . . ,m
and the paths of the users and therefore there exists a Nash equilibrium with m
users in G with social cost at most B if and only if I(N3M) is a YES-instance. ��

Weak NP-Hardness for Fixed Number of Users. This subsection deals
with the problem of determining a best Nash equilibrium if the number of users
N is fixed. The proof is a reduction from Even-Odd Partition. As it works similar
to that of the previous section it is omitted here.

Theorem 5. Determining a best Nash equilibrium is weakly NP-hard even for
two users and on series-parallel graphs.

A Pseudo-Polynomial Time Algorithm for Series-Parallel Graphs. In
this subsection, we discuss a dynamic programming approach to find a best Nash
equilibrium in series-parallel graphs if the number N of users is not part of the
input. Let f be a Nash equilibrium in a graph G for k users which choose the
paths P1, . . . , Pk. Then we define a multiset

C(f) := {�P1(f), . . . , �Pk
(f)}

which will be called cost profile of f . Note that several Nash equilibria can have
the same cost profile. The idea of the algorithm is to decide if for a given multiset
C = {c1, . . . , ck} with 0 ≤ k ≤ N there exists a corresponding Nash flow f with k
users. This is done using the inductive definition of series-parallel graphs. In order
to decide if a cost profile can be realized by a Nash flow f = f1∪f2 in P (G1, G2)
we need to know L+(fi). More formally, for a given multiset C = {c1, . . . , ck}
and a graph G we define

SG(C) := max{L+(f) | C(f) = {c1, . . . , ck}, f is a Nash flow}.

If such a Nash equilibrium does not exist we set SG(C) := −∞. Hence, all cost
profiles with SG(C) ≥ 0 do have a corresponding Nash flow f . Let us discuss the
algorithm in more detail.
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1. A single edge (s, t)
For the simplest series-parallel graph there is a unique flow for all 0 ≤ k ≤ N
and all users have latency �(s,t)(k). Thus, we obtain immediately

SG(C) =

{
�(s,t)(k + 1) if C = {�(s,t)(k), . . . , �(s,t)(k)}, |C| = k ≤ N,
−∞ otherwise.

2. The series composition
Let C = {c1, . . . , ck} be given. Note that this cost profile can only be obtained
by a Nash flow f ∈ f1 ⊗ f2 with Ci := C(fi) = {ci1, . . . , cik} for i = 1, 2 and
C = {c11+c2φ(1), . . . , c

1
k+c2φ(k)} for some permutation φ. If such a permutation

exists we write C1 ⊗ C2 = C. Moreover, L+(f) = L+(f1) + L+(f2) because
every s− t path in G has to pass the vertex t1 = s2. Thus, we obtain

SG(C) = max
C1⊗C2=C

{SG1(C1) + SG2(C2)}. (6)

3. The parallel composition
Let C = {c1, . . . , ck} be given. A corresponding Nash flow f is of the form
f1 ∪ f2 with C1 := C(f1) = {c11, . . . , c1k1

}, C2 := C(f2) = {c21, . . . , c2k2
},

k1 + k2 = k and C = C1 ∪C2. Moreover the conditions from Lemma 3 have
to be satisfied, i.e., max{c11, . . . , c1k1

} ≤ SG2(C2) and max{c21, . . . , c2k2
} ≤

SG1(C1). The shortest path in G with respect to the flow f is given by
min{L+(f1), L+(f2)}, because the shortest path in P (G1, G2) chooses either
a path with edges in G1 or in G2. Thus,

SG(C) = max
C=C1∪C2

|C1|+|C2|=k
max{c|c∈C1}≤SG2 (C2)
max{c|c∈C2}≤SG1 (C1)

min{SG1(C1), SG2(C2)} (7)

is satisfied.

Note that it is straightforward to get the best Nash flow at the end if the
corresponding flows which determine SG(C) during the algorithm are stored as
well. In order to analyze the running time of this algorithm note that for a
graph G and a fixed number k of users there are at most (|V |L)k

k! = O((|V |L)k)
different multisets, where L := maxe∈E le(N) is the maximum latency on an
edge and a simple path can have at most |V | edges. Due to the fact that this
is needed for all 0 ≤ k ≤ N the number of multisets that have to be stored
is at most N(|V |L)N = O((|V |L)N). It is easy to see that for the series and
parallel composition (6) and (7) can be done in polynomial time with respect to
the number of multisets. Thus, the proposed dynamic programming approach is
pseudo-polynomial which implies that B-NE is indeed not NP-hard in the strong
sense for series-parallel graphs.
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Abstract. In this paper, we investigate the complexity of computing locally opti-
mal solutions for Singleton Congestion Games (SCG) in the framework of PLS,
as defined in Johnson et al. [25]. Here, in an instance weighted agents choose
links from a set of identical links. The cost of an agent is the load (the sum of
the weights of the agents) on the link it chooses. The agents are selfish and try to
minimize their individual cost. Agents may form arbitrary, non-fixed coalitions.
The cost of a coalition is defined to be the maximum cost of its members. The po-
tential function is defined as the lexicographical order of the agents’ cost. In each
selfish step of a coalition, the potential function decreases. Thus, a local mini-
mum is a Nash Equilibrium among coalitions of size at most k—an assignment
where no coalition of size at most k has an incentive to unilaterally decrease its
cost by switching to different links. The neighborhood of a feasible assignment
(every agent chooses a link) are all assignments, where the cost of some arbi-
trary non-fixed coalition of at most k reallocating agents decreases. We call this
problem SCG-(k) and show that SCG-(k) is PLS-complete for k ≥ 8. On the
other hand, for k = 1, it is well known that the solution computed by Graham’s
LPT-algorithm [14,16,22] is locally optimal for SCG-(k).

We show our result by tight reduction from the MAXCONSTRAINTASSIGN-
MENT-problem (p, q, r)-MCA, which is an extension of GENERALIZED SAT-
ISFIABILITY to higher valued variables. Here, p is the maximum number of
variables occurring in a constraint, q is the maximum number of appearances
of a variable, and r is the valuedness of the variables.

To the best of our knowledge, SCG-(k) is the first problem, which is known
to be solvable in polynomial time for a small neighborhood and PLS-complete
for a larger, but still constant neighborhood.

1 Introduction

Routing on Parallel Links. Routing games model large scale networks, like e.g. traffic
networks. These networks often lack a central regulation due to their size or the fact
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that users may be free to act according to their private interest. Such an environment
can be modeled as a non-cooperative game [28]. A famous solution concept for non-
cooperative games is the concept of Nash equilibrium. A Nash equilibrium is a state in
which no player can improve its objective by unilaterally changing its strategy. In a pure
Nash equilibrium, all players choose a pure strategy and in a mixed Nash equilibrium,
all players choose probability distributions over strategies. Routing games belong to
the class of congestion games, introduced by Rosenthal [31]. In a congestion game, the
strategy set of each player is a subset of the power set of given resources. The cost of
a player for some choice of strategy is defined as the sum (over the chosen resources)
of functions in the number of players sharing this resource. Routing games are defined
on general graphs, but special attention is given to the model of routing on parallel
links. In terms of a congestion game, strategies are then single resources and the class
of games is therefore often referred to as singleton congestion games. This model has
been intensively studied [7,15,19], starting with the seminal paper of Koutsoupias and
Papadimitriou [26]. On parallel links, the degradation of social welfare due to the selfish
behavior of the players – usually coined as price of anarchy or coordination ratio – has
been thoroughly investigated, [9,19,26]. In contrast to that, little progress has been made
in the investigation of the complexity of computing (pure) Nash Equilibria. For general
congestion games, Fabrikant et al. [13] and Ackermann et al. [3] show that the problem
of computing a Nash Equilibrium is PLS-complete. Skopalik and Vöcking [34] prove
that even the approximation is PLS-complete. For parallel links, it is well known that
Graham’s LPT-algorithm [14,16,22] computes a pure Nash Equilibrium.

Coalitions and Local Search. A natural and convincing concept to model limited collu-
sion in games is to allow agents to form coalitions. This concept has been investigated in
several areas of computer science. In mechanism design, agents form a coalition, such
that no player decreases its utility and at least one player strictly increases its utility.
Differing from that, we allow players in non-fixed coalitions to sacrifice some of their
own utility for the welfare of the group. Similar to Hayrapetyan et al. [23] and Fotakis
et al. [17], we assume full cooperation among the members of a coalition, who aim to
minimize their collective cost. Thus, sets of agents of constant size can collaborate and
collectively improve. Here, individual deficits may be compensated by e.g. monetary
transfers between the members of a coalition. Similar to Fotakis et al. [17], we define
the cost of a coalition to be the maximum cost of its members and in any improving
step, the maximum cost of a coalition has to decrease. In contrast to this, Hayrapetyan
et al. [23] define the cost of a coalition to be the sum of the costs of its members and in
any improving step, the sum of the costs of the players has to decrease. To investigate
the complexity of computing a pure Nash Equilibrium on parallel links, we formulate
the problem as a local search problem, since pure Nash equilibria are the local optima
for the heuristic of selfish steps.

Local search is a natural approach to approximate solutions of hard combinatorial
optimization problems. Local search algorithms are well-known to lead to very power-
ful heuristics for many hard problems [4,21]. Starting from an arbitrary (feasible) so-
lution, a sequence of (feasible) solutions is iteratively generated, such that each solution
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is contained in the neighborhood of its predecessor solution and strictly improves the
objective function. If no improvement within the neighborhood of a solution is possi-
ble, a local optimum (or locally optimal solution)—in our case a Nash Equilibrium—is
found. In practice, local search algorithms often require only a few iterations to com-
pute a local optimum. However, their running time depends on the objective function,
and thus is pseudo-polynomial in general and exponential in the worst case. In many
papers, local algorithms have been investigated for the MULTIPROCESSOR SCHEDUL-
ING-problem (MPS), [5,6]. In an improving step, either the makespan decreases or the
number of makespan-machines decreases. Lately, the MPS-problem was shown to be
PLS-complete for the k-move neighborhood for a sufficiently large k, [12], where in
the k-move neighborhood up to k jobs may be relocated in an improving step. This
local version of the MULTIPROCESSOR SCHEDULING-problem can be viewed also as a
Singleton Congestion Game, but has a different cost function than the one we study in
this paper. The concept of local search has also been successfully applied to other areas
of computer science. For an overview of the application of local search, confer Aarts
et al. [2].

Polynomial Time Local Search. Johnson, Papadimitriou, and Yannakakis, [25], in-
troduced the class PLS (polynomial-time local search) in 1988 to investigate the com-
plexity of local search, Essentially, a problem inPLS is given by some minimization or
maximization problem over instances with finite sets of feasible solutions together with
a non-negative cost function. A neighborhood structure is superimposed over the set
of feasible solutions, with the property that a local improvement in the neighborhood
can be found in polynomial time. The objective is to find a locally optimal solution.
The notion of a PLS-reduction was also defined in Johnson et al. [25] to establish re-
lationships between PLS-problems and to further classify them. Similar to reductions
from problem A to problem B in NP , one asks for a mapping from instances of A
to instances of B. While in NP , the question is about the existence of a solution with
the desired properties, in PLS the challenge is to actually compute locally optimal so-
lutions. By definition of PLS-reductions, local optima carry over from B to A. Not
many problems are known to be PLS-complete, since reductions are mostly techni-
cally involved. Also, since the goal should be to show that PLS-problems with a small
neighborhood are PLS-complete,NP-reductions are of little help, since the neighbor-
hood is usually unbounded in these reductions. The first problem, which was shown to
be PLS-complete is CIRCUIT/FLIP [25]. In the meantime, only a handful of problems
were shown to be PLS-complete. Our knowledge about PLS is still very limited and
not at all comparable with the rich knowledge which we have about the class NP .

Our Contribution. In this paper, we investigate the complexity of computing locally
optimal solutions for Singleton Congestion Games (SCG). Here, in an instance weighted
agents choose links from a set of identical links. The cost of an agent is the load (the
sum of the weights of the agents) on the link it chooses. The agents are selfish and
try to minimize their individual cost. Agents may form arbitrary, non-fixed coalitions.
We consider coalitions up to size k, for some k ∈ N. The cost of a coalition is defined
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to be the maximum cost of its members. In a selfish step of a coalition, a coalition of
size at most k improves its cost by unilateral deviation. The potential function is de-
fined as the lexicographical order of the agents’ cost. In each selfish step, the potential
function decreases and a local minimum is a Nash Equilibrium among coalitions of size
at most k—an assignment where no coalition of size at most k has an incentive to uni-
laterally decrease its cost by switching to different links. This problem is contained in
PLS, the objective is to find a local minimum with respect to the lexicographic order
of the agents’ costs. The neighborhood of a feasible assignment (every agent chooses
a link) are all assignments where the cost of some arbitrary non-fixed coalition of at
most k reallocating agents decreases. We call this problem SCG-(k) and show that
SCG-(k) is PLS-complete for k ≥ 8. On the other hand, for k = 1, it is well known
that the solution computed by Graham’s LPT-algorithm [16,22] is locally optimal for
both models and also the standard algorithm problem can be solved for both models in
polynomial time [14,24]. We show our result by reduction from the MAXCONSTRAIN-
TASSIGNMENT problem (p, q, r)-MCA, which is an extension of weighted, GENER-
ALIZED SATISFIABILITY (confer problem [L06] in [20] for a formal description) to
higher valued variables. Here, p is the maximum number of variables occuring in a
predicate, q is the maximum number of appearances of a variable, and r is the valued-
ness of the variables. The problem (p, q, r)-MCA is known to be PLS-complete for
triples (3,2,16), (2,3,18), (3,3,3), and (6,3,2), [10,27]. In detail, we use a tight reduction
from (3, 2, r)-MCA and we want to stress that the parameter r does not have a neg-
ative influence on the size of the neighborhood in the proof of PLS-completeness of
SCG-(k). The tightness of our reduction implies that there exist instances of SCG-(8)
with assignments such that every sequence of selfish steps of coalitions starting in such
an assignment has exponential length. Furthermore, this implies that it is PSPACE-
complete for SCG-(8) to compute a Nash equilibrium among coalitions of size at most
k reachable by successive selfish steps of coalitions from a given initial assignment.
To the best of our knowledge, SCG-(k) is the first problem that establishes the PLS-
completeness of computing a Nash Equilibrium for the class of routing games on par-
allel links. Structurally, it is the first type of a problem, which is known to be solvable
in polynomial time for a small neighborhood and PLS-complete for a larger, but still
constant neighborhood. Also, it is one of the first purely numerical problems shown
to be PLS-complete and it contributes to the narrow class of known PLS-complete
problems.

Further Related Work. Survey articles about local search algorithms can be found in
several books [1,2,21].PLS was defined in [25] and the fundamental definitions and re-
sults are presented in [25,32]. Further findings on the complexity of computing a locally
optimal solution are presented in [3,8,13,27]. Results considering the approximation of
PLS-problems can be found in [8,29,34]. The book of Aarts et al. [1] contains a list
of PLS-complete problems known so far. Computing Nash equilibria for coalitions of
agents has been considered in [17]. Local search has been applied to a large number of
scheduling problems (see chapters in [1,2,21]). Besides the complexity of computing a
locally optimal solution, the quality of the obtained solution has also been investigated
[5,6,18,33].
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2 Notation and Contribution

In this section, we describe the notation, classes and problems used in the paper. For
all j, k ∈ N with j ≥ k, denote [j : k] = {j, . . . , k}, [k] = {1, . . . , k}, and [k]0 =
[k] ∪ {0}.

PLS, Reductions and Completeness, [25]. A PLS-problem L = (DL, FL, cL, NL,
INITL, COSTL, IMPROVEL) is defined as follows: The set of instances is given by
DL ⊆ {0, 1}∗, membership in DL can be decided in polynomial time. Every in-
stance I ∈ DL has a finite set of feasible solutions FL(I), where feasible solutions
s ∈ FL(I) have length bounded by a polynomial in the length of I . Every feasi-
ble solution s ∈ FL(I) has a non-negative real cost cL(s, I) and a neighborhood
NL(s, I) ⊆ FL(I). The three polynomial-time algorithms are as follows: Algorithm
INITL(I) computes an initial feasible solution s ∈ FL. Algorithm COSTL(s, I) com-
putes the cost of a solution s ∈ FL(I). Algorithm IMPROVEL(s, I), given an instance
I ∈ DL and a feasible solution s ∈ FL(I), finds a better solution in NL(s, I) or returns
that there is no better one.

We consider maximization and minimization problems. A solution s ∈ FL(I) is
locally optimal, if it holds for every neighboring solution s′ ∈ NL(s, I) that cL(s′, I) ≤
cL(s, I) in case L is a maximization PLS-problem and cL(s′, I) ≥ cL(s, I) in case
L is a minimization PLS-problem. A search problem R is given by a relation over
{0, 1}∗ × {0, 1}∗. An algorithm “solves” R, when given I ∈ {0, 1}∗ it computes an
s ∈ {0, 1}∗, such that (I, s) ∈ R or it correctly outputs that such an s does not exist.
Given a PLS-problem L, let the according search problem be RL := {(I, s) | I ∈
DL, s ∈ FL(I) is a local optimum}. Then, the classPLS is defined asPLS := {RL |
L is a PLS-problem}. A PLS-problem L1 is PLS-reducible to a PLS-problem L2
(written L1 ≤pls L2), if there exist two polynomial-time computable functions Φ :
DL1 �→ DL2 and Ψ defined for {(I, s) | I ∈ DL1, s ∈ FL2(Φ(I))} with Ψ(I, s) ∈
FL1(I), such that for all I ∈ DL1 and for all s ∈ FL2(Φ(I)) it holds that, if (Φ(I), s) ∈
RL2 , then (I, Ψ(I, s)) ∈ RL1 . A PLS-problem L is PLS-complete if every PLS
problem is PLS-reducible to L.

Let L be a PLS-problem and I ∈ DL be an instance of L. The transition graph
TG(I) of the instance I is a directed graph with one vertex for each feasible solution
to I and with an arc s → t, whenever t ∈ NL(s, I) and cL(t, I) is strictly better than
cL(t, I) (i.e., greater if L is a maximization problem, and smaller if L is a minimization
problem). Schäffer and Yannakakis [32] define a PLS-reduction (Φ, Ψ) from PLS-
problem L1 to L2 to be tight if for any instance I ∈ DL1 , there exists a subset R
of feasible solutions for the image instance J = Φ(I) of L2, so that the following
properties are satisfied: (1) R contains all local optima of J . (2) For every feasible
solution s ∈ FL1(I), we can construct in polynomial time a solution t ∈ R of J such
that Ψ(t, I) = s. (3) Suppose that the transition graph of J , TG(J), contains a directed
path q → · · ·→ q′, such that q, q′ ∈ R, but all internal path vertices are outside of R,
and let p = Ψ(q, I) and p′ = Ψ(q′, I) be the corresponding feasible solution of I . Then,
either p = p′ or TG(I) contains an arc from p to p′. The standard algorithm problem
is to compute a locally optimal solution reachable by a sequence of local improvement
steps from a given initial solution.
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Problems (p, q, r)-MCA and SCG-(k). We next describe the PLS-problems that we
consider in this paper. For sake of readability, we write limitations to a problem as a
prefix and the size of the neighborhood as a suffix. For the PLS-problems L studied
in this paper, the algorithms INITL, COSTL, and IMPROVEL are straightforward and
polynomial-time computable. The size of the neighborhood is limited by a constant
that is independent of the size of the input and therefore algorithm IMPROVEL(s, I)
can search the neighborhood of NL(s, I) in polynomial time.

Problem 1. We first present the base of our reduction – MAXCONSTRAINTASSIGN-
MENT – which is an extension of GENERALIZED SATISFIABILITY (confer problem
[L06] in [20] for a formal description) to higher valued variables. We allow variables to
take values from a set [r] with r ∈ N and we replace the sequence of weighted clauses
by a sequence of functions (constraints), where each function returns the weight of
the constraint for the given assignment. We consider the subclass of instances by lim-
iting the maximum length of any constraint (where the length of a constraint is the
number of variables it depends on), the number of appearances of any variable in all
constraints and the values any variable can take. The problem is then to compute an
assignment maximizing the sum of the weights. A feasible solution a is locally optimal
for an instance I in the change neighborhood (one variable changes its assignment), if
(I, a) ∈ R(p,q,r)-MCA.

Definition 1 ((p,q,r)-MCA). An instance I ∈ D(p,q,r)-MCA of problem (p,q,r)-MAX-
CONSTRAINTASSIGNMENT is a set C = {C1, . . . , Cm} of constraints, where each
constraint has length at most p, over a set of variables X := {x1, . . . , xn}, where
each variable appears in at most q constraints, and variables can take values from [r].
For every constraint Ci(xi1 , . . . , xipi

) ∈ C, there is a function wCi : [r]pi �→ R≥0.
The set of feasible solutions F(p,q,r)-MCA(I) to instance I consists of all assignments
a : X �→ [r] of values to variables. Given an assignment a ∈ F(p,q,r)-MCA(I), the cost is
c(p,q,r)-MCA(a, I) :=

∑
Ci(xi1 ,...,xipi

)∈C wCi(a(xi1 ), . . . , a(xipi
)). The neighborhood

of assignment a consists of all assignments, where the value of one variable is changed.

Problem 2. The main problem we study in this paper is the SINGLETONCONGES-
TIONGAME-problem (SCG-problem). Here, in an instance weighted agents choose
links from a set of identical links. The cost of an agent is the load (the sum of the weights
of the agents) on the link it chooses. The agents are selfish and try to minimize their
individual cost. Agents may form arbitrary, non-fixed coalitions. We consider coalitions
up to size k, for some k ∈ N. The cost of a coalition is defined to be the maximum cost
of its members. In a selfish step of a coalition, a coalition of size at most k improves its
cost by unilateral deviation. The potential function is defined as the lexicographical or-
der of the agents’ cost. In each selfish step, the potential function decreases and a local
minimum is a Nash Equilibrium among coalitions of size at most k. The neighborhood
of a feasible assignment (every agent chooses a link) are all assignments, where the cost
of some arbitrary non-fixed coalition of at most k reallocating agents decreases. Note
that any solution in the neighborhood of a solution a has a better cost than a. Denote
by swap the special neighborhood operation, where coalitions of two or more agents
mutual exchange their choice of links.
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Definition 2 (SCG-(k)). An instance I ∈ DSCG-(k) to problem SINGLETONCONGES-
TIONGAME is a set of selfish agents A = {a1, . . . , an}, a function w : A �→ N and a
number m ∈ N of identical links. The set of feasible solutions FSCG-(k)(I) consists of
all assignments of all agents to links. Let a : A �→ [m] be a function that assigns agents
to links. The cost of an agent is the load on the link to which it is assigned. Here, the
load on some link j ∈ [m] is the sum of the weights of the agents assigned to j in a. The
cost of a coalition is the maximum cost of one of its members. The cost cSCG-(k)(a, I) of
a solution a ∈ FSCG-(k)(I) is the n-vector of the costs of all agents. The order is given
by the lexicographical order on vectors. The neighborhood NSCG-(k)(a, I) of solution
a ∈ FSCG-(k)(I) consists of all assignments, where coalitions of up to k agents can
relocate, such that the cost of the coalition decreases.

2.1 Our Contribution

We prove the following theorem where we omitt some parts of the proof due to lack of
space. They can be found in the full version, [11].

Theorem 1. (3, 2, r)-MCA ≤pls SCG-(8) via a tight reduction for all r ∈ N.

3 The General Method

In this section, we present the general method that our reduction relies on. We build
on the PLS-completeness of (3, 2, r)-MCA, [10], and we may assume that every con-
straint has length three and every r-valued variable appears in two constraints. Our
reduction is constructed such that the parameter r does not have a negative influence on
the size of the neighborhood. We model the set of variables X and the set of constraints
C with agents and links.

The Links. We introduce r − 1 links for every variable, one link for every constraint
and one repository-link. All links have identical speed.

The Agents and Their Weights. Using the weights of the agents, we create a frame-
work where the given MCA-instance is simulated in. Here, the actual weights of the
constraints from the MCA-instance play a secondary role compared to the weights of
the agents in the SCG-instance that ensure the framework. Of course, there is some sim-
ilarity between our construction and knownNP-reductions; confer the proof of strong
NP-completeness of BINPACKING (see pp.204 in [30]). We introduce three types of
agents: The variable-agents simulate the double appearance of every variable and its
r values in the set of constraints C. The frame-agents simulate the assignment of val-
ues to variables in every constraint Ci ∈ C. The base-agents, which are sub-divided
into variable-base-agents, constraint-base-agents and one repository-base-agents, cre-
ate some large base load. The weight of a variable-base-agent for some variable x ∈ X
is tailored such that the two variable-agents for variable x ∈ X and some arbitrary val-
uedness fit on a link and create a load, which is equal to the average load on every link.
The weight of the constraint-base-agent is tailored to fit one frame-agent and the three
variable-agents for the respective assignment and their load is the average load on every
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link plus the cost of the assignment for the constraint. Furthermore, the weight of the
repository-base-agent is tailored to fit on a link with all remaining frame-agents, which
are not on a link with one constraint-base-agent or a variable-base-agent.

The Core Ideas. In the design of our reduction, we bear the size of the neighborhood
in mind at all times. A key is to use a direct reduction from the MCA-problem, where
every variable appears exactly twice. On the upside, this double appearance of vari-
ables significantly lowers the size of the neighborhood required to simulate the MCA-
problem and is conceptionally crucial in the design of the variable-agents. We want
to stress that for triple appearances, our construction would not work. On the down-
side, it leaves us with a higher valuedness and here, a core idea is to mask the actual
valuedness of variable-agents with matching numbers. Furthermore, we only require
three types of agents. The variable-agents and the frame-agents naturally arise from the
MCA-problem and the only newly introduced base-agents serve as a classification of
the identical links. With these three types of agents, we are able to ensure the intended
framework in every locally optimal solution with the exchange of at most 6 agents. We
prove this technical main result in Lemma 5. Furthermore, the simulation of the local
search in the MCA-instance is possible by exchanging at most 8 agents.

4 SCG-(8) Is PLS-Complete

In this section, we prove Theorem 1. We present the reduction function Φ and the
solution mapping Ψ . Given an instance I ∈ D(3,2,r)-MCA, we construct an instance
Φ(I) = (A, w, m) ∈ DSCG-(k) consisting of a set of agents A, a weight function
w : A �→ N that maps weights to agents and a number m ∈ N of identical links.
We assume that in instance I ∈ D(3,2,r)-MCA, every constraint Ci ∈ C has length 3,
where clauses are given in natural order, every variable x ∈ X appears in 2 constraints
and takes values from [r]. Furthermore, we may assume that the sum of the weights of
two constraints is larger than the maximum weight of a single constraint (otherwise,
we can add the weight of the largest constraint to all other constraints and this does not
modify the set of local optima). Let |C| = m and |X| = n. We create an instance of
SCG-(8) with N = (r − 1) · n + m + 1 identical links, r − 1 links for every variable,
one link for every constraint, and one repository-link, and the following agents:

– For every 1 ≤ i ≤ n, 1 ≤ k ≤ r, we introduce two variable-agents vik1 and vik2
with w(vik1) = M2i + k ·M2i−1 and w(vik2) = M2i + (2r + 1− k) ·M2i−1.

– For every constraint Cj(xi1, xi2, xi3), with Cj ∈ C, 1 ≤ j ≤ m; k1, k2, k3 ∈
[r], i1 < i2 < i3, we introduce frame-agents α(j, k1, k2, k3) with

w(α(j, k1, k2, k3)) = M2n+2 − j ·M2n+1 −M2i1 − k̃1 ·M2i1−1 −M2i2

− k̃2 ·M2i2−1 −M2i3 − k̃3 ·M2i3−1 + wCj (k1, k2, k3),

where

k̃t =
{

kt, if variable xit occurs in constraint Cj for the first time
(2r + 1− kt), otherwise.
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– We also introduce the following base-agents: For all i ∈ [n], k ∈ [r − 1], we
introduce variable-base-agents bik with w(bik) = B + A − 2 · M2i − (2r +
1)M2i−1. For all j ∈ [m], we introduce constraint-base-agents b̂j with w(b̂j) =
B + A−M2n+2 + j ·M2n+1. We also introduce a repository-base-agent b0, with
w(b0) = B.

Here, the constants A, B, M, W, M̂ are defined as follows:

W =
m∑

j=1

r∑
k1=1

r∑
k2=1

r∑
k3=1

wj(k1, k2, k3)

M̂ = m · r3 ·M2n+2 + W

B = 2 · M̂
A = A1 −A2

A2 = m ·M2n+2 − m · (m + 1)
2

M2n+1 − 2
n∑

i=1

M2i − (2r + 1)
n∑

i=1

M2i−1

A1 =
m∑

j=1

r∑
k1=1

r∑
k2=1

r∑
k3=1

w(α(j, k1 , k2, k3)) = W + r3 ·A2

M is chosen large enough to ensure correctness of Lemmas 1-5. We first need to make
the following definitions, before we are able to present the solution mapping:

Definition 3. We call an assignment admissible, if the base-agents are assigned to dif-
ferent links. For an admissible assignment, we use the following notation: A link to
which bik is assigned for i ∈ [n], k ∈ [r − 1], is called an i-variable-link. The link
to which b̂j is assigned for j ∈ [m] is called j-constraint-link. The link to which b0 is
assigned is called repository-link.

Definition 4. Let i ∈ [n]. An admissible assignment a of agents to links is i-regular iff
there exists a mapping π : [i : n] �→ [r] such that the following conditions are fulfilled:

1. For each t ∈ [i : n] and for each k ∈ [r] \ {π(t)} the two agents vtk1, vtk2 have
chosen the same t-variable-link.

2. For t ∈ [m] let Cj1 , Cj2 ∈ C with j1 < j2, be the two constraints containing xt

in their variable list. Then, for each t ∈ [i : n], agent vtπ(t)1 is assigned to the
j1-constraint-link and vtπ(t)2 is assigned to the j2-constraint-link.

3. For all j ∈ [m] one frame-agent α(j, k1, k2, k3) is assigned to the j-constraint-
link. Furthermore, for each j ∈ [m] and for each t ∈ [i : n] if xt is contained in
the variable list of Cj ∈ C in position µ with µ ∈ [3], then kµ = π(t).

Note that the number A2 defined above is the sum of the weights of all constraint-agents
assigned to the constraint-links in a 1-regular assignment.

Solution mapping. For a feasible and 1-regular solution a ∈ FΦ(I), function Ψ(I, a)
returns the mapping π. Otherwise, function Ψ(I, a) returns some assignment of values
to variables, which is not locally optimal for I ∈ D(3,2,r)-MCA.
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Correctness of the Construction. In the following, we prove properties of locally op-
timal solutions a for Φ(I) in different move-neighborhoods up to size 6. We prove that
in every locally optimal solution the intended framework is obeyed. In detail, we show
that every locally optimal assignment a is admissible (Lemma 1), exactly one frame-
agent is assigned to every constraint-link (Lemma 2) and eventually that a is 1-regular
(Lemmas 4 and 5).

Lemma 1. In every locally-optimal assignment a for Φ(I) in the 1-move-neighborhood,
the base-agents are assigned to different links.

Lemma 2. In every locally-optimal assignment a for Φ(I) in the 2-move-neighborhood,
exactly one frame-agent is assigned to each j-constraint-link for every j ∈ [m]. All other
frame-agents are assigned to the repository-link.

Lemma 3. For every locally-optimal assignment a for Φ(I) in the 2-move-neighbor-
hood, the load on every link λ ∈ [N ] can be written as

A + B +
2n+1∑
t=1

γt(λ)M t + γ0(λ),

with γ0(λ) ≤W and γt(λ) ≤
√

M for all t ∈ [2n + 1].

We next prove a property of i-regular assignments, which we need in the proof of
Lemma 5.

Lemma 4. For all i ∈ [n + 1], every locally-optimal assignment a for Φ(I) in the
2-move-neighborhood is an i-regular assignment if γt(λ) = 0 for all t ∈ [2i − 1 :
2n + 1], λ ∈ [N ] .

Lemma 5. Every locally optimal solution a for Φ(I) in the 6-move-neighborhood is a
1-regular assignment.

Proof. We will show for all t ∈ [2n + 2] by downward induction on t that γt(λ) = 0
holds for all λ ∈ [N ]. From this, the claim follows because of Lemma 4. We introduce
a new notation: For some agent a, denote by wl(a) the factor k that M l is multiplied
with in the weight w(a) of agent a.

Basis for t = 2n + 2. Follows from Lemma 1 and Lemma 2.

Induction Step. Next consider t = 2n + 1. Because of Lemma 2, no frame-agent is
assigned to a variable-link and therefore γ2n+1(λ) = 0 holds for all variable-links λ.
We assume now that γ2n+1(λ) �= 0 holds for some link λ. We distinguish three cases
defined by the load on the repository-link λ0 and show that in each case the assignment
is not locally optimal in the 6-move-neighborhood.

(a) If γ2n+1(λ0) > 0 holds, then there exists some constraint-link λ1 with γ2n+1(λ1)
< 0. Let λ1 be a j-constraint-link and let j be the largest number with this prop-
erty. Consider some frame-agent α = α(j, ·, ·, ·). α has chosen some link λ which
is either a constraint-link or the repository-link λ0. If λ is a constraint-link then
γ2n+1(λ) > 0 due to the choice of j. In both cases, the coalition formed by α and
the frame-agent that has chosen link λ1 improves by a swap.
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(b) For the case γ2n+1(λ0) < 0 a contradiction is shown in the same way. In this case,
some j-constraint-link λ1 exists with γ2n+1(λ1) > 0. j is chosen to be the smallest
number with this property. Let α be some frame-agent α = α(j, ·, ·, ·). Then, the
coalition formed by α and the frame-agent that has chosen link λ1 improves by a
swap.

(c) In the third case γ2n+1(λ0) = 0 holds and there exist some j-constraint-links λµ,
where µ ∈ {1, 2}, with γ2n+1(λ1) > 0 and γ2n+1(λ2) < 0. Let j1 be the smallest
number with γ2n+1(λ1) > 0 and let j2 be the largest number with γ2n+1(λ2) < 0.
Consider some arbitrary frame-agents α1 = α(j1, ·, ·, ·) and α2 = α(j2, ·, ·, ·). If
α1 has chosen some constraint-link λ, then γ2n+1(λ) < 0 holds due to the defini-
tion of j1. The coalition formed by α1 and the frame-agent that has chosen λ1 can
improve by a swap. If α2 has chosen some constraint-link λ, then γ2n+1(λ) > 0
holds due to the definition of j2. The coalition formed by α2 and the frame-agent
that has chosen λ2 can improve by a swap. So, there remains to consider the case
that α1 and α2 both have chosen the repository-link λ0. In this case, the coalition
formed by α1, α2, frame-agent α̂1 that has chosen λ1, and frame-agent α̂2 that has
chosen λ2 can improve by a simultaneous swap between α1 and α̂1 and between
α2 and α̂2.

Now, assume that the claim holds for t + 1 ≤ 2n + 1 and we have to show that it holds
also for t. By induction hypothesis γr(λ) = 0 holds for all r ∈ [t + 1, 2n + 1] and for
all links λ. We distinguish two cases:

1. t is an even number, i.e. t = 2i for some i. Because of Lemma 4, a is an (i + 1)-
regular assignment. In order to prove the claim, we have to look mainly at the
placements of the agents vik1, vik2, k ∈ [r]. Let Ii be the set of these agents. Fur-
thermore, let Ωi be the set containing all i-variable-links, k ∈ [r − 1], and those
j-constraint-links such that xi occurs in Cj ∈ C. Then, in an i-regular assignment,
all agents from Ii are assigned to links from Ωi. Up to now, we only know that a
is an (i + 1)-regular assignment. This implies that γ2i(λ) ≥ 0 holds for all links
λ /∈ Ωi and if γ2i(λ) > 0 holds for some link λ /∈ Ωi then the following two
properties hold:

– There exists a link λ′ ∈ Ωi with γ2i(λ′) < 0.
– An agent β ∈ Ii is assigned to λ and even after removing β from λ, still

γ2i(λ) ≥ 0 holds.
Therefore, β can improve by moving from λ to λ′. Thus, we have shown that
γ2i(λ) = 0 holds for all links λ /∈ Ωi. Now, consider λ ∈ Ωi. If γ2i(λ) > 0
holds for some λ ∈ Ωi then there exists also λ′ ∈ Ωi with γ2i(λ′) < 0 and an
agent β ∈ Ii is assigned to λ. The agent β can improve by moving from λ to λ′.

2. t is an odd number, i.e. t = 2i − 1 for some i. Let Ii, Ωi be defined as in (1). Let
Cj1 , Cj2 ∈ C, with j1 < j2, be the two constraints containing variable i. By induc-
tion hypothesis a is an (i+1)-regular assignment. To each variable-link in Ωi there
are assigned two variable-agents from Ii and the remaining two variable-agents
from Ii are assigned to the two constraint-links (one to each) in Ωi. This implies
that γ2i−1(λ) = 0 holds for λ /∈ Ωi ∪ {λ0} and that no variable agent from Ii is
assigned to the repository-link λ0. Thus, we know that

∑
λ∈Ωi∪{λ0} γ2i−1(λ) = 0

holds and we have to show that γ2i−1(λ) = 0 holds for all λ ∈ Ωi ∪ {λ0}. We
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introduce a new notion. Let p ∈ [r]0. We call an assignment (i, p)-regular iff the
following conditions are fulfilled:
(i) γt(λ) = 0 for all t ∈ [2i : 2n + 1] and all λ ∈ N

(ii) γ2i−1(λ) = 0 for λ ∈ Ωi ∪ {λ0}
(iii) For every l ∈ [p] the two agents vil1, vil2 are assigned to some subset Ωi(p) ⊂

Ωi of links with γ2i−1(λ) = 0 for all λ ∈ Ωi(p).
Note that property (i, p)-regular implies that for all 1 ≤ l ≤ p the two agents
vil1, vil2 are assigned to the same variable-link from Ωi (and no other agent from
Ii is assigned to this link) or they are assigned to the j1-constraint-link and the
j2-constraint-link (and no other agent from Ii is assigned to these constraint-links)
and some frame-agents α1 = α(j1, ·, ·, ·), α2 = α(j2, ·, ·, ·) with w2i−1(α1) = −l,
w2i−1(α2) = −(2r + 1 − l) have chosen these constraint-links. We have to show
that a is (i, p)-regular for p = r and we will do it by induction on p. For p = 0, the
claim follows from the induction hypothesis as seen above. Now, assume that a is
(p − 1)-regular. We will show that a is also p-regular. Let vipq be assigned to link
λq ∈ Ωi for q ∈ [2]. Then λ1, λ2 /∈ Ωi(p− 1). If λ1 = λ2, then the claim is proved
also for l = p. Now, let λ1 �= λ2. We distinguish 4 cases:
(a) λ1 and λ2 are both variable-links. Let v̂q, q ∈ [2] be the other i-variable-

agent assigned to λq . Then, w(vip1) < w(v̂q) < w(vip2) for q ∈ [2]. So,
γ2i−1(λ2) > 0 holds and the coalition formed by vip1 and v̂2 would improve
by a swap, a contradiction.

(b) λ1 and λ2 are both constraint-links. Then, γ2i−1(λ1)+γ2i−1(λ2)+γ2i−1(λ0)=
0 holds, since exactly all constraint-agents for constraints Cj1 , Cj2 , and the two
variable-agents for variable i with value p have chosen the links λ0, λ1, λ2. If
γ2i−1(λ1) = γ2i−1(λ2) = γ2i−1(λ0) = 0 holds, then the claim is proved also
for l = p. Otherwise, two cases have to be considered. If λ1 is a j2-constraint-
link and λ2 is a j1-constraint-link, then γ2i−1(λ2) > 0, γ2i−1(λ1) < 0 and
the coalition formed by vip1 and vip2 can improve by a swap. If, on the other
hand, λµ is jµ-constraint-link for µ ∈ {1, 2}, then the coalition formed by the
two frame-agents assigned to λ1 and λ2 and two suitably chosen frame-agents
assigned to λ0 could improve by a simultaneous swap.

(c) λ1 is a constraint-link and λ2 is a variable-link. Let v̂2 be the other i-variable-
agent assigned to λ2 and let v̂1 be the i-variable-agent assigned to the other
constraint-link λ3 from Ωi. Then w(vip1) < w(v̂q) < w(vip2) holds for q ∈ [2]
and γ2i−1(λ2) > 0. Let α1 = α(ĵ1, ·, ·, ·) be the frame-agent that has chosen
λ1 and let α2 = α(ĵ2, ·, ·, ·) be the frame-agent that has chosen λ3. Note that
{ĵ1, ĵ2} = {j1, j2}. If γ2i−1(λ1) < 0, then the coalition formed by vip1 and
v̂2 can improve by a swap. It is w2i−1(α(j2, ·, ·, ·)) ≤ −(r + 1) and there-
fore, ĵ1 = j2 implies γ2i−1(λ1) < 0. So, we assume now γ2i−1(λ1) ≥ 0,
ĵ1 = j1, and ĵ2 = j2. If γ2i−1(λ0) ≥ 0, then w2i−1(α1) + w2i−1(α2) ≤
−(2r+1) and together with w(vip1)+w(v̂1) < 2r+1, this implies γ2i−1(λ1)+
γ2i−1(λ3) < 0 and therefore γ2i−1(λ3) < 0. If γ2i−1(λ0) > 0, then the coali-
tion formed by α2 and some frame-agent β = α(j2, ·, ·, ·), which has chosen
λ0, with w2i−1(β) = w2i−1(α2) + 1 improves by a swap. If γ2i−1(λ0) = 0,
then the coalition formed by α1, α2, v̂1, vip2, and the two frame-agents α̂1 =
α(j1, ·, ·, ·) and α̂2 = α(j2, ·, ·, ·) with w2i−1(α̂1) = −p and w2i−1(α̂2) =
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−(2r + 1 − p) improves by a simultaneous swap between agents α1 and α̂1,
between agents α2 and α̂2, and between agents vip2 and v̂i. The last case to
consider is that γ2i−1(λ0) < 0. If γ2i−1(λ1) > 0, then the coalition formed by
α1 and some frame-agent α = α(j1, ·, ·, ·) with w2i−1(α) = w2i−1(α1)−1 im-
proves by a swap. If γ2i−1(λ1) = 0, then the coalition formed by vip2, v̂1, α2,
and some frame-agent α = α(j2, ·, ·, ·) with w2i−1(α) = −(2r + 1 − p) im-
proves by a simultaneous swap between agents α2 and α, and between agents
vip2 and v̂1.

(d) λ1 is a variable-link and λ2 is a constraint-link. Let v̂1 be the other i-variable-
agent assigned to λ1 and let v̂3 be the i-variable-agent assigned to the other
constraint-link λ3 from Ωi. Then γ2i−1(vip1)<γ2i−1(w(v̂q))<γ2i−1(w(vip2)
holds for q ∈ {1, 3} and γ2i−1(λ1) < 0 holds. Furthermore, let αq, q ∈ {2, 3},
be the frame-agent assigned to λq . If γ2i−1(λ2) > 0, then the coalition formed
by v̂1 and vip2 could improve by a swap. Especially, it is γ2i−1(λ2) > 0,
if λ2 is the j1-constraint-link. So, we can assume now that γ2i−1(λ2) ≤ 0,
where λ2 is the j1-constraint-link and λ1 is the j2-constraint-link. This implies
γ2i−1(λ2) + 2r + 1− p ≤ 0. We distinguish now two cases:

If w2i−1(α2) + w2i−1(α3) < −(2r + 1), then γ2i−1(λ0) > 0 and the
coalition formed by v̂1, v1(i, p, 2), α2 and some frame-agent α̂2 assigned to λ0
with w2i−1(α̂2) = w2i−1(α2) + 1 improves by a simultaneous swap between
v̂1 and vip2 and between α2 and α̂2.

If, on the other hand, w2i−1(α2)+w2i−1(α3) ≥ −(2r+1) then γ2i−1(λ0) ≤
0. γ2i−1(λ2) ≤ 0 implies w2i−1(α3) ≥ −(2r+1)−w2i−1(α2) ≥ −p. This im-
plies that γ2i−1(λ3) = w2i−1(α3)+w2i−1(v̂3) > w2i−1(α3)+w2i−1(vip1) ≥
0. It is γ2i−1(λ3) = w2i−1(α3) + w2i−1(v̂) > 0 and therefore there exists a
frame-agent α̂3 assigned to λ0 with w2i−1(α̂3) = w2i−1(α3) − 1. Further-
more, γ2i−1(λ2) = w2i−1(α2) + w2i−1(vip2) = w2i−1(α2) + 2r + 1− p ≤ 0
and therefore, there exists a frame-agent α̂2 assigned to λ0 with w2i−1(α̂2) =
w2i−1(α2) + 1 Then, the coalition formed by v̂1, vip2, α2, α3 and α̂2, α̂3 im-
proves by a simultaneous swap between v̂1 and vip2, between α2 and α̂2, and
between α3 and α̂3. ��

Theorem 1. (3, 2, r)-MCA ≤pls SCG-(8) via a tight reduction for all r ∈ N.

Proof. Assume that a feasible solution a ∈ FSCG-(8) is locally optimal for Φ(I), but
Ψ(I, a) is not locally optimal for I ∈ D(3,2,r)-MCA. This implies that there exists a
variable x ∈ X, which can be set from value k ∈ [r] to a value l ∈ [r] in some
constraints Cj1 , Cj2 ∈ C, with j1 < j2, such that c(3,2,r)-MCA strictly increases by
some ∆ > 0. By Lemma 5, a is a 1-regular assignment and all frame-agents that do not
chose a constraint-link are on the repository-link, which also has the largest load. Then,
there exists a coalition of 8 agents that can improve their coalitional cost. Frame-agents
α(j1, xik1, ·, ·) and α(j1, xil1, ·, ·) and frame-agents α(j2, xik2, ·, ·) and α(j2, xil2, ·, ·)
swap links and variable-agents vik1 and vil2 and variable-agents vik2 and vil2 swaps
links. Thereby, the makespan decreases by ∆ on the repository-link. Thus, a is not
locally optimal, a contradiction.
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We define R to be the set FSCG-(8). It is obvious to see that our reduction is tight,
since the assignment of new values to two variables would require at least 12 agents to
swap. ��
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Balancing. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 583–594. Springer, Heidelberg (2007)



108 D. Dumrauf and B. Monien

16. Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The Struc-
ture and Complexity of Nash Equilibria for a Selfish Routing Game. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002.
LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)

17. Fotakis, D., Kontogiannis, S., Spirakis, P.: Atomic Congestion Games Among Coalitions. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
572–583. Springer, Heidelberg (2006)

18. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash Equilibria for
Scheduling on Restricted Parallel Links. In: Proceedings of the 36th Annual ACM Sympo-
sium on Theory of Computing (STOC 2004), pp. 613–622 (2004)

19. Gairing, M., Monien, B., Tiemann, K.: Selfish Routing With Incomplete Information. Theory
of Computing Systems 42(1), 91–130 (2007)

20. Garey, M., Johnson, D.: Computers and Intractability; A Guide to the Theory of NP-
Completeness. Mathematical Sciences Series. W. H. Freeman & Co., New York (1990)

21. Gonzalez, T.: Handbook of Approximation Algorithms and Metaheuristics. Chapman &
Hall/CRC Computer & Information Science Series. Chapman & Hall/CRC, Boca Raton
(2007)

22. Graham, R.L.: Bounds on Multiprocessing Timing Anomalies. SIAM Journal on Applied
Mathematics 17(2), 416–429 (1969)
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Abstract. We consider resource allocation games with heterogeneous
users and identical resources. Most of the previous work considered cost
structures with either negative or positive congestion effects. We study
a cost structure that encompasses both the resource’s load and the job’s
share in the resource’s activation cost.

We consider the proportional sharing rule, where the resource’s acti-
vation cost is shared among its users proportionally to their lengths. We
also challenge the assumption regarding the existence of a fixed set of
resources, and consider settings with an unlimited supply of resources.

We provide results with respect to equilibrium existence, computation,
convergence and quality. We show that if the resource’s activation cost is
shared equally among its users, a pure Nash equilibrium (NE) might not
exist. In contrast, under the proportional sharing rule, a pure NE always
exists, and can be computed in polynomial time. Yet, starting at an
arbitrary profile of actions, best-response dynamics might not converge
to a NE. Finally, we prove that the price of anarchy is unbounded and
the price of stability is between 18/17 and 5/4.

1 Introduction

In resource allocation applications, tasks are assigned to resources to be per-
formed. For example, in job scheduling models, jobs are assigned to servers to
be processed, and in network routing models, traffic is assigned to network links
to be routed. In the last decade, algorithmic game theory has introduced game
theoretic considerations to many of these problems [17,13,21,3,2]. At the heart
of the game theoretic view is the assumption that the players have strategic
considerations and act to minimize their own cost, rather than optimizing the
global objective. In resource allocation settings, this would mean that the jobs
choose a resource instead of being assigned to one by a central designer.

The literature is divided into two main approaches with respect to the cost
function. The first class of models emphasizes the negative congestion effect, and
assumes that the cost of a resource is some non-decreasing function of its load.
Job scheduling [11,23] and selfish routing [10,21] belong to this class of models.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 109–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



110 M. Feldman and T. Tamir

The second class assumes that each resource has some activation cost, which
should be covered by its users, thus a user wishes to share its resource with
additional users in attempt to decrease its share in the activation cost. Roughly
speaking, the cost of using a resource in this class is some decreasing function
of its load. Positive congestion effects have been considered in network design
games [8,5,2].

We claim that in practice both the positive and the negative congestion effect
take place. On the one hand, a heavy-loaded resource might be less preferred
due to negative congestion effects; on the other hand, resources do have some
activation cost, and sharing this cost with other users releases the burden on
a single user. Our goal is to combine these two components into a unified cost
function. Consequently, the cost function in our model is composed of (i) the
load on its resource, and (ii) its share in the activation cost of its chosen resource.

An additional assumption we wish to challenge is the existence of an a pri-
ori given set of resources. In many practical settings a set of users controlling
some jobs have the opportunity to utilize a new resource at their own cost. For
example, a user might be able to purchase a dedicated server for his job if he is
willing to cover its cost. Consequently, we consider settings in which the number
of resources is unlimited a priori. (Obviously, the number of resources will never
exceed the number of users.)

In our model, each resource is associated with some fixed activation cost, which
should be jointly incurred by the set of jobs using it. A crucial question in this
setting is how to divide the resource cost among its users. Sharing of joint costs
among heterogeneous players is a common problem, and a large number of shar-
ing rules have been proposed for this problem, each associated with different effi-
ciency and fairness properties [15,16,12]. Here, our focus is not on the mechanism
design point of view. Rather, we analyze two specific sharing rules with respect to
equilibrium existence, computation, convergence and quality. The first rule is the
uniform sharing rule, under which the resource’s cost is shared evenly among its
users. The second rule is the proportional sharing rule, under which the resource’s
cost is shared among its users in proportion to their sizes. Note that under both
sharing rules, for a sufficiently small activation cost, the unique NE will be one
in which each job is processed by a different resource. In the other extreme, for
a sufficiently large activation cost (in a sense that will be formalized below), the
unique NE will be one in which all the jobs will be assigned to a single resource.

1.1 Our Results

Equilibrium existence: Our game in its general form does not comply with
the family of potential games (or congestion games), which always admit a NE
in pure strategies [19,14]. Thus we need to pursue new techniques for proving
equilibrium existence. In particular, as we show, the cost sharing method strongly
affects the equilibrium existence. Specifically, in the uniform sharing model a
pure NE might not exist, while in the proportional sharing model a pure NE
always exists. This motivates the use of this sharing model in our study of the
remaining aspects.
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Computational complexity: Under a job scheduling model with a fixed num-
ber of machines and where a user’s cost is the load of its chosen machine, the
longest processing time (LPT) algorithm always results in a NE [10]. Here, we
devise an algorithm that computes a NE for our setting in polynomial time. The
main challenge of the algorithm is to determine the number of active machines.

Convergence to equilibrium: Even if a NE exists, it is not necessarily the case
that natural dynamics (like best-response dynamics (BRD), where each job, in
turn, performs a best-response to the current profile) always lead to a NE. Yet,
in potential games [14], BRD is guaranteed to converge to a NE. BRD is known
to converge to a NE both in resource allocation games that ignore the negative
congestion effects and in those ignoring the activation costs [6]. However, as we
show, this is not the case in our unified model, that is, BRD might not converge
to a NE. Yet, if all the jobs are of equal size, the game is a congestion game (as
in [2]), and convergence of BRD is guaranteed.

Equilibrium quality: A NE may not be socially optimal. In order to quantify
the inefficiency we define an objective function, and compare its value under the
optimal solution and its value under some NE.

We quantify the inefficiency according to well-established measurements,
namely the price of anarchy (PoA) [13,18] and the price of stability (PoS) [2].
The PoA is defined as the ratio between the cost of the worst NE and the cost
of the optimal solution, while the PoS is defined as the ratio between the cost
of the best NE and the cost of the optimal solution. These metrics have been
studied in a variety of applications, such as selfish routing [20], job scheduling
[13,4], network formation [7,1,2], facility location [22] and more. The objective
function we consider is the egalitarian one, i.e., we wish to minimize the cost of
the job that incurs the highest cost. We show that the PoA is not bounded. For
the PoS we give an upper bound of 5/4 and a lower bound of 18/17.

All missing proofs are given in the full version of this paper [9].

2 Model and Preliminaries

An instance of our game, G = 〈I, B〉, consists of a set of n jobs, each as-
sociated with length pj (processing time, bandwidth requirement, etc.). Let
I = {p1, . . . , pn} denote the job lengths. Also given is a set of identical resources
M = {M1,M2, . . .} (machines, links, etc.), each associated with an activation
cost B. If the set of machines is limited, we denote m = |M |. While our model
is general, we use terminology of job scheduling for simplicity of presentation.

The action space Sj of player j is defined as all the individual resources, i.e.,
Sj = M . The joint action space is S = ×n

j=1Sj . In a joint action s ∈ S, player j
selects machine sj as its action. We denote by Rs

i the set of players on machine
Mi in the joint action s ∈ S, i.e., Rs

i = {j : sj = Mi}. The load of Mi in s,
denoted by Li(s), is the sum of the weights of the players that chose machine
Mi. In particular, a player can chose to be on a dedicated machine (i.e., assigned
to a machine with no additional jobs). In this case, Li(s) = pj.
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The cost function of player j, denoted by cj , maps a joint action s ∈ S to a
real number, and is composed of two components; one depends on the total load
on the chosen resource, and the other is its share in the resource’s activation
cost. Formally, the cost of player j under a joint action s in which sj = Mi

is cj(s) = f(Li(s), bj(s)), where Li(s) =
∑

j∈Rs
i
pj is the total load of players

served by Mi, and bj(s) is j′s share in the cost B. The function f is increasing
in both Li(s) and bj(s). In this paper, we assume that cj(s) = Li(s) + bj(s).

The resource’s activation cost may be shared among its users according to
different sharing rules, two of which we consider in this paper. Under the uniform
sharing rule, all the jobs assigned to a particular resource share its cost equally.
Formally, a job assigned to Mi under joint action s pays bj(s) = B/|Rs

i |. Under
the proportional sharing rule, the jobs assigned to a particular resource share
its cost proportionally to their sizes. Formally, a job assigned to Mi under joint
action s pays bj(s) = pjB

Li(s)
. For example, let G = 〈I = {1, 2}, B = 12〉, and let

s be the schedule in which both jobs are assigned to the same machine. Then,
under uniform sharing c1(s) = c2(s) = 3 + 12/2 = 9, while under proportional
sharing, c1(s) = 3 + 12/3 = 7, c2(s) = 3 + 2 · 12/3 = 11.

Nash Equilibrium (NE): A joint action s ∈ S is a pure Nash Equilibrium if
no player j ∈ N can benefit from unilaterally switching his action.

Let g(s) denote the social cost function under the joint action s. The optimal
social cost is OPT = mins∈S g(s). We consider the egalitarian objective function,
in which the goal is to minimize the highest cost some player incurs. Formally,
g(s) = maxj cj(s). Let Φ(G) be the set of Nash equilibria of the game G. If
Φ(G) �= ∅ then the PoA (PoS) is the ratio between the maximal (minimal)
cost of a Nash equilibrium and the social optimum, i.e., maxs∈Φ(G) g(s)/OPT
(mins∈Φ(G) g(s)/OPT ).

2.1 Proportional Sharing Rule – Useful Observations

In this section we present several observations that provide some intuition re-
garding proportional sharing. These observations will be used repeatedly in the
sequel. The first observation specifies the conditions under which a job prefers to
migrate from one machine to another. Note that in the standard model (where
a job’s cost depends only on the load on its chosen machines), the equivalent
condition is simply Li′(s)+pj > Li(s). In our model, however, a migration might
be beneficial even if it involves an increase of load.

Lemma 1. Consider a schedule s. Suppose j ∈ Rs
i , and let ρ = Li(s)(Li′ (s)+pj)

pj
.

Job j reduces its cost by a migration to machine i′ if and only if Li′(s) + pj >
Li(s) and B > ρ or Li′(s) + pj < Li(s) and B < ρ.

Proof. The cost of job j under schedule s is cj(s) = Li(s) + pjB/Li(s). Let
s′ be the obtained schedule after j’s migration to machine Mi′ . It holds that
cj(s′) = Li′(s)+ pj + pjB/(Li′(s) + pj). The assertion follows immediately from
comparing cj(s) and cj(s′).
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The following observations provide lower and upper bounds for an agent’s indi-
vidual cost.

Observation 1. In any joint action s, for every job j, cj(s) ≥ 2
√
pjB. Addi-

tionally, for every j s.t. pj ≥ B, cj(s) ≥ pj +B.

Observation 2. In any NE, s, for every job j, cj(s) ≤ pj +B.

The following observation, whose proof can be easily derived by Lemma 1, pro-
vides some insight into beneficial and non-beneficial migrations of jobs.

Observation 3. (i) A job j of length pj < B which is assigned to a machine
with load smaller than B cannot reduce its cost by migrating to a machine with
load greater than B or to a dedicated machine. (ii) Given an assignment s of jobs
of lengths smaller than B s.t. Li′(s) + pj ≥ Li(s) for every i, i′ and j assigned
to machine Mi, if Li(s) + Li′(s) > B, then no migration is beneficial.

2.2 Longest Processing Time (LPT) Rule

LPT is a well-known scheduling heuristic [11]. The LPT rule sorts the jobs
in a non-increasing order of their lengths and greedily assigns each job to the
least loaded machine. In the traditional load-balancing problem, the LPT rule is
known to produce a NE [10]. However, the stability of an LPT assignment in our
setting is not clear since LPT cares about the machines’ loads solely and does not
consider the activation costs. Obviously, under an unlimited supply of resources,
LPT will simply assign each job to a new machine, and the resulting schedule
is not necessarily a NE. A natural generalization of LPT, in which each job is
assigned to a machine minimizing its cost, does not necessarily lead to a NE
either, even with unit-size jobs (consider for example G = 〈I = {1, 1, 1, 1}, B =
4− ε〉). In this paper we use a variant of LPT (see Sections 3 and 4). The next
lemma provides an important non-trivial property of the LPT algorithm, to be
used in the sequel.

Lemma 2. Let I be a set of jobs s.t. pj < C for every j. Let m be the minimal
number of machines s.t. an LPT-schedule of I on m machines has makespan at
most C. The total load on any two machines in the LPT-schedule on m machines
is greater than C.

3 Equilibrium Existence and Computation

3.1 No Equilibrium under the Uniform Sharing Rule

Under the uniform sharing rule a pure NE might not exist. Consider for example
the instance G = 〈I = {1, 10}, B = 4〉. On dedicated machines, the jobs’ costs
are 5 and 14 respectively. If they are assigned together, each job pays 13. Thus, no
schedule is stable: the short job will escape to a dedicated machine, while the long
job will join it. This example motivates the use of the proportional sharing rule.
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3.2 Equilibrium under the Proportional Sharing Rule

In this section we prove that under the proportional sharing rule and unlimited
supply of resources a pure NE always exists. Moreover, a NE can be found in time
O(nlog2n). Our algorithm, denoted LPT∗, uses as a subroutine the assignment
rule Longest Processing Time (LPT) [11]. Given an instance I, let Ishort ⊆ I be
the subset of jobs having length less than B, and let Ilong = I \ Ishort.

Algorithm LPT∗:

1. Schedule each of the jobs in Ilong on a dedicated machine.
2. The jobs of Ishort are scheduled by algorithm LPT. The number of machines,
m, is the minimal number of machines such that LPT produces a schedule
having makespan at most B (i.e., LPT onm−1 machines produces a schedule
having makespan more than B).

Note that the number of machines used in the second step is well defined,
since all the participating jobs are shorter than B, therefore, a schedule having
makespan less than B exists. The running time of LPT∗ is O(nlog2n). Long
jobs are identified and scheduled in time O(n), the short jobs are sorted in time
O(nlogn) and then LPT is executed at most logn times (binary search for the
right value of m - which is an integer in the range [1, n]).

Theorem 4. The profile s̄ obtained by LPT∗ is a NE.

Minimal Lexicographic Assignment: In the traditional load balancing game
with a fixed number of machines, the minimal lexicographic profile is known to
be a NE [10]. In our model, this profile is not well-defined as the number of
machines is not fixed. Let ŝ∗k be the lexicographically minimal assignment of
Ishort on k machines. Let m be such that the makespan under ŝ∗m is smaller
than B whereas the makespan under ŝ∗m−1 is at least B. Let ŝ∗ be the profile
in which: (i) every long job is assigned to a dedicated machine, and (ii) the jobs
of Ishort are assigned according to ŝ∗m. The proof of Theorem 4 can be easily
tuned to show that ŝ∗ is a NE. However, this profile cannot be found efficiently.
Moreover, as shown in Theorem 9, both s̄ and ŝ∗ might incur arbitrarily large
cost compared to the social optimum.

Identical Jobs: A simpler case is when all the jobs have the same length. Note
that for this case the uniform and the proportional sharing rule coincide.

Theorem 5. If all jobs have the same length, a NE can be computed in linear
time.

Limited Supply of Resources: Assume that the number of machines that can
be used is limited. Let m = |M | be the given number of machines, and let m∗

be the number of machines required by algorithm LPT∗. If m∗ ≤ m then clearly
LPT∗ produces a NE. Otherwise, it can be seen that the assignment according
to LPT rule on m machines results produces a NE. Thus,
Theorem 6. Every resource allocation game under the proportional sharing rule
and a limited supply of resources admits a Nash equilibrium in pure strategies.
The NE can be computed efficiently
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3.3 Convergence of Best-Response Dynamics

In this section we show that unlike other job scheduling games, in our model best-
response-dynamics (BRD) do not necessarily converge to a Nash equilibrium.
BRD is a local-search method in which, starting from an arbitrary joint action,
in each step, some player is chosen and plays its best-response strategy (i.e.,
the strategy that minimizes its cost, given the strategies of the other players).
By considering the instance 〈I = {10, 10, 10, 20}, B = 72〉, and the initial joint
action {(10, 10); (10, 20)}, we get:

Theorem 7. Under proportional sharing, BRD might not converge to a NE.

Yet, with unit-size jobs the resulting game is a congestion game [19], thus BRD
is guaranteed to converge to a NE (note that while the set of resources is not
given, a game with a fixed set of n resources is equivalent to our game, thus it
is a congestion game). Moreover, one can easily verify that the function P (s) =∑

iB · Hxi + 1
2x

2
i where xi denotes the number of jobs on machine i, H0 = 0,

and Hk = 1 + 1/2..+ 1/k, is a potential function for the game.

4 Equilibrium Quality

In this section we provide bounds for the price of anarchy (PoA) and the price of
stability (PoS). In particular, we present sufficient condition for having PoA =
PoS = 1, we show that the PoA is unbounded, and finally, we prove that the
PoS is less than 5/4 and provide an example in which the PoS is 18/17.

Theorem 8. If there exists a job j s.t. pj ≥ B, then PoA = PoS = 1.

Therefore, we would like to analyze the PoA and PoS for instances in which all
the jobs have load less than B. We first present an upper bound for the PoA
which depends on the length of the longest job. Let p = αB be the length of the
longest job in the instance, for some α < 1,

Lemma 3. PoA ≤ 1+α
2
√

α
.

However, α can be arbitrarily small, therefore, the PoA is not bounded, as we
show below.

Theorem 9. For any given r, there exist instances for which PoA > r, even
with unit-size jobs.

Proof. Given r, let B = 4 �r�2 and consider an instance with B unit-length jobs.
An optimal schedule groups the jobs in sets of

√
B = 2 �r�, each paying 2

√
B. A

possible NE is to schedule all the jobs on a single machine. This is a NE because
each job incurs a cost of B + 1 which cannot be reduced by migrating to a new
machine. In particular, this is the NE produced by LPT∗, and by finding the
minimal lexicografic assignment. For this instance, α = 1/B, and the analysis
in the proof of Theorem 3 is tight. Moreover, the above construction can be
repeated with Bz+1 jobs, each of length 1/Bz to get PoA = Ω(BO(z/2)).
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For standard load balancing games, it is well-known that the price of stability
is 1, even for the model of unrelated machines [23]. We show that this is not the
case in our model. By analyzing the instance G = 〈I = {2, 1, 1}, B = 4〉, we get

Theorem 10. In the resource allocation game under the proportional sharing
rule, PoS ≥ 18

17 .

On the other hand, the price of stability is bounded by a small constant:

Theorem 11. In any resource allocation game under the proportional sharing
rule, PoS ≤ 5

4 .

Proof. Let αB be the length of the longest job in the instance, for α < 1.
If α > 0.25 then by Theorem 3, PoA < 5

4 , and the assertion follows since
PoS ≤ PoA.

Thus, assume that α ≤ 0.25, and let c =
√
α. Let m be the minimal number

of machines such that algorithm LPT on m machines produces a schedule whose
makespan is at most 2cB. Let s be the profile obtained by LPT on m machines.
We show that s is a NE: Note that for any α ≤ 0.25, c ≤ 0.5 and thus the
makespan is at most B. Therefore, by Observation 3(i), no job will migrate to a
dedicated machine. Also, by Lemma 2 (applied with C = 2cB), the total load on
any two machines is at least 2cB, and since the maximal gap in the load between
any two machines is at most αB, we have that for any two machines having
loads Li, Li′ , it holds that LiLi′ ≥ (c− α

2 )B(c + α
2 )B = (α − α2/4)B2. Finally,

the load on any machine is at least (c − α)B. A known property of schedules
produced by LPT is that any migration involves increase in the load. By Lemma
1 such a migration is profitable for a job of length p migrating from load Li into
load Li′ only if B > Li(Li′ + p)/p. However Li(Li′ + p)/p = (LiLi′/p) + Li ≥
((α − α2/4)B2/αB) + (c − α)B = (1 − α/4 + c − α)B > B for any α ≤ 0.25
(since

√
α > 5

4α).
The maximal cost of a job in s is at most 2cB + αBB/2cB = 5

2

√
αB. By

Observation 1 the cost of the longest job is at least 2
√
αB, thus PoS ≤ 5

4 .
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Abstract. We study the price of malice in linear congestion games using
the technique of no-regret analysis in the presence of Byzantine players.
Our assumptions about the behavior both of rational players, and of
malicious players are strictly weaker than have been previously used to
study the price of malice. Rather than assuming that rational players
route their flow according to a Nash equilibrium, we assume only that
they play so as to have no regret. Rather than assuming that malicious
players myopically seek to maximize the social cost of the game, we study
Byzantine players about whom we make no assumptions, who may be
seeking to optimize any utility function, and who may engage in an arbi-
trary degree of counter-speculation. Because our assumptions are strictly
weaker than in previous work, the bounds we prove on two measures of
the price of malice hold also for the quantities studied by Babaioff et al.
[2] and Moscibroda et al. [15] We prove tight bounds both for the special
case of parallel link routing games, and for general congestion games.

1 Introduction

The price of anarchy measures the deterioration of performance in a system due
to selfishness and lack of coordination. It is a brittle measure however, since it
assumes that all agents in the system are perfectly rational and adeptly seek to
minimize their own cost. In real systems, agents vary in their rationality, com-
putational power, access to information, and objectives. In the case of malicious
users, they may seek to harm particular individuals or general social welfare, and
may be myopic or able to engage in a high degree of counter-speculation. We
would therefore like to be able to characterize the deterioration of performance in
a system containing both selfish but rational agents, as well as Byzantine agents.
We have a choice as to how to model both the rational agents and the Byzantine
agents, and in both cases, we make very weak assumptions: we assume that the
rational agents play so as to experience no regret, and we make no assumptions
at all about the behavior of the Byzantine agents.

We bound the degradation in social welfare due to Byzantine players for the
class of non-atomic congestion games with linear edge costs. In non-atomic con-
gestion games, there are a set of source-sink pairs, and for each source-sink
pair (si, ti) there exists a continuum of players who each choose among si → ti
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paths, which induces a flow along the edges of the paths. Each edge has a load-
dependent latency function, which in this paper takes the form 
e(x) = aex + be

for ae, be ≥ 0. In a game with a set of agents of measure 1, we model a set of
measure (1 − v) rational agents who wish to minimize their own latency, and a
set of measure v Byzantine agents about whom we make no assumptions.

We define social cost to be the average latency experienced by the rational
players, and we consider two measures of the degradation of social welfare due
to the presence of the Byzantine players. The price of malice measures the ra-
tio of the social cost in the presence of v Byzantine flow to the optimal social
cost without Byzantine flow, and is the analogue of the quantity studied by
Moscibroda, Schmid, and Wattenhofer [15] (also termed “price of malice”). The
differential price of malice measures the marginal cost to the rational players in-
curred by introducing ε Byzantine flow – in effect the brittleness of the Nash flow
to Byzantine players – and is the analogue of the quantity studied by Babaioff,
Kleinberg, and Papadimitriou [2] (also termed “price of malice”). Upper bound-
ing this quantity was posed in [2] as an important open problem. Our definitions
of the price of malice and the differential price of malice allow for a far wider
range of adversarial behavior than those defined by Moscibroda et al. [15] and
Babaioff et al. [2], and the upper bounds we prove hold also for the quantities
studied in the more restricted settings of [15] and [2].

We model Byzantine players who may behave arbitrarily by using the no-
regret framework recently introduced by Blum et al. [5] to bound the price of
total anarchy. The price of total anarchy compares the average social cost over T
rounds of repeated play to the cost of the optimal flow, when the rational play-
ers have no regret. This is a strictly more general assumption than that rational
players play according to a Nash equilibrium, since players in a Nash equilibrium
all experience no regret. Studying the price of total anarchy instead of the price
of anarchy has the advantage that it allows one naturally to model a game in
which only a fraction of the players are rational, allowing the others to behave
arbitrarily. Moreover, it is known that in both nonatomic and atomic congestion
games, the price of total anarchy exactly matches the price of anarchy [4,5] Fi-
nally, bounding the price of malice in terms of the price of total anarchy has the
attraction that there exist simple and efficient algorithms that guarantee regret
quickly approaching 0, even in the case that the number of paths is exponen-
tial in the description length of the game, and even in the case when players
receive information only about their own costs, and not the costs of other paths
[12,9,1,13,10]. Therefore, bounds on the price of malice proven in terms of the
price of total anarchy can plausibly be achieved by rational agents with limited
computational power and informational awareness.

We consider both the special case in which the congestion game is defined over
a graph consisting of m parallel links, and also the general case of congestion
games in which the path set of the game need not correspond to any graph.
In the case of parallel links, we prove tight bounds on both the price of malice
and the differential price of malice, and show that Byzantine flow cannot hurt
social welfare at all. In the general case, we prove a tight bound on the price of
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malice and a tight bound the differential price of malice for congestion games
with scalar latency functions of the form 
e(x) = aex. We omit all proofs for
space; they can be found in the full version of this paper.

1.1 Related Work

Moscibroda et al. study a virus inoculation game in which a certain fraction
of players are malicious and seek to maximize the sum costs of the rational
players. [15]. They define an equilibrium concept in which rational players are
extremely risk-averse, and assume that all malicious players are playing a worst-
case strategy profile with respect to their own utility. They then define the
price of malice with k malicious players to be the ratio of the social cost in
equilibria with k malicious players to the social cost in Nash equilibria without
any malicious players, which is akin to our definition of the price of malice.
Moscibroda et al. also observe that malicious play can improve social welfare,
by causing rational players to cooperate [15].

Two papers by Karakostas and Viglas [8] and Babaioff, Kleinberg, and Pa-
padimitriou [2] initiate the study of malicious users in non-atomic congestion
games. Both papers consider congestion games in which a fraction of players
are rational and wish to minimize their own costs, and a fraction are malicious,
and wish to maximize the sum costs of the rational players. They then study
(slightly different) notions of equilibria among these rational and malicious play-
ers. Babaioff et al. [2] show lower bounds for an alternative definition for price of
malice [2]. They also observe that malicious players can improve social welfare
(even in the case of linear edge costs), and term this phenomenon the ‘windfall
of malice’.

Blum et al. [5] define the price of total anarchy as an alternative to the price
of anarchy in quantifying the degradation of social welfare in the presence of
selfish players. They show that in many classes of games, the price of total
anarchy exactly matches the price of anarchy, and they analyze the price of
total anarchy in the presence of Byzantine players in several games. [5].

Chung et al. [7] study the price of stochastic anarchy in which players are
imperfect and play random actions rather than best responses with some prob-
ability. They show that imperfect play can actually improve social welfare, by
showing that the price of stochastic anarchy in the load balancing game on un-
related machines is a bounded function of the number of players and machines,
whereas the price of anarchy can be unboundedly large.

Our results are most similar to those from Blum et al. [5] and differ from
other previous work [6,14,7,15,8,2] in that we make no assumptions about how
irrational or malicious agents should behave. As a result, in our model there
cannot exist a windfall of malice as there does in the models of malicious but
myopic adversaries from [2,15,8], since if nothing else, an adversary can behave
like a selfish, rational player. However, since we are modeling more general ad-
versaries, the bounds we prove on the price of malice and the differential price
of malice also hold for equilibrium models of adversarial behavior.
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2 Preliminaries

2.1 Nonatomic Congestion Games

A nonatomic congestion game is defined by a four-tuple G = (E, {
e}, {Pi},
{Ri}). E is a finite set of elements which we will refer to as edges. There are k
player types, and for each player type i there is a set of feasible paths Pi where
for each Pj ∈ Pi, Pj is a subset of E. Ri is a Lebesgue measurable continuum
of agents of type i represented by the interval [0, ρi]. In total, we say that a
congestion game has s =

∑k
i=1 ρi units of flow. In this paper we will generally

assume without loss of generality that s = 1. Finally, associated with each edge
is a traffic-dependent latency function 
e(x), which in this paper will take the
form 
e(x) = aex + be for ae, be ≥ 0. The names ‘edge’ and ‘path’ suggest a
graph, and indeed, we often think of congestion games as traffic routing games,
in which there is an underlying graph G for which E is the edge set, each player
type i corresponds to a source sink pair (si, ti), and Pi corresponds to the set
of simple si → ti paths. However, our results hold for general congestion games
which need not correspond to any underlying graph.

A flow f partitions the set of players according to the set of paths (we say that
players in the partition corresponding to path Pi play on path Pi). We denote by
Af

i the set of players who play on path Pi in flow f , and write fPi =
∫

Af
i

1. Note

that
∑k

i=1
∑

Pi∈Pi
fPi = 1. A flow f induces a unique flow on edges: we write

that the flow on edge e is f(e) =
∑

Pi:e∈P fPi . Given a flow f , the latency of each
edge e is 
e(f(e)), and the latency of each path Pi is 
Pi(f) =

∑
e∈Pi


e(f(e)).
We say that a player who plays on a path Pi experiences cost 
Pi(f). We will let
F(G) denote the set of all possible flows in a game G.

The social cost of a flow is the aggregate of player costs. We define a social cost
function γ, and say that the cost of a flow f is: γ(f) =

(∑k
i=1
∑

Pj∈Pi

∫
Af

j

Pi(f)

)
= 1

s

(∑
e∈E f(e)
e(f(e))

)
. We write f∗ ∈ argminf∈F(G) γ(f) to denote an opti-

mal flow, and write OPT = γ(f∗) to denote the cost of the optimal flow. When
the game instance is not clear from context, we will write f∗

G and OPTG ,
We will often speak of flows in which a portion of flow of measure v is con-

trolled by (possibly adversarial) Byzantine players, and the remaining 1− v flow
is controlled by rational players. In this case, we write f(e) = f r(e)+f b(e) where
f r(e) represents the portion of flow on edge e due to rational players, and f b(e)
represents the portion of flow on edge e due to Byzantine players. The Byzantine
players can be of any player type. In the presence of Byzantine players, the social
cost that we are concerned with is simply the aggregate of rational player costs:
γ(f) = 1

1−v

(∑
e∈E f r(e)
e(f(e))

)
.

Definition 2.1. A flow f in a congestion game G is a Nash equilibrium if for
each player type i and for all P1, P2 ∈ Pi with fP1 > 0, 
P1(f) ≤ 
P2(f).

Intuitively, a flow f is a Nash equilibrium if no player would like to change his
path. In an equilibrium flow, all paths of each type have the same latency.
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Proposition 2.2 (Beckmann et al. [3]). For f, f̂ two Nash equilibrium flows
of G, γ(f) = γ(f̂).

Therefore we may refer to the cost of a Nash flow of G which we will write as
γ(G).

2.2 Anarchy, Regret, and Malice

In this section we define quantities that we will use to characterize the loss of
efficiency due to selfishness and “malice.”

Definition 2.3 ([11]). The price of anarchy of an instance of a congestion
game G is defined to be: PoA(G) = γ(G)

OPTG
. The price of anarchy of the class of

congestion games is: PoA = maxG PoA(G).

In this paper, we will assume that rational players play so as to have no regret.
Play proceeds in a series of T timesteps, and at time t each player chooses a
path, which results in a flow f t.

Definition 2.4. A player who has played on paths Pn1 , . . . , PnT after T timesteps
experiences ε-regret if his average cost is no more than that of his best fixed path
in hindsight plus an additive ε. That is, for a player of type i: 1

T

∑T
t=1 
Pnt

(f t) ≤
1
T minP ∗

i ∈Pi

∑T
t=1 
P ∗

i
(f t)+ε. If ε = 0, we say that the player satisfies the no regret

property.

Assuming that rational players play so as to have no regret is a strictly weaker
assumption than that they play according to a Nash equilibrium, since in a Nash
equilibrium, players experience no regret. A number of efficient algorithms can
guarantee players ε regret with ε quickly approaching 0 with T , even in the
case when the number of paths is exponential in the description length of the
game, and even when players receive information only about their own costs
[12,9,1,13,10]. For simplicity in our paper, we will assume that rational players
actually satisfy the no regret property, but all of our results can be carried
through with players who experience ε(T ) regret with ε(T ) = o(1).

Throughout this paper, we study the time averaged cost of the rational players
in the presence of Byzantine players. We write COST(v) = 1

T

∑T
t=1 γ(f t).

Definition 2.5 (Blum et al. [5]). The price of total anarchy in a game in-
stance G with v Byzantine flow is the ratio of the worst case average social cost
(among the rational players) over T rounds of repeated play to OPT, when 1−v
flow corresponds to players with the no-regret property, and the remaining v flow
behaves arbitrarily. PoTA(G, v) = maxf1,...,fT

COST(v)
OPTG

. where the max is taken
over flows (f1, . . . , fT ) ∈ F(G)T such that a set of players of measure 1 − v
satisfy the no-regret property and the remaining players behave arbitrarily. The
price of total anarchy with v Byzantine flow of the class of congestion games is
PoTA(v) = maxG PoTA(G, v).

Observation 2.6 (Blum et al. [5]). Since when playing a Nash equilibrium all
players satisfy the no regret property, for any class of games, PoTA(0) ≥ PoA.
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In many classes of games, the price of total anarchy matches the price of anarchy
exactly, including in congestion games [5,4].

Proposition 2.7 (Blum et al. [4]). For the class of non-atomic congestion
games, PoTA(0) = PoA.

We now define the price of malice. Our definition is parallel to the quantity
studied by Moscibroda et al. [15] (also termed price of malice). In particular,
any upper bound that applies to our definition of price of malice also applies to
the price of malice in [15].

Definition 2.8. The price of malice in an instance of a congestion game G
with v Byzantine flow is the ratio of the price of total anarchy with v Byzantine
flow and the price of anarchy. PoM(G, v) = PoTA(G,v)

PoA(G) = PoTA(G,v)
PoTA(G,0) . The price of

malice of the class of congestion games is PoM(v) = maxG PoM(G).

Finally, we define the differential price of malice, which parallels the quantity
studied by Babaioff et al. [2] (also called price of malice). Any upper bound that
applies to the differential price of malice also applies to the price of malice as
defined in [2].

Definition 2.9. The differential price of malice is the maximum marginal cost
incurred in any game instance when an ε fraction of flow is converted from
rational to Byzantine: DPoM = maxG d

dε (PoM(G, ε))|ε=0.

In principle, a game may have a large price of total anarchy and a small price
of malice or vice versa, although in linear congestion games the two quantities
differ only by a factor of 4/3 [16].

It is not sufficient to upper bound PoTA(v) to find an upper bound to DPoM,
since the slope of the price of total anarchy is measured on an instance by instance
basis for DPoM. We require further conditions:

Observation 2.10. If the following conditions are met: 1. g(v) ≥ PoTA(v) for
all non-negative v 2. g(0) = PoA(G, 0) for all game instances G then: DPoM ≤
d
dε(g(ε)/PoA)|ε=0

3 Parallel Links

We first consider the case in which the underlying graph G consists of two
vertices s and t (the source and sink for all players), and m s → t edges with
linear latency functions of the form 
e(x) = aex + be. This is an interesting
special case because instances of parallel link congestion games can have a price
of anarchy as high as in the general case [16], and it also serves as a model
of the load balancing game on related machines. We bound the price of total
anarchy in terms of γ(G), the social cost at Nash equilibrium of the instance in
question.
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Theorem 3.1. In the parallel links congestion game with linear edge costs,
PoM(v) = 1 and DPoM = 0.

Since in the Byzantine adversary model, PoM(v) ≥ 1 and DPoM ≥ 0, Theorem
3.1 is tight.

4 General Congestion Games

In this section, we consider the general case of linear congestion games. Instances
of these congestion games may or may not be defined over an underlying (arbi-
trary) graph, although we will continue using the language of paths and edges.
The game is played over T timesteps, where at time t, the flow on edge e is
f t(e) = (f rt(e) + f bt(e)) where f rt(e) is the flow on edge e due to the rational
players and f bt(e) is the flow on edge e due to the Byzantine players. For simplic-
ity of presentation, in this section, we consider adding v units of Byzantine flow,
rather than converting rational flow to Byzantine flow (and so we always have
one unit of rational flow). The case in which Byzantine flow replaces rational
flow is similar (but leads to more unwieldy equations). We first prove a tight
bound on the price of malice for congestion games with linear edge costs of the
form 
e(x) = aex + be for ae, be ≥ 0. We then consider congestion games with
scalar edge costs of the form 
e(x) = aex for ae ≥ 0, and bound both the price
of malice and the differential price of malice in such games.

The bounds given here are asymptotically tight; Proofs appear in the full
version.

Theorem 4.1. In non-atomic congestion games with linear edge costs: PoM(v)

≤ PoTA(v) ≤ 4
3 +

√
a·r(v2+v)

OPT where a = maxe∈E ae and r = maxPi |{e ∈ Pi :

e(x) �≡ 0}| is the length of the longest path (not including edges with no latency
cost).

We now consider congestion games with scalar edge costs of the form 
e(x) = aex
for some ae ≥ 0.

Theorem 4.2. In non-atomic congestion games with scalar edge costs: PoM(v)

= PoTA(v) ≤ 1 +
√

a·r(v2+v)
OPT where a = maxe∈E ae and r = maxPi |{e ∈ Pi :


e(x) �≡ 0}|.

Theorem 4.3. In non-atomic single-source single-sink congestion games with
scalar edge costs, the differential price of malice is at most DPoM ≤ r =
maxPi |{e ∈ Pi : 
e(x) �≡ 0}|.
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Abstract. We focus on a permutation betting market under parimutuel
call auction model where traders bet on final rankings of n candidates.
We present a Proportional Betting mechanism for this market. Our mech-
anism allows traders to bet on any subset of the n2 ‘candidate-rank’
pairs, and rewards them proportionally to the number of pairs that ap-
pear in the final outcome. We show that market organizer’s decision
problem for this mechanism can be formulated as a convex program of
polynomial size. Further, the formulation yields a set of n2 unique mar-
ginal prices that are sufficient to price the bets in this mechanism, and
are computable in polynomial-time. These marginal prices reflect the
traders’ beliefs about the marginal distributions over outcomes. More
importantly, we propose techniques to compute the joint distribution
over n! permutations from these marginal distributions. We show that
using a maximum entropy criterion, we can obtain a concise parametric
form (with only n2 parameters) for the joint distribution which is defined
over an exponentially large state space. We then present an approxima-
tion algorithm for computing the parameters of this distribution. In fact,
our algorithm addresses a generic problem of finding the maximum en-
tropy distribution over permutations that has a given mean, and is of
independent interest.

1 Introduction

Prediction markets are increasingly used as an information aggregation device
in academic research and public policy discussions. The fact that traders must
“put their money where their mouth is” when they say things via markets helps
to collect information. To take full advantage of this feature, however, we should
ask markets the questions that would most inform our decisions, and encourage
traders to say as many kinds of things as possible, so that a big picture can emerge
from many pieces. Combinatorialbetting markets hold great promise on this front.
Here, the prices of contracts tied to the events have been shown to reflect the
traders’ belief about the probability of events. Thus, the pricing or ranking of pos-
sible outcomes in a combinatorial market is an important research topic.
� Research supported in part by NSF DMS-0604513 and Boeing.
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We consider a permutation betting scenario where traders submit bids on final
rankings of n candidates, for example, an election or a horse race. The possible
outcomes are the n! possible orderings among the candidates, and hence there
are 2n! subset of events to bid on. In order to aggregate information about the
probability distribution over the entire outcome space, one would like to allow
bets on all these event combinations. However, such betting mechanisms are
not only intractable, but also exacerbate the thin market problems by dividing
participants attention among an exponential number of outcomes [1][2]. Thus,
there is a need for betting languages or mechanisms that could restrict the
possible bid types to a tractable subset and at the same time provide substantial
information about the traders’ beliefs.

1.1 Previous Work

Previous work on parimutuel combinatorial markets can be categorized under
two types of mechanisms: a) posted price mechanisms including the Logarithmic
Market Scoring Rule (LMSR) of Hanson [2][3] and the Dynamic Pari-mutuel
Market-Maker (DPM) of Pennock [4] b) call auction models developed by Lange
and Economides [5], Peters et al. [6], in which all the orders are collected and
processed together at once. An extension of the call auction mechanism to a dy-
namic setting similar to the posted price mechanisms, and a comparison between
these models can be found in Peters et al. [7].

Chen et al. (2008) [8] analyze the computational complexity of market maker
pricing algorithms for combinatorial prediction markets under LMSR model.
They examine both permutation combinatorics, where outcomes are permuta-
tions of objects, and Boolean combinatorics, where outcomes are combinations of
binary events. Even with severely limited languages, they find that LMSR pric-
ing is #P-hard, even when the same language admits polynomial-time matching
without the market maker. Chen, Goel, and Pennock [9] study a special case of
Boolean combinatorics and provide a polynomial-time algorithm for LMSR pric-
ing in this setting based on a Bayesian network representation of prices. They
also show that LMSR pricing is NP-hard for a more general bidding language.

More closely related to our work are the studies by Fortnow et al. [10] and Chen
et al. (2006) [11] on call auction combinatorial betting markets. Fortnow et al. [10]
study the computational complexity of finding acceptable trades among a set of
bids in a Boolean combinatorial market. Chen et al. (2006) [11] analyze the auc-
tioneer’s matching problem for betting on permutations, examining two bidding
languages: subset bets, which are bets of the form candidate i finishes in positions
x, y, or z or candidate i, j, or k finishes in position x, and pair bets, which take
the form candidate i beats candidate j. They give a polynomial-time algorithm
for matching divisible subset bets, but show that matching pair bets is NP-hard.

1.2 Our Contribution

In this paper, we focus on the problem of pricing a call auction under permuta-
tion betting scenario. We consider a new mechanism called Proportional Betting
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for betting on permutations, which is a slightly more generalized form of Subset
Betting [11], and will be shown to include it as a special case (details in Section
3.2). In proportional betting mechanism, the traders bet on one or more of the
n2 ‘candidate-position’ pairs, and receive rewards proportional to the number
of pairs that appear in the final outcome. For example, a trader may place an
order of the form “Horse A will finish in position 2 OR Horse B will finish in
position 4”. He 1 will receive a reward of $2 if both Horse A & Horse B finish at
the specified positions 2 & 4 respectively; and a reward of $1 if only one horse
finishes at the position specified. The market organizer collects all the orders and
then decides which orders to accept in order to maximize his worst case profit.

We propose this proportional betting mechanism as a relaxation of Fixed
reward Betting where a trader receives a fixed reward (say $1) if any of his horse-
position pairs appear in the outcome permutation. We show that the market
organizer’s problem is NP-hard for fixed reward betting. Note that a further
relaxation of proportional betting would be to allow traders to bet only on
individual candidate position pairs (or individual columns or rows like in subset
betting [11]), and allow each trader to submit multiple bets. Here, a difference
from our model is that in the relaxed model, a trader may place different bids
for different bets and an arbitrary subset of his bets could be accepted, rather
than all or nothing.

Our results for proportional betting model are described as follows:

– We show that the market organizer’s decision problem for this mechanism
can be formulated as a convex program with only O(n2 + m) variables and
constraints, where m is the number of bidders. Further we show that we can
obtain, in polynomial-time, a small set (n2) of dual ‘marginal prices’ that
satisfy the desired price consistency constraints, and are sufficient to price
the bets in this mechanism. The polynomial-time computability of marginal
prices in our call auction setting seems particularly interesting considering
that computing the n2 marginal prices that correspond to Hanson’s log-
arithmic market scoring rule is #P-hard, even under a restricted form of
“proportional betting” where traders are allowed to bet only on individual
candidate-position pairs [8].

– In the second, and perhaps more interesting part of our work, we suggest a
maximum entropy criteria to obtain a joint distribution over n! outcomes from
the n2 marginalprices. Although defined over an exponential space, this distri-
bution is shown to have a concise parametric form involving only n2 parame-
ters. Moreover, it is shown to agree with the maximum-likelihood distribution
when prices are interpreted as observed statistics from the traders’ beliefs.

We present an approximation algorithm to compute the parameters of
the maximum entropy joint distribution to any given accuracy in (pseudo)-
polynomial time 2. In fact, this algorithm can be directly applied to a generic
problem of finding the maximum entropy distribution over permutations that
has a given expected value, and is of independent interest.

1 ‘he’ shall stand for ‘he or she’.
2 The approximation factors and running time will be established precisely in the text.
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To the best of our knowledege, this is the first result on pricing a parimutuel
call auction under permutation betting scenario.

2 Parimutuel Call Auction Model

In this section, we briefly describe the Convex Parimutuel Call Auction Model
(CPCAM) developed by Peters et al. [6] that will form the basis of our betting
mechanism. Consider a market with one organizer and m traders or bidders.
There are S states of the world in the future on which the traders are submitting
bids. For each bid that is accepted by the organizer and contains the realized
future state, the organizer will pay the bidder some fixed amount of money,
which is assumed to be $1 without loss of generality. The organizer collects all
the bids and decides which bids to accept in order to maximize his worst case
profit.

Let aik ∈ {0, 1} denote the trader k’s bid for state i. Let qk and πk denote
the limit quantity and limit price for trader k, i.e., the maximum number of
orders requested by trader k, and the maximum price he is willing to pay for the
contract, respectively. The number of contracts accepted for trader k is denoted
by xk. xk is allowed to take fractional values, that is, the orders are ‘divisible’
in the terminology of [11]. Also, let pi denote the price computed for outcome
state i. Below is the convex formulation of the market organizer’s problem given
by [6]:

max
x,s,r

πT x− r +
∑S

i=1 θi log(si)

s. t.
∑

k aikxk + si = r 1 ≤ i ≤ S
0 ≤ x ≤ q
s ≥ 0

(1)

The above convex program maximizes the worst case proft of the organizer which
is given by the difference between the total amount of money collected (πT x)
and the worst case payment made (r). A “parimutuel” state price vector {pi}S

i=1
is given by the dual variables associated with the first set of constraints. The
parimutuel property implies that if the bidders are charged a price of {

∑
i aikpi},

instead of their limit price, the payouts made to the bidders are exactly funded
by the money collected from the accepted orders in the worst-case outcome.
θ > 0 represents starting orders needed to guarantee uniqueness of the state
price vector. They capture the prior belief of the organizer. The market organizer
could actually lose this seed money in some outcomes. However, as shown in [6],
infinitesimal quantity of starting orders are sufficient. That is, if we reduce θ
uniformly to 0, the price vector converges to a unique limit.

3 Permutation Betting Mechanisms

In this section, we propose new mechanisms for betting on permutations under
the parimutuel call auction model described above. Consider a permutation bet-
ting scenario with n candidates. Traders bet on rankings of the candidates in
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the final outcome. The final outcome is represented by an n × n permutation
matrix, where ijth entry of the matrix is 1 if the candidate i takes position j in
the final outcome and 0 otherwise. We propose betting mechanisms that restrict
the admissible bet types to ‘set of candidate-position pairs’. Thus, trader k’s bet
will be specified by an n×n (0, 1) matrix Ak, with 1 in the entries corresponding
to the candidate-position pairs he is bidding on. We will refer to this matrix as
the ‘bidding matrix’ of the trader. If a trader’s bid is accepted, he will receive
some payout in the event that his bid is a “winning bid”.

Depending on how this payout is determined, two variations of this mecha-
nism are examined: a) Fixed Reward Betting and b) Proportional Betting. The
intractability of fixed reward betting will provide motivation to examine propor-
tional betting more closely, which is the focus of this paper.

3.1 Fixed Reward Betting

In this mechanism, a trader receives a fixed payout (assume $1 w.l.o.g.) if any
entry in his bidding matrix matches with the corresponding entry in the out-
come permutation matrix. That is, if M is the outcome permutation matrix,
then the payout made to trader k is given by I(Ak •M > 0). Here, the operator
‘•’ denotes the Frobenius inner product3, and I(·) denotes an indicator function.
The market organizer must decide which bids to accept in order to maximize the
worst case profit. Using the same notations as in the CPCAM model described
in Section 2 for limit price, limit quantities, and accepted orders, the problem
for the market organizer in this mechanism can be formulated as follows:

max πT x− r
s. t. r ≥

∑m
k=1 I(Ak •Mσ > 0)xk ∀σ ∈ Sn

0 ≤ x ≤ q
(2)

Here, Sn represents the set of n dimensional permutations, Mσ represents the
permutation matrix corresponding to permutation σ. Note that this formulation
encodes the problem of maximizing the worst-case profit of the organizer with
no starting orders.

Above is a linear program with exponential number of constraints. We prove
the following theorem regarding the complexity of solving this linear program.

Theorem 1. The optimization problem in (2) is NP-hard even for the case when
there are only two non-zero entries in each bidding matrix.

Proof. The separation problem for the linear program in (2) corresponds to
finding the permutation that “satisfies” maximum number of bidders. Here, an
3 The Frobenius inner product, denoted as A •B in this paper, is the component-wise

inner product of two matrices as though they are vectors. That is,

A • B =
�

i,j

AijBij.
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outcome permutation is said to “satisfy” a bidder, if his bidding matrix has
at least one coincident entry with the permutation matrix. We show that the
separation problem is NP-hard using a reduction from maximum satisfiability
(MAX-2-SAT) problem. Then, using the result on equivalence of separation and
optimization problem from [12], the theorem follows. A detailed proof can be
found in our technical report [13].

This result motivates us to examine the following variation of this mechanism
which makes payouts proportional to the number of winning entries in the bid-
ding matrix.

3.2 Proportional Betting

In this mechanism, the trader receives a fixed payout (assume $1 w.l.o.g.) for each
coincident entry between the bidding matrix Ak and the outcome permutation
matrix. Thus, the payoff of a trader is given by the Frobenius inner product of
his bidding matrix and the outcome permutation matrix. The problem for the
market organizer in this mechanism can be formulated as follows:

max πT x− r
s. t. r ≥

∑m
k=1(Ak •Mσ)xk ∀σ ∈ Sn

0 ≤ x ≤ q
(3)

The above linear program involves exponential number of constraints. How-
ever, the separation problem for this program is polynomial-time solvable, since
it corresponds to finding the maximum weight matching in a complete bipartite
graph, where weights of the edges are given by elements of the matrix (

∑
k Akxk).

Thus, the ellipsoid method with this separating oracle would give a polynomial-
time algorithm for solving this problem. This approach is similar to the algo-
rithm proposed in [11] for Subset Betting. Indeed, for the case of subset betting
[11], the two mechanisms proposed here (fixed and proportional) are equiva-
lent. This is because subset betting can be equivalently formulated under our
framework, as a mechanism that allows non-zero entries only on a single row or
column of the bidding matrix Ak. Hence, the number of entries that are coin-
cident with the outcome permutation matrix can be either 0 or 1, resulting in
I(Ak •Mσ > 0) = Ak •Mσ, for all permutations σ. Thus, subset betting forms
a special case of the proportional betting mechanism proposed here, and all the
results derived in the sequel for proportional betting will directly apply to it.

4 Pricing in Proportional Betting

In this section, we reformulate the market organizer’s problem for Proportional
Betting into a compact linear program involving only O(n2+m) constraints. The
new formulation is not only faster to solve in practice (using interior point meth-
ods) but also generates a compact dual price vector of size n2. These ‘marginal
prices’ will be sufficient to price the bets in Proportional Betting, and are shown
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to satisfy some useful properties. The reformulation will also allow introducing
n2 starting orders in order to obtain unique prices.

Observe that the first constraint in (3) implicitly sets r as the worst case payoff
over all possible permutations (or matchings). Since the matching polytope is
integral [12], r can be equivalently set as the result of following linear program
that computes maximum weight matching:

r = max
M

(
∑m

k=1 xkAk) •M

s.t. MT e = e
Me = e
Mij ≥ 0 i, j ∈ {1, . . . , n}

(4)

Here e denotes the vector of all 1s (column vector). Taking dual, equivalently,

r = min
v,w

eT v + eT w

s.t. vi + wj ≥
∑m

k=1(xkAk)ij i, j ∈ {1, . . . , n}
(5)

Here, (xkAk)ij denotes the ijth element of the matrix (xkAk). The market or-
ganizer’s problem in (3) can now be formulated as:

max
x,v,w

πT x− eT v − eT w

s.t. vi + wj ≥
∑m

k=1(xkAk)ij i, j ∈ {1, . . . , n}
0 ≤ x ≤ q

(6)

Observe that this problem involves only n2 + 2m constraints.
Let Q ∈ Rn×n represent the dual variables corresponding to the first n2

constraints in the above problem. It is easy to show that the dual matrix Q is
well interpreted as a “parimutuel price”. That is, Q ≥ 0; and, if we charge each
trader k a price of Ak • Q instead of their limit price (πk), then the optimal
decision remains unchanged and the total premium paid by the accepted orders
will be equal to the total payout made in the worst case. Further, Q satisfies the
following extended definition of “price consistency condition” introduced in [5].

Definition 1. The price matrix Q satisfies price consistency constraints if and
only if for all k: xk = 0 ⇒ Q •Ak = ck ≥ πk

0 < xk < qk ⇒ Q •Ak = ck = πk

xk = qk ⇒ Q •Ak = ck ≤ πk

(7)

That is, a trader’s bid is accepted only if his limit price is greater than the
calculated price for the order.

These properties can be shown using the KKT conditions for (6), in a manner
similar to [6] where a non-combinatorial setting is considered. However, the dual
price Q thus computed is not guaranteed to be unique. To ensure uniqueness,
we can use starting orders as discussed for the CPCAM model in Section 2. We
introduce one starting order θij > 0 for each candidate-position pair (i,j). These
starting orders can be of possibly infinitesimal quantity and represent the prior
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belief of organizer. Refer [13] for detailed proofs of properties of price matrix Q
and the implications of introducing starting orders.

To summarize, we have shown that:

Theorem 2. One can compute in polynomial-time, an n × n marginal price
matrix Q which is sufficient to price the bets in the Proportional Betting mech-
anism. Further, the price matrix is unique, parimutuel, and satisfies the desired
price-consistency constraints.

5 Pricing the Outcome Permutations

There is analytical as well as empirical evidence that prediction market prices
provide useful estimates of average beliefs about the probability that an event oc-
curs [14][15][16]. Therefore, prices associated with contracts are typically treated
as predictions of the probability of future events. The marginal price matrix Q
derived in the previous section associates a price to each candidate-position pair.
Also, it is easy to observe that Q is a doubly stochastic matrix (use KKT con-
ditions of problem in (6)). Thus, the distributions given by a row (column) of
Q could be interpreted as marginal distribution over positions for a given candi-
date (candidates for a given position). One would like to compute the complete
price vector that assigns a price to each of the n! outcome permutations. This
price vector would provide information regarding the joint probability distri-
bution over the entire outcome space. In this section, we discuss methods for
computing this complete price vector from the marginal prices given by Q.

Let pσ denote the price for permutation σ. Then, the marginal constraints on
the price vector p are represented as:∑

σ∈Sn
pσMσ = Q

pσ ≥ 0 ∀σ ∈ Sn
(8)

Finding a feasible solution under these constraints is equivalent to finding
a decomposition of doubly-stochastic matrix Q into a convex combination of
n × n permutation matrices. There are multiple such decompositions possible.
For example, one such solution can be obtained using Birkhoff-von Neumann
decomposition [17][18]. Next, we propose a criterion to choose a meaningful
distribution p from the set of distributions satisfying constraints in (8).

5.1 Maximum Entropy Criterion

Intuitively, we would like to use all the information about the marginal distrib-
utions that we have, but avoid including any information that we do not have.
This intuition is captured by the ‘Principle of Maximum Entropy’. It states
that the least biased distribution that encodes certain given information is that
which maximizes the information entropy. Therefore, we consider the problem of
finding the maximum entropy distribution over the space of n dimensional per-
mutations, satisfying the above constraints on the marginal distributions. The
problem can be represented as follows:
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min
∑

σ∈Sn
pσ log pσ

s.t.
∑

σ∈Sn
pσMσ = Q

pσ ≥ 0
(9)

The maximum entropy distribution obtained from above has many nice prop-
erties. Firstly, as we show next, the distribution has a concise representation
in terms of only n2 parameters. This property is crucial for combinatorial bet-
ting due to the exponential state space over which the distribution is defined.
Let Y ∈ Rn×n be the Lagrangian dual variable corresponding to the marginal
distribution constraints in (9), and sσ be the dual variables corresponding to
non-negativity constraints on pσ. Then, the KKT conditions for (9) are given by:

log(pσ) + 1− sσ = Y •Mσ∑
σ pσMσ = Q

sσ, pσ ≥ 0 ∀σ
pσsσ = 0 ∀σ

(10)

Assuming pσ > 0 for all σ, this gives pσ = eY •Mσ−1. Thus, the distribution is
completely specified by the n2 parameters given by Y . Once Y is known, it is
possible to perform operations like computing the probability for a given set of
outcome permutations, or finding the most probable outcomes.

Further, we show that the dual solution Y is a maximum likelihood estimator
of distribution parameters under suitable interpretation of Q.

Maximum likelihood interpretation. For a fixed set of data and an assumed un-
derlying probability model, maximum likelihood estimation method picks the
values of the model parameters that make the data “more likely” than any other
values of the parameters would make them. Let us assume in our model that the
traders’ beliefs about the outcome come from an exponential family of distrib-
utions Dη, with probability density function of the form fη ∝ eη•Mσ for some
parameter η ∈ Rn×n. Suppose Q gives a summary statistics of s sample ob-
servations {M1, M2, . . . , Ms} from the traders’ beliefs, i.e., Q = 1

s

∑
k Mk. This

assumption is inline with the interpretation of the prices in prediction markets as
mean belief of the traders. Then, the maximum likelihood estimator is given by

η̂ = argmaxη log fη(M1, M2, . . . , Ms)

= argmaxη log(Πk
eη•Mk

�
σ eη•Mσ )

(11)

The optimality conditions for the above unconstrained convex program are:

1
Z

∑
σ eη•MσMσ = 1

s

∑
k Mk (12)

where Z is the normalizing constant, Z =
∑

σ eη•Mσ . Since 1
s

∑
k Mk = Q,

observe from the KKT conditions for the maximum entropy model given in (10)
that η = Y satisfies the above optimality conditions. Hence, the parameter Y
computed from the maximum entropy model is also the maximum likelihood
estimator for the model parameters η.
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5.2 Complexity of the Maximum Entropy Model

In this section, we analyze the complexity of solving the maximum entropy model
in (9). As shown in the previous section, the solution to this model is given by the
parametric distribution pσ = eY •Mσ−1. The parameters Y are the dual variables
given by the optimal solution to the following dual problem of (9)

max
Y

Q • Y −
∑

σ eY •Mσ−1 (13)

We prove the following result regarding the complexity of computing the pa-
rameters Y :

Theorem 3. It is #P-hard to compute the parameters of the maximum entropy
distribution {pσ} over n dimensional permutations σ ∈ Sn, that has a given
marginal distribution.

Proof. We make a reduction from the following problem:

Permanent of a (0, 1) matrix. The permanent of an n×n matrix B is defined
as perm(B) =

∑
σ∈Sn

Πn
i=1Bi,σ(i). Computing permanent of a (0, 1) matrix is

#P-hard [19].
We use the observation that

∑
σ eY •Mσ = perm(eY ), where the notation eY

is used to mean component-wise exponentiation: (eY )ij = eYij . For complete
proof, see [13].

Interestingly, there exists an FPTAS based on MCMC methods for computing
the permanent of any non-negative matrix [20]. Next, we derive a polynomial-
time algorithm for approximately computing the parameter Y that uses this
FPTAS along with the ellipsoid method for optimization.

5.3 An Approximation Algorithm

Here, we give an outline of the algorithm and present main ideas involved in the
analysis. The details along with a complete technical proof can be found in [13].

Using the KKT conditions for the problem, we show that computing optimal
Y is equivalent to finding a feasible point in the following bounded convex set:

K: Q • Y − 1 ≥ t∑
eY •MσMσ ≤ Q

0 ≥ Yij ≥ −γ ∀i, j
(14)

where γ = n log n
qmin

, qmin = min{Qij}, and t ∈ [−n logn−1, 0] is a fixed parameter.
Showing this equivalence involves proving upper and lower bounds on optimal Y .
Next, we use ellipsoid method to solve this feasibility problem. In each iteration,
the ellipsoid method requires to determine if the given iterate Y is feasible,
or compute a separating hyperplane, if infeasible. The gradient of a violated
constraint forms a natural candidate for separating hyperplane. In the above
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problem, both these tasks pose a problem due to the intractability of second set
of constraints. Checking feasibility requires computing the quantity:

f(Y ) :=
∑

σ eY •MσMσ

And, the gradient takes the form4:

∇f(Y ) =
∑

σ eY •Mσ (Mσ ⊗Mσ)

Both these quantities are #P-hard to compute. We use MCMC method for com-
puting permanent [20] to compute an (1 + ε)-approximation of these quantities.
For a fixed ε > 0, each iteration of the resulting ellipsoid algorithm looks like
this:

Algorithm

1. If Y violates any constraints other than the constraint on f(Y ), report Y /∈
K. The violated inequality gives the separating hyperplane.

2. Otherwise, compute a (1 ± δ)-approximation f̂(Y ) of f(Y ), where δ =
min{ ε

12 , 1}.
(a) If f̂(Y ) ≤ (1 + 3δ)Q, then report Y is feasible.
(b) Otherwise, say ijth constraint isviolated.Computea (1±γ)-approximation

∇̂fij(Y )of the gradient∇fij(Y ), where γ = δqmin/2n4. The approximate
gradient C = ∇̂fij(Y ) gives the desired separating hyperplane.

We show that the above algorithm gives an approximate (pseudo-)polynomial
time separating oracle for our problem, in the following sense:

Lemma 1. Given any Y ∈ Rn×n, and any parameter ε > 0, the algorithm with
runs time polynomial in n, 1/ε and 1/{minQij} and does one of the following:

– asserts that Y ∈ Kε, where Kε represents the set K with relaxed constraints
f(Y ) ≤ (1 + ε)Q.

– or, finds C ∈ Rn×n such that C •X ≤ C • Y for every X ∈ K.

Thus, the ellipsoid algorithm using this oracle will terminate with either Y ∈ Kε,
or declares that there exists no Y in K. The proof of the lemma involves proving
bounds on the diameter of set K, and gradient∇fij(Y ). The details are available
in [13]. Overall, we prove the following theorem (refer [13] for proof):

Theorem 4. Using the proposed approximate ellipsoid method, a distribution
{pσ ∼ eY •Mσ} over permutations can be constructed in time poly(n, 1

ε , 1
qmin

),
such that

– (1− ε)Q ≤
∑

σ pσMσ ≤ Q
– p has close to maximum entropy, i.e.,

∑
σ pσ log pσ ≤ (1 − ε)OPTE, where

OPTE(≤ 0) is the optimal value of (9).

4 A ⊗ B denotes ‘Kronecker product’ of matrix A and B.
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Abstract. We present a strategic model for pari-mutual markets by
traders using a cumulative utility function. Under this model, we derive
guidelines for the traders on how much to buy or sell. Those guidelines
can be implemented with three action combinations, called strategies.
We prove that those strategies are payoff equivalent for both the involved
trader and the others in the current transaction. However, in the long
run, their payoffs can be quite different.

We show that the buy-only strategy(BOS) achieves the highest market
capitalization for the current transaction. In addition, simulation results
also prove that BOS always yields the fastest growth of market capitaliza-
tion even when multiple stages are taken into consideration. Simulation
results also show that BOS is a better revelation of the traders’ personal
beliefs, though it exhibits a higher risk in traders’ payoffs.

1 Introduction

The Internet has not only made it possible to create a global electronic market
but also allowed for creations of new market models by providing a boundary-
less testing base through its powerful communication infrastructures. Prediction
markets have been among those that have benefited from such global medium.
It builds on an idea that combines the characteristics of investing and betting
to create a type of financial markets for wagers on different types of activities
such as political events, horse racing, sports, entertainments, or other uncer-
tain events. Despite of a short history of its introduction into the Internet life,
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prediction markets have a remarkable list of successful records in probability
forecasting of uncertain events.

Created as a type of financial markets to predict future [1,16,15], predic-
tion market models are based on the efficient markets hypothesis [6] that states
that traders’ information about the outcomes is aggregated into prices. In other
words, market prices on the predicted outcomes of future events reflect the collec-
tive estimation. It has been known that when a rational expectation equilibrium
is reached [11,7,5,2], the information distributed among traders will indeed be
aggregated on the market in the form of the market-clearing price.

Double auctions have been the most used mechanisms in prediction markets
where sales take place onlywhen both sides of trades accept the same trading prices
and quantities. However, it may suffer from the thin market problem [8] when there
is a large gap between bid and ask prices because of a low level of participation.

Hanson’s market scoring rule [8](MSR) offered a new approach to solve the
above thin market problem with an automatic market maker who accepts orders
from traders sequentially and determine the prices by a proper scoring rule. Sub-
sequently, Hanson proposed a logarithmic version [9](LMSR) which he advocated
for its advantages in terms of both cost and modularity.

Pennock [13] invented a new mechanism combining the advantages of tra-
ditional pari-mutuel markets and continuous double auctions. In this pricing
mechanism, prices change dynamically according to a price function. It allows
traders to buy or sell securities at any moment from the system according to the
price function. Payoff per share is calculated according to the quantity of the
winning security and the amount of losing money or of total money. Pennock
proposed and studied several types of price functions. A share-ratio version [3]
is now the most commonly used pricing model.

1.1 Related Work

Nikolova and Sami [12] introduced the method of projection games for the design
and analysis of prediction markets. The projection game was shown to serve as a
strategic model of DPM to capture the essence of strategics in MSR. Their studies
concluded that DPM and MSR are deeply connected to each other such that they
may be regarded as two different interfaces to the same underlying game.

Chen et al. [3], Dimitrov and Sami [4] independently studied traders’ untruth-
ful betting behaviors to mislead the next trader in LMSR markets. [3] found out
that, in LMSR, traders with joint probability distributions on signals have the
incentive to bet against their own information. [4] used a projection game to
study non-myopic strategies in LMSR in an infinite number of periods of plays.
[3] also showed that when there’re two players in DPM market, the penultimate
trader will withhold information.

Peters et al. [14] gave a performance comparison among MSR, DPM and
sequential convex pari-mutuel mechanism(SCPM) under the purely pari-mutuel,
full charge and tax penalty situations. They established that LMSR has a less
stable pricing function and outperforms DPM in the pure pari-mutuel setting in
which the total money pool is redistributed to the traders.
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1.2 Our Contributions

The utility functions in the previous works [13] and [12] consider a trader’s utility
for one transaction. However, a trader may trade in the market for several times
and the previous lost and gain should be also taken into account. We introduce
a cumulative utility function in which the profit not only concerns the shares
bought in the current transaction, but also the previous one. So a trader can
maximize his utility in total by this utility function. Furthermore, our model is
based on the independent belief distribution while previous ones are dependent.

Strategic analysis of DPM market [12] requires the knowledge of the true
probability of the event which is hard to obtain in reality. Our analysis is based
on the traders’ personal beliefs. Moreover, in [12], the utility function is also
used to maximize a trader’s payoff in the current transaction, which is different
from our work.

We provide actions for traders in general cases giving concrete guidelines
about how much to trade and what type of actions should be taken. From these
actions, we study three action combinations, called strategies, including first-
prior strategy, second-prior strategy and buy-only strategy. We prove that these
three strategies yield the same expected payoffs for all traders in the current
transaction. We should call this property the payoff equivalence property.

We also prove that the buy-only strategy achieves the highest market capi-
talization for the current trader. In addition, our simulation results show that
it also yields the fastest growth of market capitalization in the long run. By
simulations, we find that the market capitalization has an impact on traders’
payoffs. The higher market capitalization is, the higher risk traders may suffer.
The buy-only strategy, which is most commonly used in pari-mutual markets,
exhibits a riskier performance than the other two implying traders using this
strategy tend to win more or lose more.

On the other hand, from simulations, higher market capitalization leads to
a better fitting of market probability into traders’ beliefs, resulting in a better
revelation of traders’ private information. Hence, the market capitalization is a
double-edged sword for market designers.

2 Dynamic Parimutuel Markets

The dynamic parimutuel market is first proposed by Pennock [13] and imple-
mented in an on-line prediction market named Yahoo! Buzz market [10].

Suppose there’re n securities in the market. Each security i represents a mu-
tual exclusive outcome i and I is the collection of all outcomes. So i ∈ I and
|I| = n. The market is initialized with a number of outstanding shares on all
securities which in fact is a subsidy from the market maker. Traders trade with
the market maker by choosing appropriate securities to buy or sell according to
their personal beliefs. Prices vary dynamically all the time as the total money
pool changes. After the true outcome is revealed, the market is liquidated and
the winning security is cashed by re-distributing the money pool.
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Let q = {q1, q2, ..., qn} be the quantities of outstanding shares in the market.
In a share-ratio version of DPM market [13,3], the price function is related to
the ratio of quantities of securities. So the spot price for shares on outcome i is :

p̂i =
qi√
Σn

j=1q
2
j

.

The aggregating market estimation (i.e. market probability) on outcome i is:

Pri =
q2i∑n

j=1 q
2
j

.

The market capitalization (i.e. cost function) is:

C(q) =
√
Σn

j=1q
2
j .

The transition cost (or the trader’s payment) is:

C = C(qafter)− C(qbef.).

Here qbef. and qafter denote the quantity of securities before and after trans-
action respectively.

As the word “parimutuel” implies, traders who wager on the true outcome
win the money re-distributed by the total pool. Due to the dynamic changes of
shares on different events, the winning security’s return money, which we called
redemption price in such a market is not fixed. This adds some difficulties for
traders to report their beliefs since traders can not simply buy or sell securities
until prices reach their personal estimations such as in MSR, but they should take
the redemption price into account also. So the traders’ actions of maximizing
their expected payoffs a bit more complicated.

The redemption price of outcome i in DPM is the total market capitalization
divided by the quantity of outstanding shares of i if it happens,

p̃i =

√
Σn

j=1q
2
j

qi
.

∀i, the spot price for shares on outcome i, always varies between (0, 1), while
the redemption price for shares on outcome i always greater than 1. So traders
will be guaranteed positive utilities if they holds the securities of true outcome.

In order to simplify the model, in the rest of the paper we follow the same
assumption as in Pennock’s paper [13].

Assumption 2.1. [13] The current value for the payoff per share of security i
is the same as the expected final value of the payoff per share of i given that i
occurs. That is,

E[ρi|i] = ρi (2.1)
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3 Strategic Model of DPM

We consider two mutual exclusive outcomes A and B with x and y outstanding
shares respectively, i.e., I = {A,B}, |I| = 2 and q = {x, y}. All the results in
this paper can be generalized to multi-event cases easily.

3.1 Symmetry Property

Nikolova and Sami [12] give some insight about actions when traders have no
possession on their hands. But after several rounds of transactions, traders who
have securities will keep an closer eye on the market, waiting for the decisions
to sell or to buy more. So the strategies for traders who have involved in the
market seem to play more important roles for the reason that those traders are
more active and incentive.

We seek to propose a general action model for traders in all situations. Given
a trader having πA shares of security A and πB shares of security B, and the
total payment of these shares is C. There are x outstanding shares of A and y of
B in the market currently. After purchasing ∆x and ∆y extra shares on outcome
A and B, the trader’s total utility will be:

L = p(πA + ∆x)

√
(x + ∆x)2 + (y + ∆y)2

x + ∆x
+ (1− p)(πB + ∆y)

√
(x + ∆x)2 + (y + ∆y)2

y + ∆y

− (
√

(x + ∆x)2 + (y + ∆y)2 −
√

x2 + y2)− C

(3.1)

Note that C is the total payment in the previous transactions, which is indepen-
dent of ∆x and ∆y.

In order to maximize his utility, we take the partial derivative by ∆x,

∂L

∂∆x
⇒ ∆x = (y +∆y) 3

√
p

1− p
x− πA

y − πB
− x (3.2)

Similarly,
∂L

∂∆y
= 0 ⇒ ∆y = (x+∆x) 3

√
1− p
p

y − πB

x− πA
− y (3.3)

Theorem 3.1. In DPM, the way to purchase shares on outcome A and outcome
B to maximize trader’s utility is not unique.

Corollary 3.2. In DPM, in order to maximize the payoff, a trader can always
purchase securities only on one side.

Similarly, we can get the following corollary.

Corollary 3.3. In DPM, in order to maximize the payoff, a trader can always
sell securities only on one side.

From Corollary 3.2 and Corollary 3.3 we assume that a trader never buys or
sells shares simultaneously on both sides.
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3.2 Strategic Actions

In DPM, the redemption price depends on the quantity of outstanding shares
and changes dynamically, a trader couldn’t simply compare his personal belief
to the market probability when deciding which action to take. The number of
shares he possesses currently also has an impact on the decision. Hence, we
introduce a new concept called virtual market probability which depends on the
number of shares the current holding.

Definition 3.4 (Virtual Market Probability P̃ r). If a trader has πA shares
of security A and πB of B on hand, his virtual market probability on A is P̃ r =

x3(y−πB)
x3(y−πB)+y3(x−πA) and on B is 1− P̃ r.

Likewise, in the rest of the paper, we use Pr to denote the market probability on
outcome A and 1−Pr on outcome B. Now we can summarize the action model.

Theorem 3.5. Given a trader with probability estimation p on A and 1− p on
B, suppose he has πA shares of security A and πB of B on hand. The current
market outstanding shares on A are x, and on B are y. He will compare his
personal belief to the virtual market probability to maximize his expected payoff.

1. If p > P̃ r:
he should purchase ∆x = y 3

√
p

1−p
x−πA

y−πB
− x on outcome A, or,

sell ∆y = y − x 3

√
1−p

p
y−πB

x−πA
on outcome B.

2. If p < P̃ r:
he should sell ∆x = x− y 3

√
p

1−p
x−πA

y−πB
on outcome A, or,

purchase ∆y = x 3

√
1−p

p
y−πB

x−πA
− y on outcome B.

Theorem 3.5 provides a set of actions for general context. When a trader has
no shares on hand as follows, we can simplify the formula by setting πA = 0
and πB = 0. Furthermore, short sell is forbidden. In this case, things become so
straightforward that a trader just needs to compare his personal estimation to
the market probability and choose one type of securities to buy.

Remark 3.6. If a trader has no shares on hand, his virtual market probability
equals the market probability, i.e., P̃ r = Pr. Thus,

1. If p > Pr:
he should purchase ∆x = 3

√
p

1−py
2x− x on outcome A.

2. If p < Pr:
he should purchase ∆y = 3

√
1−p

p x2y − y on outcome B.

3.3 Definition of Strategies

According to Theorem 3.5, there’re two alternative actions under each case. We
define three strategies which are combinations of these actions as Figure 4 (See
Appendix B).



144 T.-M. Bu et al.

Definition 3.7

1. First-prior Strategy (FPS): If a trader’s personal belief about A is higher
than his virtual market probability on A, he will buy ∆x = y 3

√
p

1−p
x−πA

y−πB
− x

on A. Otherwise, he will sell ∆x = x − y 3

√
p

1−p
x−πA

y−πB
on A when ∆x ≤ πA.

And he will sell πA on A, then buy ∆y′ = y − (x − πA) 3

√
1−p

p
y−πB

x−πA
on B

when ∆x > πA.
2. Second-prior Strategy (SPS): If a trader’s personal belief about A is higher

than his virtual market probability on A, he will sell ∆y = y− x 3

√
1−p

p
y−πB

x−πA

on B when ∆y ≤ πB. And he will sell πB on B, then buy ∆x′ = (y −
πB) 3

√
p

1−p
x−πA

y−πB
−x on A when ∆y > πB. Otherwise, he will choose buying B.

3. Buy-only Strategy (BOS): A trader will choose buying ∆x = y 3

√
p

1−p
x−πA

y−πB
−x

on A when his personal estimation about A is higher than his virtual market
probability on A and buying ∆y = x 3

√
1−p

p
y−πB

x−πA
− y on B otherwise. He will

never sell his shares in this case.

So far we’ve generalized the strategic model of DPM. In the following sections,
we will focus on the properties of these strategies.

4 Strategies Comparison

4.1 Payoff Equivalence

Lemma 4.1. [Payoff Equivalence For Others] FPS, SPS and BOS yield the
same expected payoff for the other traders in the market.

Intuitively, payoff of these three strategies for the involved trader himself should
be equal too. Now we proof this conjecture.

Lemma 4.2. [Payoff Equivalence of the Involved Trader] FPS, SPS and BOS
yield the same expected payoff for the involved trader himself.

As Lemma 4.1 and 4.2 conclude, from the myopic point of view, three strate-
gies are equivalent to the involved trader himself and to the others which is
summarized by Theorem 4.3.

Theorem 4.3. FPS, BOS and SPS yield the same expected payoff for all traders
in the current transaction.

The expected utilities under these three strategies currently is the same too.
Even so, these three strategies have different impact on the total capitalization
of the market and the outstanding shares on events. Analysis below gives a closer
insight to this influence.

Proposition 4.4. If a trader chooses BOS rather than FPS and SPS, market
capitalization will raise the highest among the three strategies.
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Proposition 4.4 proves that BOS achieves the highest market capitalization for
the current transaction. Now we turn to see what happens if all traders choose
BOS. Intuitively, in BOS markets, which use BOS as the dominant strategies,
capitalization should also exceed the one that in FPS and SPS markets in the
long run. We design simulations to validate our conjecture.

5 Simulations and Observations

The market is open with two mutual exclusive events A and B, and initialized
with 100 shares on each event. A number of traders with a normal distribution
of beliefs are prepared. At each round, a trader is chosen randomly and enters
the market with the goal of achieving a maximal payoff by using his private
estimation. The choice of the trader draws from a uniform distribution so that
traders are selected with equal chances. After a number of trading rounds the
market closes and each trader attains a profit (may be negative). We always
assume event A comes out to be true in the end.

(a) µ = 0.5, σ = 0.2 and p ∈ (0, 1). (b) µ = 0.8, σ = 0.1 and p ∈ (0.4, 1)

(c) 3 Traders

Fig. 1. Market Capitalization of FPS, SPS and BOS
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5.1 Observation: Market Capitalization

In our experiments, we found that no matter what belief distribution is, BOS
always yields the highest market capitalization among the three strategies. Three
concrete examples are shown in Figure 1.1 Each curve represents one case that
all traders choose one type of the strategies as their dominant strategy.

5.2 Observation: Payoff

We put 10 traders into the market, with µ = 0.5 and σ = 0.2. In our all experi-
ments, the higher market capitalization suffers higher risk of payoff at all time.
Take Figure 2 for example. In (a) it shows the growth of market capitalization.
BOS, which always achieves the highest capitalization among the three tends to
win more but lose more in Figure 2 (b). The reason may be that traders have to
give higher investment to report their estimations when market capitalization is
higher. Hence, one may win more if his report is close to the true probability of
the outcome but lose more on the other hand.

(a) Market Capitalization (b) Payoffs

Fig. 2. Capitalization and Payoffs of FPS, SPS and BOS with 10 Traders and 40
Rounds

5.3 Observation: Share Ratio and Market Probability

In fact, the market probability can be looked on as a function of share ratio(x/y),
because Pr = x2

x2+y2 = (x/y)2

(x/y)2+1 . However, in DPM, a trader compares his per-
sonal estimation to his virtual market probability, not market probability, thus
the share ratio doesn’t simply change along with the beliefs of the traders. We
try to keep track of the share ratios in these three strategies.
1 (a) 10 traders whose beliefs draw from a normal distribution between (0, 1) with

mathematical expectation µ = 0.5, standard deviation σ = 0.2. (b) 20 Traders
whose beliefs draw from a normal distribution between (0.4, 1) with mathematical
expectation µ = 0.8, standard deviation σ = 0.1. (c) 3 Traders with p1 = 0.2,
p2 = 0.4 and p3 = 0.8.
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For simplicity, we only make comparisons between FPS and BOS. The analysis
for SPS is quite similar. Suppose the initial state of the market is x0 shares on
outcome A and y0 shares on outcome B with x0 = y0. At the first k rounds,
assume no trader has the chance to take his second transaction in the market.
So traders all take buying actions and the share ratio after round k equals to
xk

yk
=
∏k

j=1(
p(j)

1−p(j)

1
3j

)(x0
y0

)
1
3k =

∏k
j=1(

p(j)

1−p(j)

1
3j

). At k+ 1st round, assume trader
m (m < k) taking his second transaction. If his action is buying A at his 1st
transaction, then π(m)

A > 0 and π(m)
B = 0 currently. For FPS and BOS, he will buy

∆x when his personal estimation is higher than his virtual market probability.
So in this case FPS and BOS yield the same share ratio, even the same number
of shares on both sides. For the case when his personal estimation is lower than
his virtual market belief, FPS will sell A and BOS will buy B.

FPS, selling∆xk+1 :
x′k+1

y′k+1
=
xk −∆xk+1

yk
= (

p(m)

1− p(m) )
1/3(

xk − π(m)
A

yk
)1/3

BOS, buying∆yk+1 :
x′′k+1

y′′k+1
=

xk

yk +∆yk+1
= (

p(m)

1− p(m) )
1/3(

xk − π(m)
A

yk
)1/3

So, x′
k+1

y′
k+1

= x′′
k+1

y′′
k+1

but x′k+1 < x
′′
k+1, y

′
k+1 < y

′′
k+1.

At k + 2nd round, assume trader n taking his second transaction. Suppose
π

(n)
A > 0 and π(n)

B = 0, p(n)

1−p(n) = ε(n). In the case p(n) > P̃r, FPS and BOS will

both buy A. If p(n) < P̃r, FPS will sell A and BOS will buy B. As a result,

(x′
k+2

y′
k+2

)3 = ε(n)(x′
k+1

y′
k+1
− π

(n)
A

y′
k+1

), (x′′
k+2

y′′
k+2

)3 = ε(n)(x′′
k+1

y′′
k+1
− π

(n)
A

y′′
k+1

). So x′
k+2

y′
k+2

<
x′′

k+2
y′′

k+2
. When

π
(n)
A = 0 and π

(n)
B > 0, FPS will be (x′

k+2
y′

k+2
)3 = ε(n)( x′

k+1

y′
k+1−π

(n)
B

), and BOS is

(x′′
k+2

y′′
k+2

)3 = ε(n)( x′′
k+1

y′′
k+1−π

(n)
B

), so x′
k+2

y′
k+2

>
x′′

k+2
y′′

k+2
. From the above deduction we can see

share ratio depends on the securities one already possessed and may be different
for FPS and BOS after a few rounds of transactions.

Our simulations conform to our analysis. We put three traders into the market,
with beliefs p(1) = 0.1, p(2) = 0.3, and p(3) = 0.8. Figure 3 is the evolution of
share ratio from 6th to 18th round. It shows the irregular change. When other
variables are fixed, share ratio still depends on the type and amount of shares
the current trader holding.

Next we analyze the strategies’ performances from another aspect. We record
the market probabilities of the three strategies in each transaction, then com-
pare them with the involved trader’s personal belief. As we mentioned above,
during each transaction, the trader will try to maximize his expected payoff
by changing virtual market probability to his personal belief. After each trans-
action, virtual market belief equals to the involved trader’s belief regardless
of which strategy he chose. Table 1 computes the mean value µ and the
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Fig. 3. Share Ratio Evolution of 3 Traders: A Closer Look

Table 1. Market Probabilities VS Personal Beliefs

FPS SPS BOS

µ= 0.0700 0.0703 0.0680

σ= 0.0897 0.0902 0.0866

standard deviation σ by taking the personal beliefs as the benchmark.2 The
market probability of BOS always varies most closely to personal belief in our
experiments, suggesting Pr in the BOS market is closest to P̃ r. This may
be due to the huge amount of market capitalization of BOS market, since
limπA

x →0,
πB
y →0 P̃ r = limπA

x →0,
πB
y →0

x3(y−πB)
x3(y−πB)+y3(x−πA) = x2

x2+y2 = Pr. While
the higher of the market capitalization, the weaker role of a trader’s personal
possession plays, so P̃ r tends to converge to Pr.

In DPM market, traders can’t obtain the current trader’s belief directly because
the virtual market probability depends on the involved trader’s possession which
is private information to the others. For this reason, BOS, which is better fitting in
with traders’ personal beliefs, has the advantage of revealing aggregating market
belief. However, markets adopting BOS result in a huge amount of capitalization
so that traders in such markets suffer higher risk than the others. Market designer
should make the risk-fitting trade-off when designing a DPM market.

6 Conclusions and Discussions

The previous work usually focuses on maximizing traders’ expected payoffs at
the current step. In our paper, we take traders previous possessions into consid-
eration, seeking to get a maximal payoff in its entirety.

2 µ =
�n

i=1(Pri−pi)
n

, where Pri is the market probability on A in transaction i and pi

is the involved trader’s personal belief. σ =
��n

i=1(Pri−pi)2

n
.
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By using this cumulative utility function, we summarize actions for traders
in general cases. There’re three strategies covering all actions a trader may take
in different situations. They yield the same expected payoffs for all traders in
myopic, called payoff equivalence.

We observe in experiments that BOS, most commonly used in pari-mutual
markets, achieves the highest market capitalization than the other two strategies.
Traders in such a rapid growing capitalization market tend to win more and
lose more, exhibiting a riskier performance. But higher capitalization drives the
market probability to be a better indication of traders’ beliefs. Market designers
have to take this double-sided effect into account when open a DPM market.

In reality, traders’ behaviors may be some variations since people adjust their
estimations as they observe others’ behaviors and as more and more information
is revealed to the public. Moreover, people may have budget constraint, which
limit their buying power to report their personal beliefs. In our experiments,
traders’ beliefs remain unchanged during the transactions. Our future work will
introduce the dynamic changes of beliefs and budget control to the analysis of
the strategies.
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A Appendix: Proofs

A.1 Proof of Theorem 3.1

Proof. In fact, Equation (3.2) and (3.3) are the same equations, we re-arrange
them and get

x+∆x
y +∆y

= 3

√
p

1− p
x− πA

y − πB
(A.1)

Equation (A.1) implies that for an arbitrary ∆x, we can find one correspond-
ing ∆y which maximizes the utility. ��

A.2 Proof of Corollary 3.2

Proof. We can prove it directly from Equation (A.1). By either setting ∆x = 0
or ∆y = 0, maximal utility by purchasing shares on one side only could be
obtained. ��

A.3 Proof of Theorem 3.5

Proof. Proof of Case 1:
In Equation (3.1), let ∆y = 0, then,

L = p(∆x+ πA)

√
(x +∆x)2 + y2

x+∆x
+ (1− p)πB

√
(x +∆x)2 + y2

y

− (
√

(x+∆x)2 + y2 −
√
x2 + y2)− C

∂L

∂∆x
= 0 =⇒ ∆x = y 3

√
p

1− p
x− πA

y − πB
− x

When ∆x > 0, we have:

y 3

√
p

1− p
x− πA

y − πB
− x > 0 =⇒ x

y
3

√
y − πB

x− πA
< 3

√
p

1− p

=⇒ p >
x3(y − πB)

x3(y − πB) + y3(x− πA)
= P̃ r
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Similarly, if the trader sells ∆y shares of event B instead of buying A,

L = pπA

√
x2 + (y −∆y)2

x
+ (1 − p)(πB −∆y)

√
x2 + (y −∆y)2

y

− (
√
x2 + (y −∆y)2 −

√
x2 + y2)− C

Let ∂L
∂∆y = 0, then, ∆y = y − x 3

√
1−p

p
y−πB

x−πA
.

When ∆y > 0, we also have p > P̃ r.

Proof of Case 2:
The trader should sell security A or buy security B when his estimation is lower
than the virtual market probability. We first consider selling A.
The expected utility of selling ∆x shares of A is:

L = p(πA −∆x)
√

(x−∆x)2 + y2

x−∆x + (1− p)πB

√
(x−∆x)2 + y2

y

− (
√

(x−∆x)2 + y2 −
√
x2 + y2)− C

Take the first order derivative, we have, ∆x = x− y 3

√
p

1−p
x−πA

y−πB
.

When ∆x > 0, we have p < P̃ r.
Similarly, if the trader buys ∆y shares of event B instead of selling A,

L = pπA

√
x2 + (y +∆y)2

x
+ (1 − p)(πB +∆y)

√
x2 + (y +∆y)2

y +∆y

− (
√
x2 + (y +∆y)2 −

√
x2 + y2)− C

So we get ∆y = x 3

√
1−p

p
y−πB

x−πA
− y and p < P̃ r. ��

A.4 Proof of Lemma 4.1

Proof. We first consider the case when the involved trader’s personal belief is
higher than his virtual market probability on event A. If he chooses FPS or BOS,
he will buy ∆x on A. Redemption prices on security A and B will become:

p̃A =

√
(x+∆x)2 + y2

x+∆x
p̃B =

√
(x+∆x)2 + y2

y

If he chooses SPS, his strategy is selling ∆y on B, in which there’re two cases.

Case I: If ∆y ≤ πB , trader will sell ∆y shares on B. Redemption prices become:

p̃′A =

√
x2 + (y −∆y)2

x
p̃′B =

√
x2 + (y −∆y)2
y −∆y
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Since p̃2
A

p̃′2
A

=
1+ y2

(x+∆x)2

1+ (y−∆y)2

x2

, replacing∆x and∆y with∆x = 3

√
p

1−p
y3

y−πB
(x − πA)−x

and ∆y = y− 3

√
1−p

p
x3

x−πA
(y − πB) in the above equation, it’s easy to verify that

p̃A = p̃′A and p̃B = p̃′B.

Case II: If ∆y > πB , trader will sell πB shares on B, then buy ∆x′ shares on A.
Redemption prices become:

p̃′A =

√
(x+∆x′)2 + (y − πB)2

x+∆x′
p̃′B =

√
(x +∆x′)2 + (y − πB)2

y − πB

Replacing ∆x′ with ∆x′ = (y− πB) 3

√
p

1−p
x−πA

y−πB
− x we can also obtain p̃A = p̃′A

and p̃B = p̃′B.
That means, no matter which strategy the involved trader chooses, there’s just

buying or selling for option. And no matter which action he takes, the expected
redemption prices of the events are the same. Since the expected payoff of another
trader, for example j, is p(j)π(j)

A p̃A + (1− p(j))π(j)
B p̃B −C(j), the equivalence of

redemption prices implies the expected payoffs of all other traders in the market
currently are also the same regardless of which strategy the involved trader
chooses.

The proof for the case that the involved trader’s personal belief is lower than
the virtual market probability on event A is quite similar, so we omit here. ��

A.5 Proof of Lemma 4.2

Proof. First consider the case the involved trader’s personal estimation is higher
than his virtual market probability on event A. He may buy A or sell B for
maximizing the profit in this case. According to Lemma 4.1, redemption prices
of two actions are even.

p̃A = p̃′A =

√
(x+∆x)2 + y2

x+∆x
=

√
x2 + (y −∆y)2

x
=

√
(x+∆x′)2 + (y − πB)2

x+∆x′

p̃B = p̃′B =

√
(x+∆x)2 + y2

y
=

√
x2 + (y −∆y)2
y −∆y =

√
(x+∆x′)2 + (y − πB)2

y − πB

(A.2)

If he chooses BOS or FPS, he will buy shares on A, his expected payoff is
L̃1 = p(πA +∆x)p̃A + (1− p)πB p̃B − (

√
(x+∆x)2 + y2 −

√
x2 + y2)−C. If he

chooses SPS, he will sell shares on B, in which there’re two cases.

Case I: If ∆y ≤ πB, he will sell ∆y shares on B. And his expected payoff is
L̃2 = pπAp̃

′
A +(1− p)(πB−∆y)p̃′B− (

√
x2 + (y −∆y)2−

√
x2 + y2)−C, where

C is the total payment of previous transactions and C in the above two equations
are obviously the same. L̃1−L̃2 = p∆xp̃A−

√
(x+∆x)2 + y2−(−(1−p)∆yp̃B−√

x2 + (y −∆y)2). We combine it with Equation (A.2) and get L̃1 = L̃2.
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Case II: If ∆y > πB , trader will sell πB shares on B, then buy ∆x′ shares on A.
His expected payoff is: L̃2 = p(πA+∆x′)p̃′A−(

√
x2 + (y −∆y)2−

√
x2 + y2)−C.

L̃1−L̃2 = p∆xp̃A−
√

(x +∆x)2 + y2−(−
√

(x+∆x′)2 + (y − πB)2). Combining
with Equation (A.2), we can also get L̃1 = L̃2.

Similarly, we can prove the expected payoff equivalence of three strategies in
the case p < P̃ r. ��

A.6 Proof of Proposition 4.4

Proof. Given an arbitrary trader entering the market, there’re x and y out-
standing shares on outcome A and B respectively. The trader has πA and πB

shares on hand. Firstly we consider the case p > P̃ r, if he chooses FPS or
BOS, he should purchase ∆x shares on outcome A, so the market capitalization
is: MBOS = MFPS =

√
(x+∆x)2 + y2. If he chooses SPS, he should sell ∆y

shares on outcome B.

Case I: The trader has enough shares on B to sell (πB ≥ ∆y). MSPS =√
x2 + (y −∆y)2. Since y ≥ y−∆y and x+∆x ≥ x, we haveMBOS = MFPS ≥

MSPS

Case II: The trader has not enough shares on B to sell (πB < ∆y), so he
has to sell all shares on B first (∆y′ = πB), then buy ∆x′ on A in order
to get a maximal profit. The market capitalization of SPS becomes MSPS =√

(x+∆x′)2 + (y − πB)2. From x+∆x′ = (y−πB)( p
1−p )1/3(x−πA

y−πB
)1/3, x+∆x =

y( p
1−p )1/3(x−πA

y−πB
)1/3 and y ≥ y − πB , we can conclude

√
(x+∆x)2 + y2 ≥√

(x+∆x′)2 + (y − πB)2, implying MBOS = MFPS ≥MSPS .
The proof of MBOS = MSPS ≥MFPS in the case p < P̃ r is similar. ��

B Appendix: Figure of Subsection 3.3

(a) (b) (c)

Fig. 4. Work Flows of FPS, SPS and BOS
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Abstract. We consider the problem of truthfully sampling opinions of a
population for statistical analysis purposes, such as estimating the pop-
ulation distribution of opinions. To obtain accurate results, the surveyor
must incentivize individuals to report unbiased opinions. We present a
rewarding scheme to elicit opinions that are representative of the popula-
tion. In contrast with the related literature, we do not assume a specific
information structure. In particular, our method does not rely on a com-
mon prior assumption.

1 Introduction

Online surveys, opinion polls and questionnaires are primary tools to gather
information on a population and have been growing at a fast pace over the
past few years. There already exists an extensive literature on the construction
of questionnaires and their statistical processing and analysis (see, for exam-
ple, Montgomery [1] or Kish [2]). However, to derive meaningful results, it is
also imperative to get accurate samples. To induce honest behavior, the sur-
veyor should reward participants appropriately. This paper focuses on the design
of survey mechanisms that incentivize participants to provide true samples of
opinions.

This problem falls under the broader umbrella of information elicitation, for
which there exists several available solutions in various settings. For example,
when one is interested in gathering information regarding the uncertainty of
an upcoming event, such as the probability of a political candidate winning
an election, one may use scoring rules and score functions [3,4]. These induce
honest participation by setting rewards as a function of the outcome of the
event. However, these methods rely on the verifiability of the outcomes, and do
not apply to more general information, such as subjective opinions.

Miller et al. [5] show that eliciting non-verifiable information is nonetheless
possible if we make some assumptions on the information being retrieved, and

� Part of this work was done while the author was visiting Yahoo! Research, New
York.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 154–165, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Truthful Surveys 155

the knowledge available to the individuals. They consider the problem of gath-
ering ratings of the quality of a product or service. They assume that products
have a true quality, distributed according to a prior P (ω), and that each indi-
vidual experiencing a particular product of quality ω∗ gets a noisy signal t of
the quality, distributed according to P (t|ω∗). An individual with private sig-
nal t forms a posterior belief about the true quality P (ω|t). Miller et al. design
payment schemes to obtain truthful opinions based on probability scoring rules.
Jurca and Faltings [6] show how to minimize the payments needed to offset the
potential gain from lying. In both cases, the authors set rewards that depend
explicitly on the prior distribution. In a similar setting, Prelec [7] suggests an
alternative approach by delegating to participants the estimation of the distribu-
tion. Individuals are asked for both their private opinion and their beliefs about
the posterior distribution of opinions given their information. In Prelec’s mech-
anism, the rewards do not depend on any distribution directly, but indirectly
through the reports of the participants.

In the mechanisms described so far, the goal is to enforce truthful reports from
each participant through a Nash implementation. This is achieved by choosing
payment schemes in function of the distributions, either provided by the mecha-
nism designer or by the participants. The poses a number of practical difficulties:
the mechanism designer usually does not know the parameters of the model, and
asking individuals to report a distribution may be unnatural and infeasible with
many outcomes. Fortunately, to obtain a sample of opinions that is representa-
tive of the population, we need not know the opinion of a specific individual.

Jurca and Faltings [8] consider the related problem of obtaining the distribu-
tion of opinions in an online setting. In contrast to previous work, their payment
schemes does not depend on any prior. However, their mechanism is limited to
binary opinions, such as yes/no answers, and is only correct asymptotically as
the number of participants grows to infinity. In particular, it cannot be used to
obtain a true sample of opinions.

Besides, in all cases, the authors consider a bayesian model with common
prior. However, in many situations of interest, information is asymmetric and
no general assumption can be made about the knowledge of individuals. For ex-
ample, when rating an hotel, people who often travel in rural areas will form a
different belief about the distribution of hotel quality than those who frequently
visit large cities. Some individuals may be more informed than others, for exam-
ple a frequent business traveler staying over an extended period can hold more
accurate beliefs than occasional travelers with short stays. In general, when be-
liefs depend on information that is common knowledge nor part of the private
signal being reported, mechanisms that assume a common prior are no longer
incentive-compatible.

To construct robust mechanisms that do not rely on any particular assumption
about the knowledge of the agents, it is common to look for dominant-strategy
implementations. While a dominant-strategy implementation cannot be achieved
in the present setting, we propose mechanisms to obtain independent samples of
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opinions representative of the population, based on a Nash implementation that
does not rely on any particular knowledge structure. In particular, no common
prior is needed, and there may be asymmetric information. Our mechanisms
provide incentives through a payment scheme that depends only on the reports
of opinions of the individuals being surveyed. When at least one participant may
be trusted, our mechanisms ensure that at all Nash equilibria correspond to true
samples of opinions.

The paper is organized as follows. We present the problem and the model in
Section 2. In Section 3, we propose an intermediary mechanism to elicit ran-
dom values from given distributions. Those results are used in Section 4, which
presents our main survey mechanisms. We conclude in Section 5.

2 Model

We consider a large population of individuals, each of whom owns an opinion
regarding a given question (e.g., what is the quality of this hotel? what will be
the price of a barrel of oil in 10 years?). We assume opinions can be expressed as
real values in some closed interval I, for example a scale between 0 (worst hotel
quality) and 10 (best hotel quality). F represents the distribution of opinions
across the population: for each opinion value x, the quantity F (x) denotes the
proportion of the population with an opinion less than or equal to x. Formally,
we may consider that the population forms a continuum of individuals in the
interval I distributed according to F (hereafter referred to as the population
distribution). We assume that F is absolutely continuous (i.e., admits a density
function), and that the density is positive on I. The objective of the surveyor is
to obtain n independent samples of opinions, which may be used for example to
estimate the population distribution or to perform statistical analysis, such as
hypothesis testing, goodness-of-fit, etc.

The process of surveying the population is accomplished by a survey mech-
anism. Formally, a survey mechanism is a tuple (I, n,Π). I is the interval of
possible values of opinions, n is the number of agents being surveyed, and
Π : In �→ Rn is the vector of payments. The mechanism is interpreted as
follows:

Step 1. The surveyor selects n individuals at random from the population, re-
ferred to as “agent 1, . . . , agent n”.

Step 2. Each agent i reports an opinion ri ∈ I.
Step 3. Each agent i gets a payment Πi(r1, . . . , rn).

Each individual knows whether she is being surveyed, but does not know the
identities of the other agents being surveyed. As agents are selected at random,
their opinions are (ex-ante) identically and independently drawn from F . We
assume that agents are rational and seek to maximize their expected payment.
The population distribution is, a priori, not known.
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We will be interested in mechanisms that satisfy certain properties described
below. For a mechanism (I, n,Π):

Budget-Balance. The mechanism is budget-balanced when it generates no
profit nor loss: for all possible reports r1, . . . , rn ∈ I,∑

1≤i≤n

Πi(r1, . . . , rn) = 0 .

Anonymity. The mechanism is anonymous when payments do not depend on
the ordering of the agents: for all possible reports r1, . . . , rn,∈ I, all agent
i, and all permutations σ of {1, . . . , n},

Πi(r1, . . . , rn) = Πσ(i)(rσ−1(n), . . . , rσ−1(n)) .

The surveyor’s objective is to obtain samples of opinions that are representative
of the population, and is captured by the following two properties:

Accuracy. The mechanism is accurate when each agent reporting an opinion
drawn (ex-ante) according to the population distribution is a Nash equilib-
rium.

Strong Accuracy. The mechanism is strongly accurate when each agent re-
porting an opinion drawn (ex-ante) according to the population distribution
constitute the only Nash equilibria.

Note that reporting one’s true opinion is an accurate strategy, because the
opinion of an agent selected at random from the population is ex-ante distributed
according to F . However, depending on the information available to each indi-
vidual, there are accurate strategies that are not truthful: for example, each
agent reporting the opinion of her neighbor would still lead to accuracy. This
is not limiting, as the surveyor is not interested in the opinion of a particular
individual, but only in reports of opinions representative of the population.

Although we do not consider an implementation in dominant strategies, our
results hold independently of the knowledge structure of the population. In ad-
dition to her own opinion, each individual may have some knowledge about the
population, about the knowledge of the population, about the knowledge of the
knowledge of the population, etc. For example, individuals may be ignorant and
know nothing about the population distribution. Or individuals may be omni-
scient and know the opinion of each individual in the population. Alternatively,
there may be asymmetric information: some individuals may be ignorant and
others may know exactly the population distribution. There may be a common
prior, or different priors conditional on the history of each member of the popu-
lation. There may be publicly available information, such as the mean opinion,
etc. For simplicity, the reader may consider a complete information setting in
which opinions all individuals of the population are common knowledge, however
our results are much more general.



158 N. Lambert and Y. Shoham

3 Generating Random Values

In this section, we present a mechanism to elicit random values drawn from any
given distributions. The results of this section will be used to prove properties
of our survey mechanisms.

3.1 Mechanism Description

We consider a group of n agents 1, . . . , n. For all agent i, let Fi be a cumulative
distribution on a closed interval I, absolutely continuous with positive density.
The distributions F1, . . . , Fn are common knowledge. We define the following
random generator mechanism:

Step 1. Each agent i is asked to report a value randomly drawn from Fi.
Step 2. Each agent i is rewarded a payment given by

Πi(r1, . . . , rn) =
1

n− 1
(|{j | Fi(ri) < Fj(rj)}| − |{j | Fi(ri) > Fj(rj)}|)

+ 2Fi(ri)−
2

n− 1

∑
j �=i

Fj(rj) .

This mechanism creates incentives for each agent i to report a random value
drawn from Fi, as shown in the next theorem.

Theorem 1. The random generator mechanism satisfies the following properties:

1. The mechanism is budget-balanced.
2. If F1 = · · · = Fn, the mechanism is anonymous.
3. The payments take values in the range [−1, 1].
4. There exists a unique Nash equilibrium, corresponding to each agent i re-

porting a random number drawn according to Fi.

Proof. Let 1B be the function that equals 1 if the boolean statement B is true,
and 0 otherwise.

Items 1., 2., and 3. are easily shown, the proof is omitted due to space con-
straints.

Item 4. We proceed in two steps. We begin by showing that each agent i
choosing a value ri at random from Fi is a Nash equilibrium, then we show the
equilibrium is unique.

Let I = [a, b], and consider any particular agent i. Assume that any other
agent j �= i chooses to report a value rj distributed according to Fj . Let rk be
the report of any agent k.

Writing the payment of i as

Πi(r1, . . . , rn) =

2
n− 1

∑
j �=i

[
1
2
1Fi(ri)<Fj(rj) −

1
2
1Fi(ri)>Fj(rj) + Fi(ri)− Fj(rj)

]
,
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we get the expected payment for agent i, given her report ri:

E
rj∼Fj ,j �=i

[Πi(r1, . . . , rn)] =
2

n− 1

∑
j �=i

[∫ F −1
j (Fi(ri))

a

(
−1

2

)
fj(rj) drj

+
∫ b

F −1
j (Fi(ri))

(
1
2

)
fj(rj) drj

+
∫ b

a

(Fi(ri)− Fj(rj))fj(rj) drj

]

=
1

n− 1

∑
j �=i

[
−Fi(ri)

2
+

1− Fi(ri)
2

+ Fi(ri)

−
∫ b

a

Fj(rj)fj(rj) drj

]
= 0 .

Therefore the expected payment of agent i is null for any report ri. In par-
ticular, a randomized value distributed according to Fi is a best response. By
symmetry, each agent i choosing a value at random drawn from Fi is a Nash
equilibrium.

We now prove that the Nash equilibrium is unique. For all 1 ≤ i ≤ n, let Gi be
(cumulative) distributions such that each agent i choosing to report a random
value distributed according to Gi is a Nash equilibrium (with the convention
that pure strategies correspond to point mass distributions).

Agent i’s expected payment is

E
rj∼Gj,j �=i

[Πi(r1, . . . , rn)] =
1

n− 1

∑
j �=i

∫ b

a

Hj(Fi(ri)) dGi(ri) (1)

under the Riemann-Stieltjes integral, with

Hj(α) =
∫ F −1

j (α)

a

(
−1

2

)
dGj(rj) +

∫ b

F −1
j (α)

1
2

dGj(rj)

+
∫ b

a

[α− Fj(rj)] dGj(rj) .

After simplification and rearranging the terms,

Hj(α) =

[
α−Gj(F−1

j (α))

]
−
[
− 1

2
+
∫ b

a

Fj(rj) dGj(rj)

]
. (2)
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By Hewitt’s theorem [9], we may integrate by parts the second term and apply
the change of variable y = Fj(xj):

−1
2

+
∫ b

a

Fj(rj) dGj(rj) = −1
2

+ [Fj(rj)Gj(rj)]
b
a +
∫ b

a

Gj(rj)fj(rj) drj

=
1
2
−
∫ b

a

Gj(rj)fj(rj) drj

=
1
2
−
∫ 1

0
Gj(F−1

j (x)) dx

=
∫ 1

0

[
x−Gj(F−1

j (x))
]

dx ,

where we observed that 1/2 =
∫ 1
0 xdx. We replace the last term of (2) and get

Hj(α) = Γj(α)−
∫ 1

0
Γj(y) dy , (3)

where we defined Γj(y) = y −Gj(F−1
j (y)). Let

ζi =
1

n− 1

∑
j �=i

Γj . (4)

By putting together (1), (3) and (4), we get

E
rj∼Gj ,j �=i

[Πi(r1, . . . , rn)] =
∫ b

a

[
ζi(Fi(ri))−

∫ 1

0
ζi(y) dy

]
dGi(ri) . (5)

Suppose by contradiction that there exists i such that ζi �= 0. Then we show
that there exists some possible report r∗i such that agent i choosing r∗i makes a
positive expected payment.

We first prove that
∫ 1
0 ζi(y) dy < sup ζi. If the inequality is false, then ζi =

sup ζi almost everywhere, however since ζi �= 0 and ζi(0) = ζi(1) = 0, we can
choose y < 1 such that ζi(y) < sup ζi. As Gj and F−1

j are nondecreasing,
Γj(y+ ε) < sup ζi for ε > 0 small enough, so that ζi does not almost everywhere
equal sup ζi.

Since
∫ 1
0 ζi(y) dy < sup ζi, there exists y∗ such that ζi(y∗) −

∫ 1
0 ζi(y) dy > 0,

and so by taking r∗i = F−1
i (y∗), we find that agent i choosing the pure strategy

r∗i would make a positive expected payment according to (5).
Since i plays a Nash equilibrium, i’s strategy is a best response and her ex-

pected payment is at least that obtained by choosing the pure strategy r∗i and
so is strictly positive. Therefore, if the Nash equilibrium is such that ζi �= 0 for
some i, then i’s payment is strictly positive, otherwise ζi = 0 and i’s expected
profit is null. So the expected profit of every agent is non-negative, and if there
exists at least one agent i such that ζi �= 0, agent’s i profit is strictly positive,
which is impossible as the mechanism is budget-balanced. Hence for all i, ζi = 0,
which implies y = Gj(F−1

j (y)): the only possible Nash equilibrium corresponds
to Gj = Fj , for all j.
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3.2 Graphical Interpretation

The lazy hiker race gives an intuitive interpretation of our mechanism, and may
be described as follows. A group of n hikers starts a march on a mountain with
1 mile high. Each hiker has a designated trail, which is common knowledge. All
the trails share a common starting/ending point. Hikers are able to keep track of
the distance they cover along their own trail, but cannot observe the progression
of others. After 10 hours, the march stops and hikers are ranked in decreasing
order of altitude.

Hikers want to win the race, and are strong enough to climb to the top within
the time limit. But they are also lazy and prefer to win by making as little
effort as possible. When there are two hikers, the winner gets the maximum
satisfaction (+1) when he wins by being just above the other hiker. He gets the
worse satisfaction (−1) when he wins by being at the top, while the other hiker
remains at the bottom. The loser’s satisfaction is the opposite of the winner’s.
Satisfaction is linear in the difference of altitude, so that the winner is indifferent
between winning and losing when the difference of altitude between the hikers
is 0.5 miles. Figure 1 illustrates the case of two hikers. If there are more than
two hikers, the satisfaction of a hiker equals the average satisfaction when he
compares himself to each other hiker.

O

A

B

O

Height Height

y

x

y

x

difference of altitude

Fig. 1. Profile of trails for two hikers A and B

Hikers strategize about the distance they should cover so as to maximize their
average satisfaction. We observe that, if Fi(di) denotes the altitude reached by
hiker i after walking a distance1 di, the payment Πi(d1, . . . , dn) of the random
generator mechanism described previously corresponds exactly to the satisfac-
tion of hiker i when hikers 1, . . . , n cover the respective distances d1, . . . , dn

(where we take I = [0, 1]).
To simplify our argument, let’s take the case of two hikers. We first note that

there is no pure Nash equilibrium: if the loser knows where the winner is, he will
1 For simplification di is normalized and equals to the proportion of the total distance

covered.
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change his strategy to place himself slightly above the winner. Therefore hikers
should cover a random distance. When one hiker chooses to cover a distance
so that his altitude is uniformly random, each hiker gets a null satisfaction on
average, no matter what the other hiker decides to do. If, however, one hiker will
likely stop at a low altitude, the other hiker would get a likely positive satisfaction
by stopping at a medium altitude. More generally, when a hiker makes frequent
stops at some altitudes, the other can choose a location so as to get a positive
expected satisfaction. Therefore any choices of random distances that result
in nonuniform distribution of altitudes cannot lead to a Nash equilibrium. A
similar argument applies to groups of any size. Note that uniform distributions
of altitudes are obtained only when each hiker i covers a distance di chosen at
random according to the distribution Fi. For a given distribution F with density
f = F ′, one can verify that the trail with profile given by

x(y) =
∫ y

0

√
L

f(F−1(h))2
− 1 dh

will generate the mixed-Nash equilibrium strategy with distribution F , where L
is the desired length of the trail, with L > max f2. Figure 2 shows some density
functions and their associated trails.

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

(a)
0.2 0.4 0.6 0.8 1.0

x

0.5

1.0

1.5

2.0

(b)
0.2 0.4 0.6 0.8 1.0

x

0.5

1.0

1.5

2.0

2.5

(c)

0.5 1.0 1.5
x

0.2

0.4

0.6

0.8

1.0

y

(d)
0.5 1.0 1.5

x

0.2

0.4

0.6

0.8

1.0

y

(e)
0.5 1.0 1.5 2.0 2.5

x

0.2

0.4

0.6

0.8

1.0

y

(f)

Fig. 2. The equilibrium strategy for trails with profiles (d), (e) and (f) is to choose a
random distance with respective densities (a), (b) and (c)

4 Mechanisms for Truthful Surveys

We now describe our survey mechanisms. Given a random sample of k opinions
x1, . . . , xk, let F̃ x1,...,xk(x) be a statistical estimator of the proportion of the
population having an opinion less than or equal to x. In practice, it is common to
use a probabilistic model with parameterized densities. The maximum-likelihood
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parameters may for example be obtained through the Expectation-Maximization
algorithm [10]. The statistical estimator is said to be unbiased when, for all x,

E
X1,...,Xk∼F

[
F̃X1,...,Xk(x)

]
= F (x)

for all population distribution F . For example, the empirical distribution is an
unbiased estimator:

F̃ x1,...,xk(x) =
1
k

∑
1≤i≤k

1xi<x .

with 1xi<x = 1 if xi < x and 1xi<x = 0 otherwise.
Let G1, . . . ,Gk be a partition of the n agents into k groups, k ≥ 2. Let G(i) be

the group that includes agent i, and let Si = {1, . . . , n}\G(i) be the set of agents
that doesn’t include the group containing i. Our basic survey mechanism uses the
random generator mechanism of the previous section to incentivize each agent i
to reveal an opinion that corresponds to a statistical estimate of the distribution
population. For a given interval of possible opinions I and a number of agents
n, the payments of our survey mechanism are defined by

Πi(r1, . . . , rn) =
1

|G(i)| − 1
[
|{j | ri < rj}| − |{j | ri > rj}|

]
+ 2F̃i(ri)−

2
|G(i)| − 1

∑
j∈G(i),j �=i

F̃j(rj)

where F̃i(x) = F̃ {rj}j∈Si (x) is an unbiased statistical estimator of F (x) given the
reports of agents in Si. By linearity of expectation, and noting that the payments
are linear in the estimators, the following can be derived from Theorem 1:

Theorem 2. The basic survey mechanism is budget-balanced, anonymous, and
accurate.

Payments take values in the interval [−3, 3]. Payments near the interval bounds
occur only with estimators of high variance. As the variance decreases, pay-
ments become restricted to the interval [−1, 1]. One may also offset/rescale the
payments, to get for example payments in the interval [0, 1] so as to provide
participation incentives and strict individual rationality.

The mechanism easily adapts to the case of sequential elicitation, often desired
in online surveys. The surveyor should form groups of 2 or 3 people, progressively
as new reports come in, and reward individuals of a group as soon as the group
is finalized. Distribution estimates should be computed from reports of previous
groups only, with the exception of the distribution estimates used for rewarding
the first group, which could take as input reports of the second group.

As opposed to the work of Miller et al. [5] and Jurca and Faltings [6], truthful
revelation is a non-strict equilibrium of our mechanism. This limitation is due
to the lack of common prior: it is easily shown that, with our general knowledge
structures, no survey mechanism may implement truthful reporting as a strict
Nash equilibrium. Indeed, the expected payment for an agent who reports her
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true opinion must be maximized under all possible distributions of opinions, and
therefore must be constant for all possible reports. We observe by the same argu-
ment that any survey mechanism that implements reporting one’s true opinion
as a Nash equilibrium is also accurate, in the sense of Section 2.

Note that, as accuracy only requires that truthful reporting is a Nash equilib-
rium, a trivial mechanism that assigns a zero payoff to all agents also meets the
accuracy criterium: all strategies constitute a Nash equilibrium. However, our
mechanism is not trivial, as it admits only restricted Nash equilibria. Indeed it
can be shown that the only Nash equilibria correspond to each group reporting
the same aggregate distribution. As agents do not know, ex-ante, which group
they belong to, the only strategies that always result in a Nash equilibrium cor-
respond to all agents reporting an opinion drawn from the same distribution.
Therefore it would require significant coordination among the agents to play a
Nash equilibrium that is not truthful.

Besides, the Nash equilibria of our mechanism are not unique, and all methods
for eliciting subjective information suffer from the multiplicity of Nash equilibria,
since rewards can only be a function of information submitted by the agents.
However, unlike other methods such as Miller et al. [5] in which non-truthful
Nash-equilibria may lead to higher revenue for all agents, in our mechanism all
Nash equilibria lead to a null expected payment for all agents.

If there are trusted individuals, we can ensure uniqueness of the Nash equi-
libria that correspond to accurate samples, so that the surveyor is guaranteed
to obtain true random samples. Let T be a group of trusted individuals who
provide their true opinion. T may not be empty but can be of any positive size,
larger groups are generally preferred as they reduce the variance of individual
payments. For simplicity we assume that trusted agents form a separate group
from the n surveyed agents. The payments of our trusted-survey mechanism are
defined as follows:

Πi(r1, . . . , rn) =
1

n− 1
[
|{j | ri < rj}| − |{j | ri > rj}|

]
+ 2F̃ (ri)−

2
n− 1

∑
j �=i

F̃ (rj) ,

where F̃ (x) = F̃ {rj}j∈T (x) is an unbiased estimator of F (x) given by the reports
of trusted agents in T .

Our next theorem claims that the trusted-survey mechanism is guaranteed to
elicit true random samples of opinions. As for Theorem 2, the proof follows from
Theorem 1.

Theorem 3. The trusted-survey mechanism is budget-balanced, anonymous,
and strongly accurate.

5 Conclusion

We have investigated the problem of incentivizing individuals to elicit samples of
opinions that are representative of a population. We have proposed a nontrivial
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budget-balanced, anonymous mechanism for which reporting a true sample of
opinion, in particular reporting one’s true opinion, is a Nash equilibrium. When
some opinions can be trusted, we propose a variation of our mechanism which
guarantees that the only Nash equilibria correspond to providing true samples.
Although we use a Nash implementation as opposed to a dominant strategy
implementation—impossible to achieve in our setting—our results do not depend
on the knowledge structure of the population, in particular we do not make use
of a common prior.

We believe an important avenue for future work is that of empirical studies.
Our analysis has focused on theoretical considerations. However, it is not clear
how individuals would behave in practice. Experiments studying and comparing
our approach with those whose payments depend on a common prior, either
provided by the surveyor as in Miller et al. [5], or provided by the agents as in
Prelec [7], or simply assumed by all agents as in Jurca and Faltings [8], would
need to be performed to help assess the validity of each method, and their
potential applicability to practical contexts. In particular, more work would be
needed to understand the limitations raised by the common prior assumption
and those implied by the weakness of the Nash equilibria in our mechanisms.
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Abstract. This paper explores the relation between equilibrium coarsenings and 
equilibrium refinements via Bertrand competition example and similar situa-
tions, it shows that the typical equilibrium coarsening –– a unique correlated 
equilibrium –– is equivalent to the unique Nash equilibrium itself, is also 
equivalent to the equilibrium refinement, for the standard n-firms Bertrand 
competition model with linear demand and symmetric, linear costs in the most 
special and simplest case, and compares some wonderful and remarkable dif-
ferences of the existence, uniqueness, stability, connectivity, and strategic 
property of Nash equilibrium and correlated equilibrium between Cournot and 
Bertrand model. We also propose some open questions. 

Keywords: Equilibrium coarsenings, equilibrium refinements, strategic corre-
lation principle, positive correlated equilibrium, negative correlated equilibrium, 
duality gap. 

1   Introduction 

Van Damme(2002), Aumann and Dreze(2008), etc. call three basic solution concepts 
–– objective correlated equilibrium(henceforth correlated equilibrium), subjective 
correlated equilibrium (henceforth subjective equilibrium) and rationalizability –– 
coarsenings of Nash equilibrium(henceforth equilibrium coarsenings), in order to 
contrast with the well known refinements of Nash equilibrium(henceforth equilibrium 
refinements)1. 

Before these classifications have been made, Aumann himself research both subjects 
and hope the world will enjoy on both too. He rejected the idea that correlated equi-
librium represent the truth or that subgame perfect equilibrium represent the truth 
solely, and said one should not do this or that exclusively, but one should develop both 
kind of concepts and see where they lead2. 

These classifications and Aumann’s hope remind us to realize that equilibrium 
coarsenings are at least the same important as well as equilibrium refinements, and to 
pursue the relation between them simultaneously3.  
                                                           
1 See any “principle” textbook of game theory for equilibrium refinements and Section 4 for a 

brief discussion. 
2 See Van Damme(1998)’s interview with Robert Aumann. 
3 See Section 4 for this relation and Subsection 6.g for a conjecture and its various meanings. 
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The pursuit of simultaneously uniqueness issue of the set of correlated equilibrium 
and the set of Nash equilibrium is started by many authors. In the case of two firms, i.e., 
Cournot and Bertrand duopoly, the result of the uniqueness of the correlated equilib-
rium is known and follows from two different directions, rationalizability and super-
modular games. On the one hand, the fact that there is a unique correlated equilibrium 
for the Cournot duopoly is deduced from Bernheim's work (1984) because correlated 
equilibrium are independently rationalizable for a two-player game (Brandenburger 
and Dekel 1987). On the other hand, when there are two firms, the supermodular game, 
Milgrom and Roberts (1990) prove that if the game has a unique pure strategy Nash 
equilibrium, this equilibrium is the unique rationalizable strategy profile and hence the 
unique correlated equilibrium. However, when the number of firms is more than 2, 
Cournot and Bertrand games are not supermodular and have a continuum of ration-
alizable strategies. 

Liu asserts that the unique Nash equilibrium of the homogeneous good n-firms 
Cournot model with linear demand and linear costs coincides with the unique corre-
lated equilibrium. Neyman(1997) calls this is a surprising result4 and generalizes it. 
Neyman considers the class of strategic games that have convex strategy sets, smooth 
concave potential functions and bounded payoffs and shows that for this class of games 
the set of correlated equilibrium coincides with the set of mixtures of pure strategies 
that maximize the potential. In games with continuous action space, he also obtains a 
sufficient condition of uniqueness of correlated equilibrium if, in addition, the potential 
function is strictly concave. A recent paper by Ui (2008) further generalizes the con-
dition to a weaker one suffices for the uniqueness of a correlated equilibrium. Berge-
mann and Morris(2008) extend it to belief-free incomplete information games and 
show that if a game has a smooth concave potential for every payoff type profile and 
also has an ex post equilibrium, then the ex post equilibrium forms a unique incomplete 
information correlated equilibrium. 

Yi (1997) also extends Liu's results in two directions by introducing symmetric 
product differentiation and by allowing for convex cost functions. Yi explores condi-
tions on demand and cost functions under which the unique pure-strategy Nash equi-
librium of the Cournot model with symmetric product differentiation (which includes 
the case of no differentiation as a special case) is also the unique correlated equilibrium, 
and establishes the equivalence of the pure strategy Nash equilibrium set and the cor-
related equilibrium set for linear demand and weakly convex cost functions. 

Viossat (2005)5 and Calvó-Armengol(2006) also get the result of the set of corre-
lated equilibrium and Nash equilibrium of competitive games coincide and are reduced 
to one single point, but both of them does not mention the differences between corre-
lated equilibrium of Cournot model and Bertrand model6. 

Many people think that the unique Nash equilibrium must always be the unique 
correlated equilibrium since any Nash equilibrium is correlated equilibrium. Sekiguchi 
(2005) shows it is true for any finitely repeated game with imperfect monitoring, if all 
stage game correlated equilibrium are equilibrium minimaxing and have the same 
                                                           
4 I thank the referee for pointing out it's not totally surprising that games with unique Nash 

equilibrium have also unique correlated equilibrium now, because this is not generally the case; 
see below for more in-depth information. 

5 I thank the referee for pointing out Viossat’s work. 
6 See Section 5 for general differences and Subsection 6.c for the sign of covariance. 
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payoff vector, then any correlated equilibrium of the repeated game must be a repetition 
of stage game correlated equilibrium and therefore must have the same payoff vector. 
He also give a surprising counterexample that a stage game has a unique Nash equi-
librium and has not a unique correlated equilibrium when anyone of two conditions is 
relaxed, so the finitely repeated game may have an equilibrium outcome that is quite 
different from its stage game equilibrium. 

It is the very pursuing process and the attractive property of Bertrand model that 
constitutes the macro and micro background of this paper; we will to explore the rela-
tion between equilibrium coarsenings and equilibrium refinements via Bertrand com-
petition example and its related topics. 

This work is just a beginning and a by-product of the small part of the large project7, 
it shows that the set of typical equilibrium coarsening ––(the unique) correlated equi-
librium –– is equivalent to the set of Nash equilibrium itself, is also equivalent to the set 
of equilibrium refinement in the most special and simplest case and similar situations 
–– Where there are a lot of interesting properties, i.e., there is consensus and the con-
sensus is very clear on which refinement is appropriate because the equilibrium 
uniqueness and can greatly simplify or reduce information complexity, communication 
complexity, computational complexity and strategy complexity in correlated mecha-
nism design or correlated market design, and can goes a long way only carrying a little 
rationality, and so on. 

The plan of the paper is as follows: After summarizing preliminaries in Section 2, we 
devote Section 3 to a careful conceptual discussion and constructive proof of the main 
result. Section 4 briefly recalls the literature and lists a kind of feasible classifications of 
equilibrium coarsenings. Section 5 is devoted to general discussion about some wonderful 
and remarkable differences of the unique Nash equilibrium and correlated equilibrium 
between Cournot and Bertrand model, and Section 6 to listing some open questions. 

2   Preliminaries 

2.1   Bertrand Model 

We begin by considering static games of complete information. The Bertrand model, 
in which several firms compete to supply a homogeneous good with a given market 
demand of the good, is well presented in a strategic game form. Let N={1, ..., i, ..., n } 
be a finite set of firms. For each firm i∈N, let Si be a set of price possibilities of firm 

i. Let S be the Cartesian product of all Si, i.e., S=∏i∈N S
i, an n-tuple price distribution 

is p=(pi)i∈N∈S. For each i∈N and p∈S, p-i ={p1, ..., pi-1 , pi+1 ..., pn} denotes the price 

distribution supplied by every firm but firm i; thus p-i
∈S -i =∏j∈N \｛i｝S 

j and p={p-i, pi}. 
Firm i has the cost function Ci(P

i) and the demand function Di(P
i), Pi is price of firm i. 

Firm i's profits are πi=piDi(P
i)－Ci(Di(P

i)); i.e., for each firm i∈N, πi:S→R is the 
payoff function of firm i. A Bertrand-Nash equilibrium of the above model is a com-

bination, p*∈S, such that for every i in N, p*i
∈Argmax ),*( ii

sp
ppii

−
∈

π . 

                                                           
7 See section 4 for the project. 
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The model that is studied in the paper is a standard Bertrand model with linear de-
mand and symmetric, linear cost functions. The demand function Di(P

i) is linear, i.e., 
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where a＞0,b＞0; m=#{j∈N: P j=Pi },1＜m≤n, M={1, ..., i, ...,m }. Each firm i has a 
linear cost function Ci(Di (P

i)), i.e., Ci(Di (P
i))=ciDi (P

i), where ci is the constant mar-
ginal cost. Therefore, the profit of firm i is given by 

πi=piDi(P
i)－Ci(Di (P

i)) =piDi(P
i)－ciDi (P

i) =(Pi
－ci) Di (P

i).                (1) 

It is well known that in this model there exists a unique Bertrand-Nash equilibrium 
point, P* ={P1,

 ..., P*i, ...,P*n}, where the price is P*i=ci, and all the firms produce a 
positive amount is the symmetric one, i.e., Q*=D(P)/n=(a-c)/nb>0, m=n, with the 
above symmetric price. 

2.2   Correlated Equilibrium 

A correlated equilibrium (Aumann1974) is a Nash equilibrium of a game where each 
player gets a private or public signal from a correlation mechanism before the begin-
ning of the original game.  

For a finite game (N and S are finite), a probability vector F=F(p)p∈S on S is a 
correlated equilibrium distribution if for all i∈N, the following incentive compatibility 
constraint inequality is satisfied: 

0))](,(),([),( ≥− −−
∈

−∑ −−
iiiiiii

Sp

ii ppppppFii ξππ .                  (2) 

3   The Main Result 

In this section we will to explore the relation between equilibrium coarsenings and 
equilibrium refinements in Bertrand competition example, together with some similar 
basic propositions.  

For the class of n-firms Bertrand models with linear demand and linear, symmetric 
cost functions, we find a following equivalent property between their correlated and 
Nash equilibrium. 

Theorem. An n-firms Bertrand competition with linear demand and symmetric, linear 
cost functions has a unique correlated equilibrium, which is the unique Nash equilibrium. 

Proof. Assume that there exists a correlated equilibrium p
i, which differs from the 

unique Nash equilibrium P*i; i.e., there exists a probability distribution F on S such 
that F(S\{ p*})>0 and satisfying incentive constraint (2), 
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∀ i∈N, where the function ξi represents an arbitrary deviation of firm i, ξi : Si→Si, 
which must not be profitable. 

Let ξ be an n-tuple of deviations, i.e., ξ={ξ1, ..., ξi, ..., ξn}, andξi : Si→Si. 
The above inequalities can be rewritten as 

{ 0}/)]())[((),( ≥−−−−∑ −− ∈
− nbPpcaPPppF iii

i
iii

Sp

ii
ii ξξ ,              (3) 

∀ i∈N, We consider an n-tuple of deviations ξ from p∈S to the Nash equilibrium 
point P*, i.e., 

ξ(P)={ξ1(P1), ..., ξi(Pi), ..., ξn(Pn)}={P*1), ..., P*i, ..., P*n}, 

where for each firm i, 

ξi(Pi)= P*=ci .                                               (4) 

Then (3) can be rewritten by using (4) 

0]/))([(),( ≥−−∑ −− ∈
− nbPacPpPF i

i
i

Sp

ii
ii

                             (5) 

∀ i∈N. There are three possible cases for the inequalities (5), i.e., for each firm i,: 
⑴If 

i
i

iii PcPP >== *)(ξ , 
Then 

0/)( >− nbPa i  

And 
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, 

This deviation must not be profitable; what’s more, by (5), we have, 
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A contradiction. 
⑵If 

i
i

iii PcPP <== *)(ξ , 
Then 

0/)( >− nbPa i . 

And 
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Although this deviation satisfies (5) 
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But 

0/)( >− nbPa i , 
A contradiction. 
⑶If 

i
i

iii PcPP === *)(ξ , 
Then 

0/)( >− nbPa i  

And 

0]/))([(),( =−−∑ −− ∈
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i
i
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, 

This deviation satisfies both 
0/)( >− nbPa i  

And 

0]/))([(),( ≥−−∑ −− ∈
− nbPacPppF i

i
i

Sp

ii
ii

. 

Since the first deviation case must not be profitable and the second deviation case 
must not be impossible, so only the third deviation case ξi(Pi)=P*i=ci= Pi holds in the 
above mapping, i.e., the original correlated equilibrium strategy must equal the Nash 
equilibrium strategy almost surely, 

Pi=P* i .                                                              (6) 

∀ i∈N.                                                         Q.E.D. 

This result is similar to Milgrom and Roberts(1990)’ earlier one, but our method is 
totally different from theirs. Their result is an indirect and implicit one based on the 
solution of the supermodular game. First, our proof is a direct one, which uses 
Aumann’s inequality directly, and follows Liu (1996) closely in notation, with some 
changes to accommodate Bertrand competition. Second, our proof is more compact in 
notation as well as generally applicable, which can be used in the analysis of correlated 
equilibrium with arbitrary number of players, i.e., not only the oligopolistic competi-
tion of “small” games with few players –– duopoly is the special case of oligopoly 
competition only with two players, but also the monopolistic competition of large 
games with many players. Third, our proof is constructive and computable, which can 
be easily extended to construct and analyze the Bertrand competition in network or 
combinatorial markets, and can be used in the design of the algorithm of correlated 
equilibrium or correlated mechanism. 

Corollary 1. The set of typical equilibrium coarsening –– (the unique) correlated 
equilibrium ––  is equivalent to the set of Nash equilibrium itself, is also equivalent to 
the set of equilibrium refinement, for n-firms Bertrand competition model with linear 
demand and symmetric, linear costs. 

Proof. The first half is obvious by the above Theorem. Because there is only one game, 
its subgame is the original game itself; hence, the set of Nash equilibrium is  
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also equivalent to the set of equilibrium refinement. So, the second half is  
obvious too.                                                                                                            Q.E.D. 

Corollary 2. The set of typical equilibrium coarsening –– (the unique) correlated 
equilibrium ––  is equivalent to the set of Nash equilibrium itself, is also equivalent to 
the set of equilibrium refinement, for n-firms Cournot competition model with linear 
demand and asymmetric, linear costs. 

Proof. The first half is obvious by the above Theorem or Liu(1996)’s equilibrium 
uniqueness theorem. Because there is only one game, its subgame is the original game 
itself; hence, the set of Nash equilibrium is also equivalent to the set of equilibrium 
refinement. So, the second half is obvious too.                                                      Q.E.D. 

Corollary 3. The set of typical equilibrium coarsening –– (the unique) correlated 
equilibrium ––  is  equivalent to the set of Nash equilibrium itself, is also equivalent to 
the set of equilibrium refinement, for belief-free incomplete information games with 
supermodularity. 

Proof. The first half is obvious by Bergemann and Morris(2008)’s equilibrium 
uniqueness theorem. Because there is only one game, its subgame is the original game 
itself; hence, the set of Nash equilibrium is also equivalent to the set of equilibrium 
refinement. So, the second half is obvious too.                                                       Q.E.D. 

Corollary 4. The set of typical equilibrium coarsening –– (the unique) correlated 
equilibrium ––  is  equivalent to the set of Nash equilibrium itself, is also equivalent to 
the set of equilibrium refinement, for any finitely repeated game with imperfect moni-
toring which all stage game correlated equilibrium are equilibrium minimaxing and 
have the same payoff vector. 

Proof. The first half is obvious by Sekiguchi (2005)’s equilibrium uniqueness theorem. 
Because there is only one game, its subgame is the original game itself; hence, the set of 
Nash equilibrium is also equivalent to the set of equilibrium refinement. So, the second 
half is obvious too.                                                                                                  Q.E.D. 

Remark. The result of Corollary 4 is not hold when anyone of two conditions is relaxed. 

4   Literature 

In this section we briefly recall the literature and list a feasible one of equilibrium 
coarsenings from various logically reasonable classifications. 

Historically, equilibrium refinements once succeeded in getting rid of many equili-
bra, but there is no consensus on which refinement is appropriate and came a cost: the 
sharper the equilibrium refinement, the more the information complexity, the com-
munication complexity, the computational complexity and the strategy complexity, and 
the higher the degree of rationality needed on the part of players(Maskin1999).On the 
contrary, the duller the equilibrium coarsening, the less the information complexity, the 
communication complexity, the computational complexity and the strategy complex-
ity, and the lower the degree of rationality needed on the part of players. 

Although the area of equilibrium refinements has not died out, but it is no longer as 
active as before because too much effort was put into this area, it has reached a certain 
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maturity and has became quite esoteric at some point (Hart2007), whereas equilibrium 
coarsenings are well studied since 1970s, the literature on these subjects is too large to 
survey it here, we can only suggest a possible rough framework in statistical 
game-theoretic language, e.g., 

I. correlated equilibrium 
a. positive correlated objective equilibrium 
b. zero correlated objective equilibrium 
c. negative correlated objective equilibrium 

II. subjective equilibrium 
a. positive correlated subjective equilibrium 
b. zero correlated subjective equilibrium 
c. negative correlated subjective equilibrium 

III. rationalizability 
a. positive correlated rationalizability 
b. zero correlated rationalizability 
c. negative correlated rationalizability 

Note that there exists a small conceptual puzzle in zero correlated objective equi-
librium which is old in statistics and new in game theory, we may call it Gul’s paradox 
because it was pointed out by Frank Gul(1998), similarly in zero correlated subjective 
equilibrium and zero correlated rationalizability. In order to avoid this kind of con-
ceptual puzzle, zero correlated objective equilibrium, subjective equilibrium and ra-
tionalizability here, which are neatly permutation of all the equilibrium coarsening 
concepts, just mean independent objective equilibrium, subjective equilibrium and 
rationalizability.  

Moreover, we must make effort to find which equilibrium coarsenging is interesting 
because it is not all equilibrium coarsenings are meaningful. In the rest sections,  
we restrict our attention to positive correlated equilibrium and negative correlated 
equilibrium. 

Recently, Young(2007) even proposes a new concept of coarse correlated equilib-
rium or the “coarse” notion of correlated equilibrium which maybe be called it  
equilibrium coarsenings’ coarsenings, he also conjectures that coarse correlated equi-
librium may prove useful in describing the behavior of experimental subjects which has 
never been investigated systematically. 

Since equilibrium coarsenings is becoming a more and more important concept of 
game theory, it is time to summarize their rapid developments and to explore the rela-
tion between equilibrium coarsenings and equilibrium refinements now. This consti-
tutes a large project which remains us to accomplish in the future, and requires us to dig 
deep into or renew our toolkits to carry out this mission in the new era of algorithmic 
game theory or algorithmic economics. 

5   Discussion 

There are some wonderful and remarkable differences of existence, uniqueness, sta-
bility, connectivity, and strategic property of Nash equilibrium and correlated equilib-
rium between Cournot and Bertrand model:  
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a. The existence of Nash equilibrium and correlated equilibrium of Cournot model with 
linear demand and asymmetric, linear cost functions, according to Liu (1996); 
whereas the existence of Nash equilibrium and correlated equilibrium of Bertrand 
model with linear demand and symmetric, linear cost functions, according to this 
paper. 

b. The uniqueness of Nash equilibrium and correlated equilibrium of Cournot model 
and Bertrand model can be described as the same conditions as 5.a. 

c. The stability of Nash equilibrium and correlated equilibrium of Cournot model is 
evolutionary stable strategies, according to Qin and Stuart (1997), whereas the sta-
bility of the unique Nash equilibrium and correlated equilibrium of Bertrand model 
is not evolutionary stable strategies. 

d. The connectivity, such as pairwise stable network (Jackson and Wolinsky1996), of 
Nash equilibrium and correlated equilibrium of Cournot model, if links have a neg-
ligible cost, one firm gains with each link that it adds; if link costs are small enough, 
then the complete network is the unique pairwise stable network, according to 
Jackson (2006), whereas the pairwise stable network of Nash equilibrium and cor-
related equilibrium of Bertrand model has no such links. 

e. The strategic property of Nash equilibrium and correlated equilibrium of Cournot 
model is the firms' outputs are strategic substitutes: each firm's best response func-
tion slopes downwards; according to Bulow, Geanakoplos and Klemperer (1985), 
whereas the strategy property stability of the Nash equilibrium and correlated equi-
librium of Bertrand model is the firms' outputs are strategic complements: each 
firm's best response function, assuming they exist, slopes upward. 

6   Open Questions 

Our work suggests a number of interesting open questions because there are so many 
useful aspects of equilibrium coarsenings which we need to know. 

a. The fundamental difference of the unique Nash equilibrium and correlated equilib-
rium between Cournot and Bertrand model maybe due to strategic riskiness valua-
tion based on real option consideration of the players (Aumann and Serrano2007, 
Foster and Hart 2007, 2008).  

b. When the number of players of strategic competition is two and the power of the two 
players is not equal, there is a duality gap between the two players, according to 
linear program method. The set of correlated equilibrium may converge towards the 
set of Nash equilibrium while the duality gap become smaller and smaller. The set of 
correlated equilibrium and the set of Nash equilibrium both degenerate to a singleton 
while the duality gap equivalent to zero –– which the set of correlated equilibrium 
and the set of Nash equilibrium both degenerate to a singleton (Nau, Gomez 
Canovas and Hansen 2004). If this claim is true, is the duality gap method equivalent 
to Myerson (1997)’s dual reduction method? 

c. The covariance of correlated equilibrium (Chwe2006) is related to the equilibrium 
coarsenings. The sign of covariance of correlated equilibrium of Bertrand model is 
positive, whereas the sign of covariance of correlated equilibrium of Cournot model 
is negative. 
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d. Bertrand and Cournot correlated equilibrium represent two types of most basic 
correlated equilibrium: positive correlated equilibrium and negative correlated 
equilibrium. The sign of covariance of correlated equilibrium is positive represent 
positive correlated equilibrium; the sign of covariance of correlated equilibrium is 
negative represent negative correlated equilibrium. 

e. positive correlated equilibrium and negative correlated equilibrium are the key 
concept of strategic correlation principle of strategic competition, measured by 
strategic positive correlation coefficient, strate- gic negative correlation coefficient, 
correspond to strategic complements and strategic substitutes –– another pair of the 
traditional key concept of strategic competition. 

f. The indicators of positive correlated equilibrium and negative correlated equilibrium, 
such as strategic positive correlation coefficient and strategic negative correlation 
coefficient, can be partial or complete identified by nonparametric or semiparamet-
ric estimation methods in statistical game theory, and it is also important in network 
game setting; similarly to other indicators, e.g. variance, volatility, signal to noise 
ratio (Fudenberg and Levine2008), covariance (Chwe2006), likehood ratio (Abreu, 
Milgrom and Pearce 1991, Aoyagi2002, Zheng2008), hazard rate( Mahdian, 
McAfee and Pennock2008), etc. 

g. Equilibrium coarsenings and equilibrium refinements may be viewed as results of 
information set’s coarsenings and information set’s refinements in some condition. 
Moreover, they may be also viewed as mutually converse algorithm in the measure 
of information complexity, communication complexity, computational complexity 
and strategy complexity. This analogy make game theory more like Newton and 
Leibniz’s calculus, i.e., coarsenings may like integral, whereas refinements may like 
differential, which was pointed out by Von Neumann and Morgenstern in their great 
masterpiece over sixty years ago. If so, then we are going into a new golden age of 
mathematics, science and philosophy. 
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Abstract. We analyze diffusion models on sparse random networks with
neighborhood effects. We show how large cascades can be triggered by
small initial shocks and compute critical parameters: contagion threshold
for a random network, phase transition in the size of the cascade.

1 Introduction

In Crossing the Chasm [12], Moore begins with the diffusion of innovations the-
ory from Everett Rogers [16], and argues there is a chasm between the early
adopters of the product (the technology enthusiasts and visionaries) and the
early majority (the pragmatists). According to Moore, the marketer should fo-
cus on one group of customers at a time, using each group as a base for marketing
to the next group. The most difficult step is making the transition between vi-
sionaries (early adopters) and pragmatists (early majority). This is the chasm
that he refers to.

In this paper, we analyze a simple model of diffusion with neighborhood ef-
fects on random networks and we show that it can explain this chasm. Most of
the epidemic models [14], [15] consider a transmission mechanism which is inde-
pendent of the local condition faced by the agents concerned. But if there is a
factor of persuasion or coordination involved, relative considerations tend to be
important in understanding whether some new behavior or belief is adopted [17].

We begin by discussing one of the most basic game-theoretic diffusion models
proposed by Morris [13]. Consider a graph G in which the nodes are the individ-
uals in the population and there is an edge (i, j) if i and j can interact with each
other. Each node has a choice between two possible behaviors labeled A and
B. On each edge (i, j), there is an incentive for i and j to have their behaviors
match, which is modeled as the following coordination game parameterized by a
real number q ∈ (0, 1): if i and j choose A (resp. B), they each receive a payoff
of q (resp. (1− q)); if they choose opposite strategies, then they receive a payoff
of 0. Then the total payoff of a player is the sum of the payoffs with each of
her neighbors. If the degree of node i is di and SB

i is her number of neighbors
playing B, then the payoff to i from choosing A is q(di − SB

i ) while the payoff
from choosing B is (1 − q)SB

i . Hence i should adopt B if SB
i > qdi and A if

SB
i ≤ qdi. A number of qualitative insights can be derived from a diffusion model

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 178–185, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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even at this level of simplicity. Specifically, consider a network where all nodes
initially play A. If a small number of nodes are forced to adopt strategy B (the
seed) and we apply best-response updates to other nodes in the network, then
these nodes will be repeatedly applying the following rule: switch to B if enough
of your neighbors have already adopted B. There can be a cascading sequence
of nodes switching to B such that a network-wide equilibrium is reached in the
limit. This equilibrium may involve uniformity with all nodes adopting B or it
may involve coexistence, with the nodes partitioned into a set adopting B and
a set sticking to A. Morris [13] considers the case of infinite regular graph G
and provides graph-theoretic characterizations for when these different types of
equilibria arise.

Our work allows us to study rigorously an extension of this model, the sym-
metric threshold model, when the underlying network is a random network
with given vertex degrees. We are able to characterize the relation between the
network and the individual behavior. In particular, we compute the contagion
threshold of the random network and validate a heuristic result of Watts [18].
We also show that there is a phase transition for the set of adopters at a critical
value of the size of the initial seed. To the best of our knowledge, this result
is new and our work is the first rigorous analysis of a general threshold model
on a random network. Although random graphs are not considered to be highly
realistic models of most real-world networks, they are often used as first approx-
imation and are a natural first choice for a sparse interaction network in the
absence of any known geometry of the problem.

In [4], the influence maximization problem is defined as follows: given a social
network, find a small set of ’target’ individuals so as to maximize the number
of customers who will eventually purchase the product following the effect of
word-of-mouth. Hardness results have been obtained in [8],[3] and there is a
large literature on this topic. However, in most practical cases, the structure of
the underlying network is not known and then one has to rely on distributional
assumptions (like distribution of the degrees). Our model allows to answer the
probabilistic version of the influence maximization problem, when the exact
topology of the social network is not known.

The rest of the paper is organized as follows. In Section 2, we describe our
model. Section 3 contains the main results in particular, the contagion threshold
is computed and the phase transition phenomena is explained. Section 4 contains
technical details and we conclude in Section 5.

2 Model

2.1 The Configuration Model

In this section, we define our random graph model which is standard in the liter-
ature on random graphs [2]. Let n ∈ N and let (di)n

1 = (d(n)
i )n

1 be a sequence of
non-negative integers such that

∑n
i=1 di is even. We define a random multigraph

with given degree sequence (di)n
1 , denoted by G∗(n, (di)n

1 ) by the configuration
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model [2]: take a set of di half-edges for each vertex i and combine the half-
edge into pairs by a uniformly random matching of the set of all half-edges.
Conditioned on the multigraph G∗(n, (di)n

1 ) being a simple graph, we obtain a
uniformly distributed random graph with the given degree sequence, which we
denote by G(n, (di)n

1 ).
We will let n→∞ and assume that we are given (di)n

1 satisfying the following
regularity conditions [11]:

Condition 1. For each n, (di)n
1 = (d(n)

i )n
1 is a sequence of non-negative in-

tegers such that
∑n

i=1 di is even and, for some probability distribution (pr)∞r=0
independent of n,

(i) #{i : di = r}/n→ pr for every r ≥ 0 as n→∞;
(ii) λ :=

∑
r rpr ∈ (0,∞);

(iii)
∑n

i=1 di/n→ λ as n→∞;
(iv)

∑
i d

2
i = O(n).

In words, (pr) describes the distribution of the degrees, λ is the average mean
degree in the graph, condition (iii) ensures that the number of edges divided
by n tends to the average degree divided by 2. The technical condition (iv) is
required to transfer the results from G∗(n, (di)n

1 ) to G(n, (di)n
1 ) [5].

The results of this work can be applied to some other random graphs models
too by conditioning on the vertex degrees. For example, for the Erdös-Rényi
graph G(n, p) with np→ λ ∈ (0,∞), the assumptions hold with pr the distribu-
tion of a Poisson random variable with mean λ.

We consider asymptotics as n→∞ and say that an event holds w.h.p. (with
high probability) if it holds with probability tending to 1 as n→∞.

2.2 Symmetric Threshold Model

The contagion model of [13] is the simplest model for cascading behavior in
a social network: people switch to a new behavior when a certain threshold
fraction of neighbors have already switched. Our symmetric threshold model
generalizes this model by allowing the threshold fraction be a random variable
with distribution depending on the degree of the node and which are independent
among nodes. This is to account for our lack of knowledge of the exact threshold
value of each individual. Formally, we define for each d ∈ N, a sequence of i.i.d.
random variables in N denoted by (K(d),Ki(d))∞i=1. The threshold associated to
node i is Ki(di) where di is the degree of node i.

Now the progressive dynamics of the behavior operates as follows: some set
of nodes S starts out adopting the new behavior B; all other nodes start out
adopting A. We will say that a node is active if it is following B. Time operates
in discrete steps t = 1, 2, 3, . . .. At a given time t, any inactive node i becomes
active if its fraction of active neighbors exceeds its threshold Ki(di) + 1. This in
turn may cause others nodes to become active leading to potentially cascading
adoption of behavior B. We will suppose that Ki(1) = 0 for all i, so that any
leaf of the network is active as soon as its parent becomes active.



Diffusion of Innovations on Random Networks: Understanding the Chasm 181

It is easy to see that the final set of active nodes (after n time steps if the
network is of size n) only depends on the initial set S (and not on the order of
the activations) and can be obtained as follows: set Xi = 1 for all i in the set of
initial adopters. Then as long as there exists i such that

∑
j∼iXj > Ki(di), set

Xi = 1. When this algorithm finishes, the final state of node i is represented by
Xi: Xi = 1 if node i is active and Xi = 0 otherwise. It is easily seen that the
linear threshold model [9] is covered by our framework (see [10] for a proof).

3 Main Results

3.1 Contagion Threshold of a Random Graph

We consider the simple contagion model studied by Morris in [13] on a random
graph, i.e. Ki(d) = qd for all i. We define the contagion threshold of the graph to
be the maximum q for which a single individual can trigger a global cascade, i.e.
activate a strictly positive fraction of the total population, w.h.p. This notion
is the natural extension of the contagion threshold defined in [13] for regular
graphs.

Proposition 1. The contagion threshold qc is given by

qc = sup

⎧⎨⎩q :
∑

1≤s<1/q

s(s− 1)ps > λ

⎫⎬⎭ .
This result is in accordance with the heuristic result of [18] (see in particular the
cascade condition Eq. 5 in [18]) and is proved in Section 4. Figure 1 gives the
contagion threshold as a function of λ, the mean degree of the graph.

Note that q is related to the quality of the new technology: the lower q is,
the better the quality of the new technology is. In particular if q < 1/2, then
technology B is better than technology A. Hence qc can be interpreted as the
minimal quality for technology B to get a non-negligible adoption with a finite
initial seed of adopters.
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Fig. 1. qc for the contagion model on a Poisson random graph (green dashed) and on
a Power-law random graph (red) as a function of λ
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3.2 Phase Transition in the Contagion Model

We now still consider the contagion model but for q > qc. In this case, in order
to trigger a large cascade, the set of initial adopters must be a non-negligible
fraction of the total population. For simplicity, we assume that each node of the
network is part of the initial set of adopters with probability α independently
of everything else. In particular, the fraction of initial adopters is α and we now
compute the final proportion of active nodes: Φ(α) = limn→∞

�n
i=1 Xi

n .
We need to introduce some notation first. For integers � ≥ 0 and 0 ≤ r ≤ � let

b�r denote the binomial probabilities b�r(p) :=
(

�
r

)
pr(1−p)�−r. We denote by D a

random variable with distribution P(D = r) = pr. For 0 ≤ p ≤ 1 we letDp be the
thinning ofD obtained by takingD points and then randomly and independently
keeping each of them with probability p: P(Dp = r) =

∑∞
�=r p�b�r(p). We now

define h(p) = E[Dp11(Dp ≥ (1− q)D)].
The following proposition shows that the map α �→ Φ(α) exhibits point of

discontinuity.

Proposition 2. Consider a random graph such that p1 > 0 and let p̃ be the
largest local maximum point of ψ(p) = h(p)/p2 in (0, 1). Then there is a phase
transition at αc = 1− λ

ψ(p̃) : the function Φ(.) is discontinuous at αc.

Figure 2 shows an example of such a phase transition in the case of Poisson
random graphs.

a
0 0.01 0.02 0.03 0.04 0.05 0.06

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 2. Function Φ(α) for the contagion model on a Poisson random graph with para-
meter λ = 6 and q = 0.3

Returning to the (probabilistic) influence maximization problem, our deriva-
tion of the function Φ(α) is of crucial importance. In particular, the fact that
this function is highly non-linear seems not to have been taken into account so
far and will have a big impact on the optimal strategy. In the case where the
marketer knows the degree of each individual (but not the underlying social net-
work), our derivation of Φ(α) will allow her to target her effort, by choosing the
variable α.
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3.3 Dynamic of the Epidemic

In previous section, α was related to the amount spent by the marketer and
q corresponded to the quality of the new technology. We now consider that α
is actually fixed and corresponds to the fraction of technology enthusiasts in
the population. The rest of the population consists of pragmatists. Then the
marketer’s effort allows to increase the perceived quality by decreasing the value
of q. It is easy to see that the phase transition described in previous section
translates in a phase transition in the parameter q. Moreover, let consider the
simple following dynamic of the epidemic: the edges of the active nodes become
active(meaning that the end-point of the edge actually notices that his neighbor
is active) at rate 1 (see [10] for more details) . Then Figure 3 shows the case
where the real quality of the technology is q = 0.3. Without any marketing, a
small fraction of the pragmatists adopt the new technology but with marketing,
the diffusion is able to ’cross the chasm’ and a large fraction of the population
adopt the new technology.
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Fig. 3. Dynamic of the epidemic for Poisson random graph with λ = 6, α = 0.06 and
for q = 0.29 and q = 0.3

4 Exact Asymptotics

In this section, we state the theorem which is the corner stone of our work (see
[10] for a proof). Recall that Dp is the thinning of D (defined in Section 3.2).
We define the functions

h(p) := E [Dp11(Dp ≥ D −K(D))] , (1)
h1(p) := P(Dp ≥ D −K(D)). (2)

Theorem 1. Consider the graph G(n, (di)n
1 ) satisfying Condition 1 wehre each

node is part of the initial set of adopters with probability α independently of
everything else. Let p̂ := max{p ∈ [0, 1] : (1 − α)h(p) = λp2}.

(i) If (1 − α)h(p) < λp2 for all p ∈ (0, 1], which is equivalent to p̂ = 0, then
w.h.p. Φ(α) = 1.
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(ii) If (1 − α)h(p) ≥ λp2 for some p ∈ (0, 1], which is equivalent to p̂ ∈ (0, 1],
and further p̂ is not a local maximum point of (1−α)h(p)−λp2, then w.h.p.
Φ(α) = 1− (1− α)h1(p̂).

The proof of this Theorem consists in an extension of the work of Janson and
Luczak [7] where the k-core problem is studied. Our model is related to the
bootstrap percolation which is more or less the opposite of taking the k-core:
with our notation, it consists in taking Ki(di) = k a fix constant. For regular
graphs (i.e. di = d for all i), this process has been studied. Theorem 1 of [1] or
Theorem 5.1 of [6] correspond exactly to our Theorem in the particular case of
a d-regular graph, with fixed threshold.

Proof. of Proposition 1: Following the heuristic in [18], we introduce the following
threshold: Ki(d) = (d + 1)11(d ≥ 1/q). In words, a node i becomes active if one
of his neighbor is active and di < 1/q. Clearly the nodes that become active
in this model need to have only one active neighbor in the original contagion
model with parameter q. For any node i, let Ci denotes the final set of active
nodes when starting with only i as active node. Clearly, if j ∈ Ci, then we have
Ci = Cj . Now if we prove that Φ(0+) = limα→0 Φ(α) − α > 0, then for any
Φ(0+) > α > 0, at least one of the nα nodes say i in the initial set has activated
at least Φ(0+)

α n nodes. Hence we have #Ci/n ≥ Φ(0+)
α and any point in Ci will

activate at least the set Ci in the original contagion model. We now prove that
for q < qc, we have Φ(0+) > 0. This will implies that the contagion threshold is
larger than qc. We have

h(p) = E[Dp11(D ≥ 1/q) +D11(D < 1/q,Dp = D)]

=
∑

s≥1/q

spps +
∑

s<1/q

spsp
s

= p

⎛⎝ ∑
s≥1/q

sps +
∑

s<1/q

spsp
s−1

⎞⎠ .
Let f(p) = λp − h(p)

p . The condition Φ(0+) > 0 is equivalent to for ε > 0 small

enough f(1 − ε) > 0. We have f(1 − ε) = ε
(
−λ+

∑
s<1/q s(s− 1)ps

)
+ o(ε),

which is the condition of the proposition. The proof that for q > qc a single active
node cannot activate a positive fraction of the population is similar and omitted.

Proof. of Proposition 2: Let f(p, α) = λp2 − (1 − α)h(p). Note that f(0, α) = 0
and f(1, α) = αλ). Then we have f(p, α) ∼ −(1 − α)p1p < 0 as p → 0 and
αλ − f(p, α) ∼ (1 − p)

(
(1− α)(

∑
s<1/q s(s− 1)ps − λ)− 2αλ

)
< 0 as p → 1

and the result follows easily.

5 Conclusion

We proposed a simple model of diffusion with neighborhood effects which allows
to explain the ’chasm’. We should emphasize that the random graph model
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considered eliminates a lot of the network structure from the problem (only
the degree distributions are preserved). We expect that other local effects like
clustering will have a significant impact on the diffusion. However our work
shows that neighborhood effects ’alone’ can explain the ’chasm’ and we think
that these effects will actually ’add up’. These issues are left for future research.
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An Efficient PTAS for Two-Strategy Anonymous
Games

Constantinos Daskalakis�

Microsoft Research

Abstract. We present a novel polynomial time approximation scheme
for two-strategy anonymous games, in which the players’ utility func-
tions, although potentially different, do not differentiate among the iden-
tities of the other players. Our algorithm computes an ε-approximate
Nash equilibrium of an n-player 2-strategy anonymous game in time
poly(n)·(1/ε)O(1/ε2), which significantly improves upon the running time
nO(1/ε2) required by the algorithm of Daskalakis & Papadimitriou, 2007.
The improved running time is based on a new structural understanding
of approximate Nash equilibria: We show that, for any ε, there exists
an ε-approximate Nash equilibrium in which either only O(1/ε3) players
randomize, or all players who randomize use the same mixed strategy. To
show this result we employ tools from the literature on Stein’s Method.

1 Introduction

It has been recently established that computing a Nash equilibrium is an in-
tractable problem [19,11,6,14], even in the case of two-player games [7]. In view
of this hardness result, research has been directed towards the computation of
approximate Nash equilibria, which are states of the game in which no player
has more than some small ε incentive to change her strategy. But, despite much
research in this direction [23,22,12,18,13,5,28], only constant ε’s can be achieved
in polynomial time. Yet, an approximate Nash equilibrium in which the players
have regret equal to a significant fraction of their payoffs is not an attractive so-
lution concept; after all, there is no reason to expect a player to keep her strategy
if she can significantly improve by changing to a different one. On the contrary,
if ε were arbitrarily small, it could be that the cost of switching one’s strategy
is larger than the regret ε that she suffers. Hence, approximate equilibria with
arbitrarily close approximation could be credible solutions concepts. The follow-
ing question then emerges: Is there a Polynomial Time Approximation Scheme
for approximate Nash equilibria?

The question remains open for general games, but there are special classes
known to be tractable. It is well-known, for example, that zero-sum games
are solvable exactly in polynomial time by Linear Programming [25,9]. This
tractability result has been extended to a generalization of zero-sum games,
� This research was done while the author was a student at UC Berkeley. Supported
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called two-player low-rank games, in which the sum of the players’ payoff tables
has fixed rank; in this case there is a PTAS for approximate Nash equilibria. It
has also been shown that symmetric multi-player games with (about logarith-
mically) few strategies per player can be solved exactly in polynomial time by
a reduction to the theory of real closed fields [26]. In congestion games, we can
compute in polynomial time a pure Nash equilibrium, if the game is a symmetric
network congestion game [17], and an approximate pure Nash equilibrium, if the
congestion game is symmetric (but not necessarily network) and the utilities are
somehow “continuous” [8].

In this paper, we consider another important class of games, called anony-
mous. These are games in which each player’s utility function does not differen-
tiate among the identities of the other players. That is, the payoff of a player
depends on the strategy that she chooses and only the number of other players
choosing each strategy. Anonymous games comprise a broad and well studied
class of games (see, e.g., [3,4,20,24] for recent work on this subject by econo-
mists) which are of special interest to the Algorithmic Game Theory community,
as they capture important aspects of auctions and markets, as well as of Internet
congestion.

But, what do we know about computing Nash equilibria in anonymous games?
It was recently established that there is a PTAS for the case of a constant number
of strategies per player [15,16]. The running time of the algorithm given in [16]
is nO(f(s,1/ε)), where ε is the desired approximation, s the number of strategies
available to the players, and f some function which is polynomial in 1/ε, but
superpolynomial in s. Hence, although theoretically efficient for any fixed ε and
s, the algorithm is highly non-practical. Even for the simpler case of two-strategy
anonymous games the running time achieved by [15] is nO(1/ε2).

In this paper, we present a more efficient algorithm for 2-strategy anonymous
games, which runs in time poly(n) · (1/ε)O(1/ε2). The improved running time
is due to a novel understanding of certain structural properties of approximate
Nash equilibria. In particular, we show that, for any integer k, there exists an
ε-approximate Nash equilibrium, with ε = O(1/k), in which

(a) either at most k3 = O((1/ε)3) players use randomized strategies, and their
strategies are integer multiples of 1/k2; 1

(b) or all players who randomize choose the same mixed strategy which is also
an integer multiple of 1

kn .

To derive the above characterization, we study mixed strategy profiles in the
proximity of a Nash equilibrium. We establish that there always exists a nearby
mixed strategy profile which is of one of the types (a) or (b) described above
and satisfies the Nash equilibrium conditions to within an additive ε, thus cor-
responding to an ε-approximate equilibrium. Given this structural result (see
Theorem 1), an ε-approximate equilibrium can be found by dynamic program-
ming (see Theorem 2).

1 Note that, since every player has 2 strategies, a mixed strategy is a number in [0, 1].
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We feel that a more sophisticated analysis can establish similar structural
properties for approximate Nash equilibria in multi-strategy anonymous games,
extending our efficient PTAS to anonymous games with any fixed number of
strategies.

Overview of Techniques: Let us track down the effect in the Nash equilibrium
resulting by replacing a mixed Nash equilibrium (p1, . . . , pn) ∈ [0, 1]n by another
strategy profile (q1, . . . , qn) ∈ [0, 1]n, where the probabilities pi and qi correspond
to the mixed strategy of player i in the two strategy profiles. It is not hard to
see that the approximation achieved by the strategy profile (q1, . . . , qn) can be,
loosely speaking, bounded by the total variation distance between the distribu-
tion of the sum of n Bernoulli random variables with expectations p1, . . . , pn and
that of another sum of Bernoulli random variables with expectations q1, . . . , qn.
Hence, to establish the structural property described above it is sufficient to
show that given any set of probability values (p1, . . . , pn) there is another set
(q1, . . . , qn) which satisfies either Property (a) or Property (b) and is such that
the total variation distance between the two sums of Bernoulli random variables
with expectations {pi}i and {qi}i respectively is at most ε.

To give some insight into the construction of the set {qi}i, let us consider the
following scenarios for an integer k:

(i) at least k3 of the pi’s fall in the set [1/k, 1− 1/k] and the others are either
0 or 1;

(ii) at most k3 of the pi’s fall in the set [1/k, 1− 1/k] and the others are either
0 or 1;

Let us consider Case (i) first. It is reasonable to expect, by the Central Limit The-
orem, or finitary versions thereof, that the sum of at least k3 Bernoulli random
variables with expectations from the set [1/k, 1− 1/k] is close in total variation
distance to a Normal distribution, with the appropriate mean and variance, and,
hence, to a Binomial distribution which approximates that Normal distribution.
In Section 6.1 we show that this is indeed the case, even if we only allow the prob-
ability of the Binomial distribution to be an integer multiple of 1/kn. Hence, the
sum of the original Bernoulli random variables with expectations from the set
[1/k, 1−1/k] can be approximated by another set of Bernoulli random variables
which all share the same mean, which, moreover, is an integer multiple of 1/kn.
Hence, an approximate equilibrium satisfying Property (b) above can be defined.

In the Case (ii), approximating by a Normal distribution is not tight enough to
give overall total variation distance of O(1/k). We resort instead to the following
structural result shown in [15]: Given any set of Bernoulli random variables with
expectations p1, . . . , pn, there is a way to round the probabilities to multiples of
1/k2, for any k, so that the distribution of the sum of these n variables is af-
fected by an additiveO(1/k) in total variational distance. Hence, an approximate
equilibrium satisfying Property (a) above can be defined (see Section 6.2).

It remains to argue that the Cases (i) and (ii) are general enough. For this,
we describe an iterative procedure which alters the values of those pi’s falling
outside the set {0, 1} ∪ [1/k, 1 − 1/k] in such a way that, in the end of this
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procedure, all pi’s do fall in the set {0, 1} ∪ [1/k, 1 − 1/k] and the distribution
of the sum of Bernoulli random variables with expectations pi does not change
by more than O(1/k) in total variation distance. Let us, e.g., consider the pi’s
falling in the set (0, 1/k) and round some of them to 0 and some of them to 1/k
so that their sum is approximated to within O(1/k). By the law of rare events
(the precise result we use is from the literature on Poisson approximations, see,
e.g., [1]), the sum of Bernoulli’s before and after the rounding is distributed like
two Poisson distributions with means equal to the sum of pi’s before and after
the rounding respectively. Since these means are within O(1/k), the two Poisson
distributions are within O(1/k) in total variation distance and so are the sums
of the Bernoulli’s before and after the rounding. For details see Section 5.

2 Definitions and Notation

A game has n players, 1, . . . , n, and t strategies, 1, 2, . . . , t, available to them, so
that each player gets some payoff for every selection of strategies by her and the
other players. The game is called anonymous, if the payoff of each player depends
on her strategy and only the number, but not the identities, of the other players
who choose each of the t strategies.

In this paper, we study two-strategy anonymous games. In these games, the
payoff function of each player i is specified by giving ui

1, u
i
2 : {0, 1, . . . , n− 1} →

[0, 1],2 so that ui
s(m) is the payoff of i, if she chooses strategy s and m of the

other players choose strategy 2. Hence, the game is succinctly representable [26],
in the sense that its representation requires 2n2 numbers, as opposed to the
(exponential in the number of players) ntn numbers required for general games.
Arguably, succinct games are the only multiplayer games that are computation-
ally meaningful (see [26] for an extensive discussion of this point).

A mixed strategy profile is a set of n probability values p1, p2, . . . , pn ∈ [0, 1],
corresponding to the probability with which each player chooses strategy 2. A
mixed strategy profile is an ε-Nash equilibrium if, for all i ∈ [n], the following hold

E{pj}j �=i
ui

1(x) > E{pj}j �=i
ui

2(x) + ε⇒ pi = 0,

E{pj}j �=i
ui

2(x) > E{pj}j �=i
ui

1(x) + ε⇒ pi = 1,

where for the purposes of the expectation x is drawn from {0, . . . , n−1} by tossing
n−1 independent coins with probabilities {pj}j �=i. That is, a mixed strategy profile
is an ε-Nash equilibrium if everyplayer is only randomizing among strategieswhich,
when played against the mixed strategies of the other players, achieve expected
payoff within (additive) ε from the expected payoff achieved by the best strategy.

Thenotion of ε-Nash equilibrium is closely related to the notion of ε-approximate
Nash equilibrium, defined as any mixed strategy profile in which no player can
improve his expected payoff by more than ε by changing to a different mixed
strategy. It is easy to see that any ε-Nash equilibrium is also an ε-approximate
2 In the literature on Nash approximation, utilities are usually normalized in this way

so that the approximation error is additive.
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Nash equilibrium, but the opposite implication is not true in general. In this
paper, we present algorithms for computing (the stronger notion of) ε-Nash
equilibria.

Anonymous games can be extended to ones in which there is also a finite
number of types of players, and utilities depend on how many players of each
type play each of the available strategies. Our algorithm can be easily generalized
to this framework, with the number of types multiplying the exponent of the
running time.

Let us conclude this section with a few more definitions. We define the total
variation distance between two distributions P and Q supported on a finite set
A as follows

||P ; Q|| := 1
2

∑
α∈A

|P(α)−Q(α)|.

Similarly, if X and Y are two random variables ranging over a finite set, their
total variation distance, denoted ||X ; Y ||, is defined as the total variation
distance between their distributions.

We also define the Translated Poisson distribution as follows.

Definition 1 ([27]). We say that an integer random variable Y has a translated
Poisson distribution with paremeters µ and σ2 and write L(Y ) = TP (µ, σ2) if
L(Y − �µ − σ2�) = Poisson(σ2 + {µ − σ2}), where {µ − σ2} represents the
fractional part of µ− σ2.

Finally, for a positive integer �, we denote [�] := {1, . . . , �}.

3 Statement of Results

We show the following probabilistic lemma, whose proof is given in Sections 4–6.

Theorem 1. Let {pi}n
i=1 be arbitrary probability values, pi ∈ [0, 1] for all i =

1, . . . , n, let {Xi}n
i=1 be independent indicator random variables such that Xi has

expectation E [Xi] = pi, and let k be a positive integer. Then there exists another
set of probabilities {qi}n

i=1, qi ∈ [0, 1], i = 1, . . . , n, which satisfy the following
properties:

1. if {Yi}n
i=1 are independent indicator random variables such that Yi has ex-

pectation E [Yi] = qi, then,∣∣∣∣∣
∣∣∣∣∣∑

i

Xi ;
∑

i

Yi

∣∣∣∣∣
∣∣∣∣∣ = O(1/k), (1)

and, for all j = 1, . . . , n,

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i�=j

Xi ;
∑
i�=j

Yi

∣∣∣∣∣∣
∣∣∣∣∣∣ = O(1/k). (2)
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2. the set {qi}n
i=1 is such that:

(a) if pi = 0 then qi = 0;
(b) one of the following is true:

i. there exists S ⊆ [n] and some value q which is an integer multiple of
1

kn , such that, for all i /∈ S, qi ∈ {0, 1}, and, for all i ∈ S, qi = q;
ii. or, there exists S ⊂ [n], |S| < k3 such that, for all i /∈ S, qi ∈ {0, 1},

and, for all i ∈ S, qi is an integer multiple of 1
k2 .

Our main result (Theorem 2 below) is based on the following observation: if
we replace a strategy profile (pi)n

i=1 that is a Nash equilibrium by the nearby
strategy profile (qi)n

i=1 specified by Theorem 1, then the change in each player’s
utility is bounded by the total variation distance between the number of players
playing their second strategy in the two strategy profiles. It follows that the
search for approximate Nash equilibria can be restricted to the strategy profiles
of the form 2(b)i or 2(b)ii specified in Theorem 1, and this search can be done
efficiently with dynamic programming. Due to space limitations, the proof of the
following theorem is given in the full version of the paper [10].

Theorem 2. For any ε < 1, an ε-Nash equilibrium of a two-strategy anonymous
game with n players can be computed in time poly(n) ·U · (1/ε)O(1/ε2), where U
is the number of bits required to represent a payoff value of the game.

4 Overview of the Proof of Theorem 1
We employ a hybrid argument. In particular, we define first a set of probabil-
ity values {p′i}i∈[n] and a corresponding set of independent Bernoulli random
variables {Zi}i∈[n] with expectations E [Zi] = p′i, for all i ∈ [n], such that∣∣∣∣∣

∣∣∣∣∣∑
i

Xi ;
∑

i

Zi

∣∣∣∣∣
∣∣∣∣∣ = O(1/k), (3)

and, moreover, for all j = 1, . . . , n,

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i�=j

Xi ;
∑
i�=j

Zi

∣∣∣∣∣∣
∣∣∣∣∣∣ = O(1/k). (4)

The set of probability values {p′i}i∈[n] does not necessarily satisfy Property 2(b)i
or 2(b)ii in the statement of Theorem 1, but will allow us to define the set of
probabilities {qi}i∈[n] which does satisfy Property 2(b)i or 2(b)ii and, moreover,∣∣∣∣∣

∣∣∣∣∣∑
i

Zi ;
∑

i

Yi

∣∣∣∣∣
∣∣∣∣∣ = O(1/k), (5)

and, for all j = 1, . . . , n,

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
i�=j

Zi ;
∑
i�=j

Yi

∣∣∣∣∣∣
∣∣∣∣∣∣ = O(1/k). (6)

By the triangle inequality, (3) and (5) imply (1), and (4) and (6) imply (2). Let
us call Stage 1 the process of determining the p′i’s and Stage 2 the process of
determining the qi’s. The two stages are described briefly below, and in detail
in Sections 5 and 6 respectively.
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Stage 1: The goal of this stage is to eliminate any probability value pi falling
in the set Tk := (0, 1

k ) ∪ (1 − 1
k , 1), that is, any pi that is either too small, but

non-zero, or too large, but not one. To remove the small pi’s we round some of
them to 0 and some of them to 1/k in such a way that their sum changes by at
most 1/k. Similarly, we round some of the large pi’s to 1−1/k and some of them
to 1, so that their sum changes by at most 1/k. Finally, we leave the pi’s falling
outside Tk unchanged. Our work from [15] implies that the set of probability
values {p′i}i thus defined satisfies (3) and (4). See details in Section 5.

Stage 2: The definition of the set {qi}i depends on the number m of p′i’s which
are different than 0 and 1. The case m ≥ k3 corresponds to the Case 2(b)i in the
statement of Theorem 1, and the case m < k3 corresponds to the Case 2(b)ii. In
both cases we set qi = p′i, if p′i ∈ {0, 1}; and here is how we round the p′i’s from
the index set M := {i p′i /∈ {0, 1}}:
– Case m ≥ k3: Using results from the literature on Stein’s method, we show

that the sum of Bernoulli random variables with expectations p′i, i ∈ M, can
be approximated by a Binomial distribution B(m′, q), where m′ ≤ m and
q is an integer multiple of 1

kn . In particular, we show that an appropriate
choice of m′ and q implies (5) and (6), if we set m′ of the qi’s from the index
set M equal to q and the remaining equal to 0.

– Case m < k3: The Binomial approximation may not be tight enough for
small values of m. To remedy this, we follow our rounding scheme from [15].
That is, we delicately round the p′i’s to nearby multiples of 1

k2 so that their
sum

∑
i∈M p′i is approximated to within 1/k2 by the sum

∑
i∈M qi. Our

results from [15] imply that (5) and (6) hold in this case.

5 Details of Stage 1

We describe the definition of the set {p′i}i. For concreteness, let

L := {i i ∈ [n] ∧ pi ∈ (0, 1/k)} and H := {i i ∈ [n] ∧ pi ∈ (1 − 1/k, 1)} .

We set p′i = pi, for all i ∈ [n] \L∪H; that is, we leave the probabilities pi falling
outside the set Tk unchanged. It follows that∥∥∥∥∥∥

∑
i∈[n]\L∪H

Xi ;
∑

i∈[n]\L∪H
Zi

∥∥∥∥∥∥ = 0, (7)

and, for all j ∈ [n] \ L ∪H,

∥∥∥∥∥∥
∑

i∈[n]\(L∪H)\{j}
Xi ;

∑
i∈[n]\(L∪H)\{j}

Zi

∥∥∥∥∥∥ = 0. (8)

To round the probabilities pi, i ∈ L, we use the following procedure:

1. Let SL :=
∑

i∈L pi; m =
⌊

SL
1/k

⌋
.

2. Let L′ ⊆ L be an arbitrary subset of L with cardinality |L′| = m.
3. Set p′i = 1

k , for all i ∈ L′, and p′i = 0, for all i ∈ L \ L′.
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An application of Lemma 3.9 from [15] with α = 1 implies immediately that∥∥∥∥∥∑
i∈L

Xi ;
∑
i∈L

Zi

∥∥∥∥∥ ≤ 3
k
, (9)

and, for all j ∈L,

∥∥∥∥∥∥
∑

i∈L\{j}
Xi ;

∑
i∈L\{j}

Zi

∥∥∥∥∥∥ ≤ 6
k
, (10)

where we used that
∣∣∣∑i∈L pi −

∑
i∈L p

′
i

∣∣∣ ≤ 1
k and, for all j ∈ L,

∣∣∣∑i∈L\{j} pi −∑
i∈L\{j} p

′
i

∣∣∣ ≤ 2
k .

We follow a similar rounding scheme for the probabilities pi, i ∈ H; that is, we
round some to 1− 1/k and some to 1 in such a way that their sum is preserved
to within 1/k. As a result, we get (to see this, repeat the argument we employed
above to the variables 1−Xi and 1− Zi, i ∈ H)∥∥∥∥∥∑

i∈H
Xi ;

∑
i∈H

Zi

∥∥∥∥∥ ≤ 3
k
, (11)

and, for all j ∈H,

∥∥∥∥∥∥
∑

i∈H\{j}
Xi ;

∑
i∈H\{j}

Zi

∥∥∥∥∥∥ ≤ 6
k
. (12)

Using (7), (8), (9), (10), (11), (12) and the coupling lemma we get (3) and (4).

6 Details of Stage 2

Recall that M := {i | p′i /∈ {0, 1}} and m := |M|. The definition of the proba-
bility values {qi}i will depend on whether m ≥ k3 or m < k3. In particular, the
case m ≥ k3 will correspond to the Case 2(b)i in the statement of Theorem 1,
and the case m < k3 will correspond to the Case 2(b)ii. In both cases we set
qi = p′i, for all i ∈ [n] \M. It follows that∥∥∥∥∥∥

∑
i∈[n]\M

Zi ;
∑

i∈[n]\M
Yi

∥∥∥∥∥∥ = 0, (13)

and, for all j ∈ [n]\M,

∥∥∥∥∥∥
∑

i∈[n]\M\{j}
Zi ;

∑
i∈[n]\M\{j}

Yi

∥∥∥∥∥∥ = 0. (14)

6.1 The Case m ≥ k3

We show that the random variable
∑

i∈M Zi is within total variation distance
O(1/k) from a Binomial distribution B(m′, q) with
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m′ :=

⌈(∑
i∈M p′i

)2∑
i∈M p′2i

⌉
and q :=

�∗

kn
,

where �∗ ∈ {0, . . . , kn} satisfies
�

i∈M p′
i

m′ ∈ [ �∗

kn ,
�∗+1
kn ].

In particular, let us choose an arbitrary subset M′ ⊆ M with cardinality m′

(note that m′ ≤ m by the Cauchy-Schwarz inequality) and let us set qi = q,
for all i ∈ M′, and qi = 0, for all i ∈ M \M′. We shall now compare the
distributions of the random variables

∑
i∈M Zi and

∑
i∈M Yi. For this let us set

µ := E
[∑

i∈M
Zi

]
and µ′ := E

[∑
i∈M

Yi

]
,

σ2 := Var

[∑
i∈M

Zi

]
and σ′2 := Var

[∑
i∈M

Yi

]
.

The following lemma compares the values µ, µ′, σ, σ′.

Lemma 1. The following hold
|µ− µ′| ≤ 1

k
, (15)

|σ′2 − σ2| ≤ 1 +
3
k
, (16)

µ ≥ k2, (17)

σ2 ≥ k2
(

1− 1
k

)
. (18)

The proof of Lemma 1 is given in the full version [10]. To compare
∑

i∈M Zi and∑
i∈M Yi we approximate both by Translated Poisson distributions. To do this,

we make use of the following theorem, due to Röllin [27].

Theorem 3 ([27]). Let J1, . . . , Jn be a sequence of independent random indi-
cators with E [Ji] = pi. Then∣∣∣∣∣

∣∣∣∣∣
n∑

i=1

Ji ; TP (µ, σ2)

∣∣∣∣∣
∣∣∣∣∣ ≤

√∑n
i=1 p

3
i (1 − pi) + 2∑n

i=1 pi(1− pi)
,

where µ =
∑n

i=1 pi and σ2 =
∑n

i=1 pi(1− pi).

Theorem 3 implies that∣∣∣∣∣
∣∣∣∣∣∑
i∈M

Zi ; TP (µ, σ2)

∣∣∣∣∣
∣∣∣∣∣ ≤

√∑
i∈M p′3i (1− p′i) + 2∑

i∈M p′i(1− p′i)
≤
√∑

i∈M p′i(1− p′i) + 2∑
i∈M p′i(1− p′i)

≤ 1√∑
i∈M p′i(1 − p′i)

+
2∑

i∈M p′i(1− p′i)
=

1
σ

+
2
σ2

≤ 1
k
√

1− 1/k
+

2
k2
(
1− 1

k

) = O(1/k). (using (18))
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Similarly,∣∣∣∣∣
∣∣∣∣∣∑
i∈M

Yi ; TP (µ′, σ′2)

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

σ′
+

2
σ′2

≤ 1

k
√

1− 1
k −

1
k2 − 3

k3

+
2

k2
(
1− 1

k −
1
k2 − 3

k3

)=O(1/k). (using (16),(18))

By the triangle inequality we then have that
∣∣∣∣∣
∣∣∣∣∣∑
i∈M

Zi ;
∑
i∈M

Yi

∣∣∣∣∣
∣∣∣∣∣ ≤
∣∣∣∣∣
∣∣∣∣∣∑
i∈M

Zi ; TP (µ, σ2)

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣∑
i∈M

Yi ; TP (µ′, σ′2)

∣∣∣∣∣
∣∣∣∣∣+ ∣∣∣∣TP (µ, σ2) ; TP (µ′, σ′2)

∣∣∣∣
= O(1/k) +

∣∣∣∣TP (µ, σ2) ; TP (µ′, σ′2)
∣∣∣∣ .

(19)

It remains to bound the total variation distance between the two Translated
Poisson distributions. We make use of the following lemma.

Lemma 2 ([2]). Let µ1, µ2 ∈ R and σ2
1 , σ

2
2 ∈ R+ \ {0} be such that �µ1−σ2

1� ≤
�µ2 − σ2

2�. Then

∣∣∣∣TP (µ1, σ
2
1)− TP (µ2, σ

2
2)
∣∣∣∣ ≤ |µ1 − µ2|

σ1
+
|σ2

1 − σ2
2 |+ 1

σ2
1

.

Lemma 2 implies

∣∣∣∣TP (µ, σ2) ; TP (µ′, σ′2)
∣∣∣∣ ≤ |µ− µ′|

min(σ, σ′)
+
|σ2 − σ′2|+ 1
min(σ2, σ′2)

≤ 1/k

k
√

1− 1
k −

1
k2 − 3

k3

+
2 + 3/k

k2
(
1− 1

k −
1
k2 − 3

k3

) (using Lemma 1)

= O(1/k2). (20)

Using (19) and (20) we get∣∣∣∣∣
∣∣∣∣∣∑
i∈M

Zi ;
∑
i∈M

Yi

∣∣∣∣∣
∣∣∣∣∣ = O(1/k). (21)

We claim that the following is also true (see proof in the full version [10]).

Lemma 3. For all j ∈M:∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i∈M\{j}
Zi ;

∑
i∈M\{j}

Yi

∣∣∣∣∣∣
∣∣∣∣∣∣ = O(1/k). (22)
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6.2 The Case m < k3

Theorem 3.1 of [15] implies that there exists a set of probability values {qi}i∈M,
such that

− qi is an integer multiple of
1
k2 , for all i ∈ M;

−
∣∣∣∣∣
∣∣∣∣∣∑
i∈M

Zi ;
∑
i∈M

Yi

∣∣∣∣∣
∣∣∣∣∣ = O(1/k); (23)

− and, for all j ∈ M,

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i∈M\{j}
Zi ;

∑
i∈M\{j}

Yi

∣∣∣∣∣∣
∣∣∣∣∣∣ = O(1/k). (24)

6.3 Concluding Stage 2

In the casem ≥ k3 considered in Section 6.1, a set of probability values {qi}i was
defined which satisfied Property 2(b)i in the statement of Theorem 1. In the case
m < k3 considered in Section 6.2, the resulting set {qi}i satisfied Property 2(b)ii.
Moreover, in both cases, the following were satisfied∣∣∣∣∣

∣∣∣∣∣∑
i∈M

Zi ;
∑
i∈M

Yi

∣∣∣∣∣
∣∣∣∣∣ = O(1/k) (25)∥∥∥∥∥∥

∑
i∈[n]\M

Zi ;
∑

i∈[n]\M
Yi

∥∥∥∥∥∥ = 0, (26)

and,

for all j ∈ M,

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

i∈M\{j}
Zi ;

∑
i∈M\{j}

Yi

∣∣∣∣∣∣
∣∣∣∣∣∣ = O(1/k), (27)

for all j ∈ [n]\M,

∥∥∥∥∥∥
∑

i∈[n]\M\{j}
Zi ;

∑
i∈[n]\M\{j}

Yi

∥∥∥∥∥∥ = 0. (28)

Using (25), (26), (27), (28) and the coupling lemma, we get (5) and (6).
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Abstract. We study graphical games where the payoff function of each
player satisfies one of four types of symmetry in the actions of his neigh-
bors. We establish that deciding the existence of a pure Nash equilibrium
is NP-hard in general for all four types. Using a characterization of games
with pure equilibria in terms of even cycles in the neighborhood graph,
as well as a connection to a generalized satisfiability problem, we identify
tractable subclasses of the games satisfying the most restrictive type of
symmetry. Hardness for a different subclass is obtained via a satisfiabil-
ity problem that remains NP-hard in the presence of a matching, a result
that may be of independent interest. Finally, games with symmetries of
two of the four types are shown to possess a symmetric mixed equilib-
rium which can be computed in polynomial time. We thus obtain a class
of games where the pure equilibrium problem is computationally harder
than the mixed equilibrium problem, unless P=NP.

1 Introduction

The idea underlying graphical games [10] is that in games with a large number of
players, the payoff of any particular player will often depend only on the actions
of a small number of other players in a local neighborhood. More formally, a
graphical game is given by a (directed or undirected) graph on the set of players
of a normal-form game, such that the payoff of each player depends only on the
actions of his neighbors in this graph. If neighborhoods are bounded, graphi-
cal games can be represented using space polynomial in the number of players.
Symmetric games constitute another natural and well-studied class of games,
characterized by the fact that players can not, or need not, distinguish between
other players. In this paper, we consider graphical games where the payoff func-
tion of each player is symmetric in the actions of his neighbors. For instance,
consider a setting where each player is faced with the decision of producing one
of two types of complementary goods within a regional neighborhood. Players
are not only producers but also consumers and thus happier when both products
are available within their neighborhood. We will see in Section 3.3 that deciding
the existence of a pure Nash equilibrium, i.e., a profile of mutual best responses,
in such a setting is highly nontrivial yet computationally tractable.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 198–209, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Related Work: The computational problem of finding Nash equilibria in graph-
ical games with degree bounded by 3 has recently been shown equivalent to the
same problem for general n-player games with n ≥ 4 [8], and thus complete
for the complexity class PPAD [4]. It is not surprising that the structure of the
neighborhood graph greatly influences the complexity of the equilibrium prob-
lem. PPAD-hardness holds even if the underlying graph has constant pathwidth,
but becomes tractable for graphs of degree 2, i.e., for paths [5]. All known al-
gorithms for the more general case of trees have exponential worst-case running
time even on trees with bounded degree and pathwidth 2, but equilibria satisfy-
ing various fairness criteria can be computed in polynomial time if additionally
there are only two actions per player and the best response policy, a data struc-
ture representing all Nash equilibria of a game, has polynomial size [6].

A different line of research has investigated the problem of deciding the ex-
istence of pure Nash equilibria, i.e., equilibria where the support of each strat-
egy contains only a single action. Unlike Nash equilibria in mixed strategies,
i.e., probabilistic combinations of actions, pure equilibria are not guaranteed
to exist. If they exist, however, pure equilibria have two distinct advantages
over mixed ones. For one, requiring randomization in order to reach a stable
outcome has been criticized on various grounds. In multi-player games, where
action probabilities in equilibrium can be irrational numbers, randomization is
particularly questionable. Secondly, pure equilibria as computational objects are
usually much smaller in size than mixed ones. The pure equilibrium problem is
NP-complete for graphical games on directed graphs with outdegree bounded
by 2 and with only two actions for each player and two different payoffs, and
tractable for graphs with bounded treewidth [9, 7].

Brandt et al. [1] analyze four classes of symmetric games, and show that the
pure equilibrium problem is tractable if the number of actions is a constant,
and complete for NP or PLS, respectively, if the number of actions grows in the
number of players. One of the classes, in which all players have identical payoff
functions, is guaranteed to possess a symmetric equilibrium, i.e., one where all
players play the same strategy. This equilibrium is not necessarily pure, but
can be found efficiently if the number of actions is not too large compared to
the number of players [14]. A larger class, allowing different payoff functions for
different players, admits an approximation by a factor depending on the Lipschitz
constant of the payoff function and on the square of the number of actions, and
a polynomial-time approximation scheme for the case of two actions [3].

These results fuel hope that tractability results can be obtained for larger
classes of games satisfying some kind of symmetry. In this regard, Daskalakis
and Papadimitriou [2] consider games on a d-dimensional undirected torus or
grid with payoff functions that are identical for all players and symmetric in
the actions of the players in the neighborhood, a condition that will be called
symmetry in this paper. In particular, they show that deciding the existence of
a pure Nash equilibrium in such a game is NL-complete when d = 1 and NEXP-
complete for d ≥ 2. In this paper, we investigate the pure equilibrium problem in
graphical games satisfying the kinds of symmetries considered by Brandt et al.



200 F. Brandt, F. Fischer, and M. Holzer

[1]. Our work can thus be seen as a refinement of the work of Gottlob et al. [9]
and of Daskalakis and Papadimitriou [2].

Paper Structure and Results: We begin by introducing the necessary game-
theoretic concepts. In Section 3, we then investigate the computational complex-
ity of the pure equilibrium problem in graphical games satisfying four different
types of symmetries. The question of tractable classes of graphical games is an-
swered mostly in the negative. For three of the four symmetry classes, deciding
the existence of a pure equilibrium is NP-hard already for the case of two ac-
tions, two payoffs, and neighborhoods of size two. Assuming the most restricted
type of symmetry, the problem becomes NP-hard when there are three different
payoffs, or neighborhoods of size four. On the other hand, we use interesting con-
nections of the latter class to even cycles in directed graphs and to generalized
satisfiability to identify tractable classes of games. As a corollary, we exhibit a
satisfiability problem that remains NP-hard in the presence of a matching. We
present this result, which may be of independent interest, in Section 4. Finally,
in Section 5, we show that mixed equilibria in games with two of the above
symmetry types can be found in polynomial time if the number of actions grows
only slowly in the neighborhood size. Quite interestingly, there exists a class of
games where deciding the existence of a pure equilibrium problem is likely to be
harder than finding a mixed equilibrium. We assume the reader to be familiar
with the complexity classes P, NP, and #P, and the notion of polynomial-time
reducibility [e.g., 13].

2 Preliminaries

An accepted way to model situations of strategic interaction is by means of a
normal-form game [e.g., 11].

Definition 1 (normal-form game). A game in normal-form is a tuple Γ =
(N, (Ai)i∈N , (pi)i∈N ) where N is a set of players and for each player i ∈ N ,
Ai is a nonempty set of actions available to i, and pi : (�i∈NAi) → R is a
function mapping each action profile of the game, i.e., combination of actions,
to a real-valued payoff for i.

A vector s ∈ �i∈NAi of actions is also called a profile of pure strategies. This
concept can be generalized to (mixed) strategy profiles s ∈ S = �i∈NSi, by
letting players randomize over their actions. Here, we have Si denote the set of
probability distributions over player i’s actions, or (mixed) strategies available
to player i. We further write n = |N | for the number of players in a game, si for
the ith strategy in profile s, and sC for the vector of strategies for all players in
a subset C ⊆ N .

A graphical game is given by a graph on the set of players, such that the
payoff of a player only depends only on his own action, and on the actions of
his neighbors in the graph. In the following definition, the underlying graph
is directed, corresponding to a neighborhood relation that is not necessarily
symmetric.
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Definition 2 (graphical game). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a normal-
form game, ν : N → 2N . Γ is a graphical game with neighborhood ν if for all i ∈
N and s, s′ ∈ AN , pi(s) = pi(s′) whenever sν̂(i) = s′ν̂(i), where ν̂(i) = ν(i) ∪ {i}.

A game Γ has k-bounded neighborhoods if there exists ν : N → 2N such
that Γ is a graphical game with neighborhood ν and for all i ∈ N , |ν(i)| ≤ k.
We assume throughout the paper that graphical games are encoded by listing
the payoffs of each player as a function of the actions of his neighbors.

Symmetry as a property of a mathematical object refers to its invariance under
a certain type of transformation. Symmetries of games usually mean invariance
of the payoffs under automorphisms of the set of action profiles induced by some
group of permutations of the set of players. Anonymous games as considered by
Daskalakis and Papadimitriou [3], for example, require the set of available actions
to be the same for all players, and the payoff of a particular player to remain the
same under any permutation of the elements of an action profile. This imposes
constraints on individual payoff functions only and can therefore directly be
applied to graphical games as well. In general, however, it does not make much
sense from a computational point of view to consider symmetries of the payoff
functions without requiring the neighborhood graph to be “symmetric” in an
appropriate way as well. Consider, for example, the class of all graphical games
whose payoff functions are invariant under automorphisms in the automorphism
group of the neighborhood graph. While this class of games is very natural, it
does not impose meaningful computational restrictions. Indeed, it is not too hard
to see that any graphical game can be encoded by a game in the above class that
has a neighborhood graph with a trivial automorphism group. Hardness results
for both pure and mixed equilibria thus carry over immediately.

In general, different types of restrictions on the neighborhood structure will be
required for different kinds of symmetries of the payoff functions. In this paper,
we take a slightly different approach. We consider properties found in anonymous
and symmetric games, and study graphical games that possess these properties.
A characteristic feature of symmetries in games is the inability to distinguish
between other players. Following Daskalakis and Papadimitriou [3], the most
general class of games with this property will be called anonymous. Four differ-
ent classes of games are obtained by considering two additional characteristics:
identical payoff functions for all players1 and the ability to distinguish oneself
from the other players. The games obtained by adding the former property will
be called symmetric, and presence of the latter will be indicated by the prefix
“self.” For the obvious reason, we will henceforth talk about games where the set
of actions is the same for all players and write A = A1 = · · · = An and k = |A|,
respectively, to denote this set and its cardinality.

An intuitive way to describe anonymous games is in terms of equivalence
classes of the aforementioned automorphism group, using a notion introduced by
Parikh [15] in the context of context-free languages. Given a set A of actions, the
1 We assume the set of actions and the payoff function to be the same for all players

rather than just those with intersecting neighborhoods. This is only done for ease of
exposition.



202 F. Brandt, F. Fischer, and M. Holzer

commutative image of an action profile s ∈ AN is given by #(s) = (#(a, s))a∈A

where #(a, s) = |{ i ∈ N | si = a }|. In other words, #(a, s) denotes the number
of players playing action a in action profile s, and #(s) is the vector of these
numbers for all the different actions. This definition naturally extends to action
profiles for subsets of players.

Definition 3 (symmetries). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a graphical
game with neighborhood ν, A a set of actions such that for all i ∈ N , Ai = A.
Γ is called

– anonymous if for all i ∈ N and all s, s′ ∈ AN , pi(s) = pi(s′) whenever
si = s′i and for all a ∈ A, #(a, sν(i)) = #(a, s′ν(i));

– symmetric if for all i, j ∈ N and all s, s′ ∈ AN , |ν(i)| = |ν(j)| and pi(s) =
pj(s′) whenever si = s′j and for all a ∈ A, #(a, sν(i)) = #(a, s′ν(j));

– self-anonymous if for all i ∈ N and all s, s′ ∈ AN , pi(s) = pi(s′) whenever
for all a ∈ A, #(a, sν̂(i)) = #(a, s′ν̂(i)); and

– self-symmetric if for all i, j ∈ N and all s, s′ ∈ AN , |ν(i)| = |ν(j)| and
pi(s) = pj(s′) whenever for all a ∈ A, #(a, sν̂(i)) = #(a, s′ν̂(j)).

It should be noted that a graphical game in one of the four classes does not
necessarily belong to the corresponding class of general normal-form games as
defined by Brandt et al. [1], unless the neighborhood of every player contains
all other players. When talking about self-anonymous and self-symmetric games
with two actions, we write pi(m) = pi(s) where #(1, sν̂(i)) = m for the payoff of
player i when m players in his neighborhood, including i himself, play action 1,
and pi = (pi(m))0≤m≤|ν̂(i)| for the vector of payoffs for the possible values of m.

One of the best-known solution concepts for strategic games is Nash equi-
librium [12]. In Nash equilibrium, no player is able to increase his payoff by
unilaterally changing his strategy.

Definition 4 (Nash equilibrium). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a
normal-form game. A strategy profile s ∈ S of Γ is called Nash equilibrium
if for each player i ∈ N and each strategy s′i ∈ Si, pi(s) ≥ pi((sN\{i}, s

′
i)). A

Nash equilibrium is called pure if it is a pure strategy profile.

3 Complexity of the Pure Equilibrium Problem

For graphical games with neighborhoods of size one, symmetries do not impose
any restrictions. The pure equilibrium problem for such games can be decided
in polynomial time [e.g., 7]. On the other hand, the game used by Schoenebeck
and Vadhan [18] to show NP-completeness of the pure equilibrium problem in
general graphical games with neighborhoods of size two is anonymous. We thus
have the following initial result.

Theorem 1 (Schoenebeck and Vadhan [18]). Deciding whether a graphical
game has a pure Nash equilibrium is NP-complete, even if every player has only
two neighbors, two actions, and two different payoffs, and when restricted to
anonymous games.
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3.1 Symmetry and Self-symmetry

We now turn to more restrictive kinds of symmetry. The following theorem
concerns games where the utility functions of all players are identical. The proof
of this theorem is similar to a construction used by Schoenebeck and Vadhan
[18] where each gate of a Boolean circuit corresponds to a player in a graphical
game, and two additional players play a game with or without a pure equilibrium,
depending on the output of the circuit. The main difficulty is to model these two
steps using only a single payoff function. The proof of the theorem is given in
the full version of this paper.

Theorem 2. Deciding whether a graphical game has a pure Nash equilibrium
is NP-complete, even if every player has only two actions, and when restricted
to symmetric games with two different payoffs or to self-symmetric games with
three different payoffs.

3.2 Self-anonymity and Two Different Payoffs

Since self-symmetric games form a subset of self-anonymous games, Theorem 2
also implies NP-hardness of the self-anonymous case. However, the result is not
tight in that three different payoffs are required for hardness. A natural question
is what happens for self-anonymous games with only two different payoffs. In
this section we will prove a tight result for the most restricted version of self-
anonymity, i.e., the case with only two different payoff functions.

The problem with anonymity and the construction used in the proof of The-
orem 2 is that two different payoffs are not enough to make a player care about
his own action no matter which actions are played by his neighbors. With four
different values for #(1, sν̂(i)), there will either be an equilibrium where all play-
ers play the same action, or a situation where a player is indifferent between
both of his actions. When we want to use games to compute a function, such
indifference is clearly undesirable. The key idea that will enable us to prove the
following theorem is to isolate pure equilibria that are themselves symmetric in
the actions of a subset of the players, i.e., equilibria in which these players all
play the same action. To enforce that two particular players play the same action
in every equilibrium, we will add two additional players, each of which observes
the other as well as one of the original players. Depending on the actions of
the original players, the new players will either play a game with a unique pure
equilibrium, or a game that is prototypical both for self-anonymous games and
for games without pure equilibria, namely Matching Pennies. We proceed with
the statement of the theorem, a detailed proof is deferred to the full version of
this paper.

Theorem 3. Deciding whether a graphical game has a pure Nash equilibrium is
NP-complete, even if every player has only two neighbors, two actions, and two
different payoffs, and when restricted to self-anonymous games with two different
payoff functions.
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3.3 Self-symmetry and Two Different Payoffs

Let us return to self-symmetric graphical games. Self-symmetric games as studied
by Brandt et al. [1] always possess a pure Nash equilibrium due to the fact
that they are common-payoff games. This is not the case for self-symmetric
graphical games, even when there are only two different payoffs. In particular,
there exists a seven-player game in the latter class that does not have a pure
equilibrium, and in which each player has exactly two actions and two neighbors.
It will be instructive to view a graphical game as a hypergraph, with each vertex
corresponding to a player and each edge to the set of players in the neighborhood
of one particular player including the player himself. Corresponding to the set
of games with m-neighborhood is the set of (m + 1)-uniform hypergraphs that
possess a matching in the sense of Seymour [19], i.e., a bijection from the set
of vertices to the set of edges that maps every vertex to an edge containing it.
Then, a self-symmetric game with two actions and payoffs pi = (0, 1, 1, 0) for
all i ∈ N has a pure Nash equilibrium if and only if the corresponding hypergraph
is vertex two-colorable. Given a two-coloring, every player observes either one or
two players in his neighborhood, including himself, who play action 1, and thus
obtains the maximum payoff of 1. If on the other hand there is no two-coloring,
then there is at least one player for every action profile who plays the same action
as all of his neighbors and can deviate to obtain a higher payoff. Figure 1 shows
the neighborhood of a graphical game with seven players and two neighbors for
each player. This graph induces the 3-uniform square hypergraph corresponding
to the lines of the Fano plane, which in turn cannot be two-colored [e.g., 19].
We leave it to the avid reader to verify that there is no game with the above
properties and less than seven players.

An interesting property of the neighborhood graph on the left of Figure 1 is
that it does not have any cycles of even length. We will begin our investigation
of the pure equilibrium problem in self-symmetric games by generalizing this
observation to games with arbitrary neighborhoods and pi = (0, 1, 1, . . . , 1, 0)
for all i ∈ N . The following lemma characterizes games with pure equilibria in
the above subclass in terms of cycles in the neighborhood graph. Seymour [19]
provides a similar characterization of the minimal uniform square hypergraphs
that do not have a two-coloring.
Lemma 1. Let Γ be a self-symmetric graphical game with two actions per player
and payoffs pi such that for all i ∈ N , pi = (0, 1, 1, . . . , 1, 0). Then, Γ has a pure
Nash equilibrium if and only if for all i ∈ N , there exists j ∈ N reachable from i
such that j lies on a cycle of even length.

Proof. For the implication from left to right, assume that there exists a pure
equilibrium, i.e., a two-coloring c : N → {0, 1} of the neighborhood graph such
that the neighborhood of every player contains some player playing action 0 and
some player playing action 1. Now consider an arbitrary player v1 ∈ N . Using
the above property of c, we can construct a path v1, v2, . . . , v|N |+1, vi ∈ N , such
that for all i, 1 ≤ i ≤ |N |, c(vi) = 1− c(vi+1). By the pigeonhole principle, there
must exist i, j, 1 ≤ i < j ≤ |N |+ 1, such that vi = vj and for all j′, i < j′ < j,
vj′ �= vi. Then, vi, vi+1, . . . , vj is a cycle of even length reachable from v1.
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Fig. 1. Neighborhood graph of a graphical game with seven players (left), correspond-
ing to the three-uniform square hypergraph given by the lines of the Fano plane (right).
A directed edge from vertex i to vertex j of the neighborhood graph denotes that
j ∈ ν(i).

For the implication from right to left, let N ′ ⊆ N be a set of players such that
for every i ∈ N there exists a directed path to some j ∈ N ′, and such that N ′

induces a set of vertex-disjoint cycles of even length. We construct a two-coloring
c : N → {0, 1}, corresponding to an assignment of actions to players, as follows.
First color the members of N ′ such that for all i ∈ N ′ and j ∈ ν(i) ∩ N ′,
c(i) = 1 − c(j). While there are uncolored vertices left, find i, j ∈ N such that
j ∈ ν(i), i is uncolored, and j is colored. Such a pair of vertices must always
exist, since for every member of N there is a directed path to some member
of N ′, and thus to a vertex that has already been colored. Color i such that
c(i) = 1 − c(j). It is now easily verified that at any given time, and for all
i ∈ N that have already been colored, there exist j, j′ ∈ ν̂(i) with c(j) = 0 and
c(j′) = 1. If all vertices have been colored, then every neighborhood will contain
at least one player playing action 0, and at least one player playing action 1.
The corresponding action profile is a pure Nash equilibrium. ��

Thomassen [20] has shown that for every k, there exists a directed graph without
even cycles where every vertex has outdegree k. Together with Lemma 1, this
means that the pure equilibrium problem for the considered class of games is
nontrivial.

Corollary 1. For every m ∈ N, m > 0, there exist self-symmetric graphical
games Γ and Γ ′ with two actions where for all i ∈ N , |ν(i)| = m and pi =
(0, 1, 1, . . . , 1, 0), such that Γ has a pure Nash equilibrium and Γ ′ does not.

We are now ready to identify several classes of graphical games where the exis-
tence of a pure equilibrium can be decided in polynomial time.

Theorem 4. Let Γ be a self-symmetric graphical game with payoffs pi. The
pure equilibrium problem for Γ can be decided in polynomial time if one of the
following properties holds:
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(i) for all i ∈ N , pi(0) ≥ pi(1) or for all i ∈ N , pi(|ν̂(i)|) ≥ pi(|ν̂(i)| − 1);
(ii) for all i ∈ N and all m, 1 ≤ m ≤ |ν(i)|, pi(m−1) > pi(m) and pi(m+1) >

pi(m), or pi(m− 1) < pi(m) and pi(m+ 1) < pi(m);
(iii) for all i ∈ N and all m, 1 ≤ m < |ν(i)|, pi(m) = pi(m+ 1).

Proof. It is easy to see that a game Γ satisfying (i) possesses a pure equilibrium s
in which #(0, s) = 0 or #(1, s) = 1.

For a game Γ satisfying (ii), we observe that in every equilibrium s, pi(s) = 1
for all i ∈ N . The pure equilibrium problem for Γ thus corresponds to a variant
of generalized satisfiability, with clauses induced by neighborhoods of Γ . The
constraints associated with this particular variant require that the number of
variables in each clause set to true is odd, and can be written as a system of
linear equations over GF (2). Tractability of the pure equilibrium problem for Γ
then follows from Theorem 2.1 of Schaefer [17].

Finally, a game satisfying (iii) but not (i) can be transformed into a best
response equivalent one that satisfies the conditions of Lemma 1. We further
claim that we can check in polynomial time whether for every i ∈ N , there
exists j ∈ N on a cycle of even length and reachable from i. For a particular i ∈
N , this problem is equivalent to checking whether the subgraph induced by the
vertices reachable from i contains an even cycle. The latter problem has long
been open, but was recently shown to be solvable in polynomial time [16]. ��

It is readily appreciated that every self-symmetric graphical game Γ with two
different payoffs and neighborhoods of size two or three can be transformed into
a game Γ ′ with the same set of players and the same neighborhoods, such that Γ
and Γ ′ have the same set of pure equilibria and Γ ′ satisfies one of the conditions
of Theorem 4. We thus have the following.

Corollary 2. The problem of deciding whether a self-symmetric graphical game
with two different payoffs and three-bounded neighborhood has a pure equilibrium
is in P.

3.4 Self-symmetry and Larger Neighborhoods

The question that remains is whether the pure equilibrium problem can be solved
in polynomial time for all self-symmetric graphical games with two payoffs, or
whether there is some bound on the neighborhood size where this problem again
becomes hard. We will show in this section that the latter is true, and that the
correct bound is indeed four, as suggested by Corollary 2.

We will essentially use the same tools as in Section 3.2, but will extract the
necessary complexity from only a single payoff function. The additional insight
required for this extraction will be that “constant” players, i.e., players who play
the same action in every pure equilibrium of a game, can be used to prune a
larger payoff table and effectively obtain different payoff functions for smaller
neighborhoods that can then be used to proceed with the original proof. Con-
structing such players will prove a rather difficult task in its own right. A detailed
proof is again deferred to the full version of the paper.
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Theorem 5. Deciding whether a self-symmetric graphical game with two differ-
ent payoffs has a pure Nash equilibrium is NP-complete, even if every player has
exactly four neighbors.

Observing that in the constructions used in the proofs of Theorems 2, 3, and 5
there is a one-to-one correspondence between satisfying assignments of a Boolean
circuit and pure equilibria of a game, we have that counting the number of pure
equilibria in the respective games is as hard as computing the permanent of a
matrix.

Corollary 3. For graphical games with neighborhoods of size two, counting the
number of pure Nash equilibria is #P-hard, even when restricted to symmetric
games with two different payoffs, to self-anonymous games with two different
payoffs and two different payoff functions, or to self-symmetric games with three
different payoffs. The same holds for self-symmetric graphical games with neigh-
borhoods of size four and two different payoffs.

4 Interlude: Generalized Satisfiability in the Presence of
a Matching

The analysis at the end of the previous section allows us to derive a corollary
that may be of independent interest. Schaefer [17] completely characterizes which
variants of the generalized satisfiability problem are in P and which are NP-
complete. Some of the variants become tractable if there exists a matching, i.e., a
bijection from variables to clauses that maps every variable to a clause it appears
in. For not-all-equal 3SAT, this holds by equivalence with two-colorability of
three-uniform hypergraphs and from the work of Robertson et al. [16]. On the
other hand, the proof of Theorem 5 identifies a variant that is NP-complete and
remains so in the presence of a matching. We thus have the following.

Corollary 4. Generalized satisfiability is NP-complete, even if there exists a
matching and all clauses have size five.

We leave a complete characterization for future work. While the proof techniques
developed in this paper will certainly be useful in this respect, it should be noted
that the equivalence between generalized satisfiability and the pure equilibrium
problem covered by Theorem 5 may fail to hold for instances of the latter where
pi(s) = pi(s′) = 0 for s, s′ such that #(1, sν̂(i)) = #(1, s′ν̂(i)) + 1. For example,
it would not be possible to show hardness of one-in-three 3SAT [17] using the
same approach.

5 Mixed Equilibria

Let us now briefly look at the problem of finding a mixed equilibrium. The
following theorem states that this problem is tractable in symmetric graphical
games if the number of actions grows slowly in the neighborhood size. The proof
relies on the fact that such games always have a symmetric equilibrium and is
given in the full version of the paper.
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Theorem 6. Let Γ = (N,AN , (pi)i∈N ) be a symmetric graphical game such
that for all i ∈ N , |A| = O(log |ν(i)|/ log log |ν(i)|). Then, a Nash equilibrium
of Γ can be computed in polynomial time.

This result applies in particular to the case where both the number of actions
and the neighborhood size are bounded. Since the pure equilibrium problem
in symmetric graphical games is NP-complete even in the case of two actions,
we have identified a class of games where computing a mixed equilibrium is
computationally easier than deciding the existence of a pure one, unless P=NP.
A different class of games with the same property is implicit in Theorem 3.4 of
Daskalakis and Papadimitriou [2]. On the other hand, existence of a symmetric
equilibrium does not in general extend to games that are not anonymous or in
which players have different payoff functions.

6 Open Problems

In this paper we have mainly considered neighborhoods of constant size. The
construction used in the proof of Theorem 5 can be generalized to arbitrary
neighborhoods of even size, but it is unclear what happens for odd-sized neigh-
borhoods. The extreme case when the neighborhood of every player consists
of all other players yields ordinary symmetric games, and it is known that the
pure equilibrium problem in these games is in P when the number of actions is
bounded [1]. It is an open problem at which neighborhood size the transition
between membership in P and NP-hardness occurs. Another open question con-
cerns the complexity of the mixed equilibrium problem in anonymous graphical
games. A promising direction for proving hardness would be to make the con-
struction of Goldberg and Papadimitriou [8] anonymous. Finally, as suggested
in Section 4, it would be interesting to study the complexity of generalized sat-
isfiability problems in the presence of matchings.
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Abstract. The present work considers the following computational prob-
lem: Given any finite game in normal form G and the corresponding
infinitely repeated game G∞, determine in polynomial time (wrt1 the rep-
resentation of G) a profile of strategies for the players in G∞ that is an equi-
librium point wrt the limit-of-means payoff. The problem has been solved
for two players [10], based mainly on the implementability of the threats
for this case. Nevertheless, [4] demonstrated that the traditional notion of
threats is a computationally hard problem for games with at least 3 play-
ers (see also [8]). Our results are the following: (i) We propose an alter-
native notion of correlated threats, which is polynomial time computable
(and therefore credible). Our correlated threats are also more severe than
the traditional notion of threats, but not overwhelming for any individual
player. (ii) When for the underlying game G there is a correlated strat-
egy with payoff vector strictly larger than the correlated threats vector,
we efficiently compute a polynomial–size (wrt the description of G) equi-
librium point for G∞, for any constant number of players. (iii) Otherwise,
we demonstrate the construction of an equilibrium point for an arbitrary
number of players and up to 2 concurrently positive payoff coordinates in
any payoff vector of G. This completely resolves the cases of 3 players, and
provides a direction towards handling the cases of more than 3 players. It
is mentioned that our construction is not a Nash equilibrium point, be-
cause the correlated threats we use are implemented via, not only full syn-
chrony (as in [10]), but also coordination of the other players’ actions. But
this seems to be a fair trade-off between efficiency of the construction and
players’ coordination, in particular because it only affects the punishments
(which are anticipated never to be used).

1 Introduction

Consider an arbitrary game in normal form, G = 〈N, (Sp)p∈N , (Up : ×q∈NSq �→
R)p∈N 〉. For any mixed profile of strategies x ∈ ×p∈N∆(Sp), we consider the
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expected payoffs of the players Up(x) ≡ Es∼x{Up(s)}, ie, the expected values
of the utility functions Up when the outcome s of the game is randomly cho-
sen according to the product distribution induced by x. Similarly, for any cor-
related strategy σ ∈ ∆(×p∈NSp), the expected payoff to player p is Up(σ) ≡
Es∼σ{Up(s)}. Given G, we may consider an infinitely repeated game G∞, in
each round t ≥ 1 of whose a new realization of G takes place, where the players
have complete knowledge of the history pattern ht−1 of previous realizations of
G. The minmax value for p ∈ N determines the minimum payoff that p would
accept in a realization of G, against uncoordinated strategies of the opponents,
conditioning on his/her selfish behavior. This value, aka the threat value for
p, is given by:

θp(G) ≡ min
x−p∈×q �=p∆(Sq)

max
xp∈∆(Sp)

Up(x−p,xp) (1)

The vector θ(G) = (θp(G))p∈N , called the threat point of the game, is a key
concept for the standard Folk Theorem arguments, as it represents the worst
possible uncoordinated punishment that can be inflicted during a round t of G∞

on a player, for deviating (in a previous round) from some agreed behavioral
plan which assures a payoff vector within the individually rational region of G.

Although the Folk Theorem asserts that finding equilibria of G∞ should be
easer than finding equilibria of G itself, it was proved in [4] that even for a
3−player, win–lose stage game G, it is NP−hard to approximate the threat
value of a player to within 3

n2 (n is the maximum number of actions for a
player), let alone the computation of those strategies for the players that actually
implement this threat against a given player p. In the same paper it was also
proved that for any k ≥ 2, finding a Nash equilibrium of an infinitely repeated
(k + 1)−player game is PPAD−complete, via a reduction from the well known
PPAD−complete problem [5,6] of finding a Nash equilibrium in an arbitrary
k−player normal form game. But then, the question is how much credible a threat
can be when it is not efficiently computable by any of the players? On the other
hand, [10] demonstrated how to efficiently compute Nash equilibrium points
in an infinitely repeated 2−player game (wrt to limit-of-means criterion). The
catch is that in this case both the threat point and the other player’s aggressive
strategy are polynomial time computable. In this work we aim at tackling the
intractability of the threat point, in order to efficiently compute equilibrium
points of infinitely repeated games among at least 3 players. To this direction,
we suggest an alternative notion of correlated threats. In particular, we consider
the following correlated threat values of a normal form game G:

∀p ∈ N, ϕp(G) ≡ min
σ−p∈∆(×q �=pSq)

max
xp∈∆(Sp)

Up(σ−p,xp) (2)

ϕ(G) = (ϕp(G))p∈N is the correlated threat point of G. Observe that for any
stage game G, it holds that ϕ(G) ≤ θ(G). The only difference with the classical
notion of threats is that now the other players may cooperate against the player
who must be punished, by adopting a correlated strategy σ−p ∈ ∆(×q �=pSq)
rather than a product distribution x−p ∈ ×q �=p∆(Sq), against player p.
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On the positive side, we prove that the correlated threat point constitutes a
credible threat for the players, since both this point and the punishment plans
that implement these threats are polynomial–time computable. Additionally, we
demonstrate how to exploit this kind of threat to construct an equilibrium point
for the infinitely repeated game, despite the alleged difficulties claimed in [10]
for more than 2 players. On the negative side, the players will have to coor-
dinate their actions against any player that violates the designated behavioral
plan which would assure individually rational payoffs for them. But this tradeoff
(of sacrificing players’ independence for the sake of efficiency of an individually
rational payoff point) is only artificial: It is only the punishments that demand
coordination, and at equilibrium there will be no need to implement these pun-
ishments. During protocol-abiding play, each player follows an independent and
uncoordinated (but in total synchrony) plan of actions. Nevertheless, the pun-
ishments have to be convincing for each player, in order to constitute a credible
threat for them. It is also mentioned that the correlated threat point is not more
powerful than it should: It respects each player’s individual power in the game,
by respecting his/her payoff function. It can be seen as a “one for all and all
(others) against any defector” scheme that enforces compliance with the agreed
behavioral plan, so long as this plan assures payoffs within the individually ratio-
nal region of the stage game G. Finally, by means of communication complexity,
our notion of equilibrium is not far from the classical Nash equilibrium, since
during protocol–abiding rounds each player behaves independently of the other
players, as would be the case for a classical Nash equilibrium of G∞.

Observe that “simple” ways to solve the problem via central enforcement of
a (polynomial–time computable) correlated equilibrium for G have actually big
deficiencies: (i) They make all players subordinates of a correlation device in
each round. (ii) They induce an infinite amount of private communication: In
each round the correlation device must secretly tell everyone how to play. (iii)
They just achieve single points of “common behavior”, in contrast to the Folk
Theorems rationale according to which any feasible payoff point strictly above
the (correlated) threats point should be enforceable in G∞. In contrast, our
approach minimizes the possible use of the correlation device. It is only used as
a credible threat, like the heavy charges of extra pages in proceedings (never to
be paid indeed) that repel the authors from exceeding the desired page limit.
And it does not require private communication in any round (other than public
monitoring of the other players’ behavior, which is necessary in any case).

An interesting line of research is to see how the necessary correlation for
realizing the threats could be implemented via signals embodied in the players’
actions (eg, as in [1,3]). The present paper does not deal with such issues. It
mainly focuses on the efficient construction and representation of an equilibrium
point, leaving the implementation issues for future study. It is finally mentioned
that our results provide efficient constructions of equilibrium points that are not
Nash equilibrium points, since they demand some sort of (not only synchrony
but also) coordination of the players via correlated strategies, in order to punish
potential defectors from the desired behavioral plan. Therefore, our result is
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not in contradiction with that of [4] concerning the PPAD−completeness of
computing a Nash equilibrium point of (eg) an infinitely repeated 3−player game.

1.1 Definitions and Notation

Mathematical Notation. For any k ∈ N, let [k] ≡ {1, 2, . . . , k}. We denote
by A ∈ Fm×n a m × n matrix whose elements have values in some set F . A
k × 1 matrix is also considered to be a k-vector. Vectors are denoted by (bold
latin, or greek) small letters (eg, x,y, σ). We denote by 1k (0k) the k-vector
having 1s (0s) in all its coordinates. For x,y ∈ Rn, we denote the component–
wise comparison by x ≥ y: ∀i ∈ [n], xi ≥ yi. For A ∈ Rm×n, A[�, j] is its
j-th column (as an m× 1 vector), A[i, �] is the i-th row (as a transposed 1× n
vector) and A[i, j] is the (i, j)-th element. For v ∈ Rk, the value of its i−th
coordinate is given by v[i], or alternatively, by vi. For any finite k−element set
S, ∆(S) ≡ {z ∈ Rk : z ≥ 0; (1k)T z = 1} is the set of probability distributions
over the elements of S. For any σ ∈ ∆(S), and any real function U : S �→ R,
Es∼σ{U(s)} is the expected value of U wrt the probability measure σ.

Game Theoretic Notation. Let G = 〈[k], (Sp)p∈[k], (Up)p∈[k]〉 denote an arbi-
trary k−player normal form game, in which, ∀p ∈ [k], the action set Sp contains
all possible actions that this player may take, and the payoff Up : ×p∈[k]Sp �→ R

expresses the preferences of p over all possible action profiles s from the action
space S ≡ ×p∈[k]Sp. Given G, a k−player infinitely repeated game G∞ is an
extensive form game which consists of an infinite number of realizations of G (G
is usually called the stage game, or constituent game). G captures the idea
that a player will have to take into account the impact of his/her current action
on the future actions of other players (sometimes called the reputation of this
player). In particular, G∞ is considered to be played in rounds. In each round
t ≥ 1, the k players simultaneously choose a strategies profile x(t) ∈ ×p∈[k]∆(Sp)
and get a payoff vector U(t) = U(x(t)) = (Es∼x(t){Up(s)})p∈[k]. Thus, U(t)[p] =
Es∼x(t){Up(s)} , ∀p ∈ [k]. S∗ ≡ {∅}∪ (∪∞

t=1S
t) denotes the collection of history

patterns ht ∈ St, ie, sequences of action profiles of the G for the first t rounds
of G∞, for all t ≥ 0. For player p ∈ [k], a strategy (wrt G∞) is any mapping
Mp : S∗ �→ ∆(Sp) of history patterns to mixed strategies of this player. We re-
gard this as follows: At step t ≥ 1 player p chooses µ(t)

p = Mp

(
h(t−1)

)
as his/her

own mixed strategy for the current realization of G, that determines his/her re-
action to the history pattern h(t−1) that has appeared so far in G∞. We extend
this notion of strategy for infinitely repeated games, in order to signal abnormal
situations (eg, violation of the prescribed protocol by some player) that have to
be handled centrally. Therefore, we consider in this work that a strategy is a
mapping Mp : S∗ �→ ∆(Sp)∪ [k], ie, each player either chooses a probability dis-
tribution according to which he/she will choose an action, or indicates a player
(eg, the one of minimum id) that violated the prescribed protocol in the past
(eg, during the previous round). In the latter case, the action of p is determined
(possibly for a sequence of rounds) by a proper correlation device, ie, which uses
a fixed and publicly known probability distribution over the action space.
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An important feature of an infinitely repeated game is how each player’s pref-
erences are modeled. The most important preference measures are: (i) Limit-
of-Means: Player p ∈ [k] gets the average payoff over T periods, as T → ∞:
Up(M) = limT→∞

1
T ·
∑T

t=1 Es(1)∼M(h(0));··· ;s(t)∼M(h(t−1))
{
Up(s(t))

}
. (ii) Over-

taking: Player p ∈ [k] prefers M = (Mq)q∈[k] from M ′ = (M−p,M
′
p) iff:

lim
T→∞

T∑
t=1

(
Es(1)∼M(h(0));··· ;s(t)∼M(h(t−1))

{
Up(s(t))

}
− Es(1)∼M ′(h(0));··· ;s(t)∼M ′(h(t−1))

{
Up(s(t))

})
> 0

(iii) Discounting: The valuation of the game diminishes with time depend-
ing on some discount parameter δ ∈ (0, 1): Up(M) = (1 − δ) ·

∑∞
t=1 δ

t−1 ·
Es(1)∼M(h(0));··· ;s(t)∼M(h(t−1))

{
Up(s(t))

}
. In this work we focus our interest on

the case of the limit-of-means criterion. Nevertheless, it is mentioned that if
an infinite sequence

(
v(t)
)
t≥1 of payoff vectors is preferred to another sequence(

u(t)
)
t≥1 according to the limit-of-means criterion, then there is a proper dis-

counting factor (close enough to 1) such that
(
v(t)
)

t≥1 is preferred to
(
u(t)
)

t≥1
according to the discounting criterion as well. We say that a strategies profile
M = (Mp)p∈[k] is an equilibrium point of G∞ iff for any player p ∈ [k] and
any strategy M ′

p the profile M is not inferior to the profile M ′ = (M−p,M
′
p),

wrt the limit-of-means criterion. It is obvious that when the players adopt an
equilibrium play for the stage game G in every round (but not necessarily the
same NE in all rounds) of G∞, then such a profile is an equilibrium for G∞

as well. The presence of additional equilibrium points is because the threat of
retaliation is real, since one will play the game infinitely often against the same
set of opponents. Every expected payoffs vector u for the stage game whose co-
ordinates are rational numbers is called a feasible payoff vector. If in u each
player p gets payoff (strictly) greater than ϕp(G), then u is called (strictly)
enforceable or (strictly) individually rational payoff vector2.

It is well known that any feasible, strictly enforceable payoff point (wrt to
classical threats θp(G)) of G can be induced as a Nash equilibrium point of
G∞. This is known as the “Folk Theorem” in the related literature, and was
originally proved for the limit-of-means criterion (cf. [2]) and consequently for
the discounting criterion, at least for non-degenerate games [7]. Indeed, in many
occasions it is true that the optimal method of playing a repeated game is not
to repeatedly play a Nash profile of the underlying stage game, but to cooperate
and play a Pareto optimal strategy (eg, the “cooperate–cooperate” profile in the
repeated prisoners’ dilemma case). An analogous fact holds also for the correlated
threats. Any feasible, strictly enforceable payoff point can be implemented as an
equilibrium point of the infinitely repeated game: Either the players cooperate,
or all the players turn against a single defector. This can be interpreted as a
“social norm” and one essential part of infinitely repeated games is punishing
2 The enforceability is defined in the literature wrt the original notion θp(G) of threat

values. We use the same term here also wrt our correlated threat values ϕp(G),
because the meaning is in complete analogy with the classical definition.



Equilibrium Points in Fear of Correlated Threats 215

players who deviate from such a desirable cooperative behavior. The punishment
may be something like playing a strategy which leads to a reduced payoff for
a deviating player for some steps, or even for the rest of the game (sometimes
called a trigger strategy).

Wrt representation issues, our assumption is that all the involved numbers
in the description of the (stage) game are rational numbers, of no more than
P bits each. Let also ∀p ∈ [k], np = |Sp| be the number of alternative actions
that player p has to choose from in each round. The running time of an efficient
algorithm for computing an equilibrium point of G∞ must be polynomial in the
representation size of G, size(G) = P ·k·

∏
p∈[k] np. A polynomial-sized number is

one whose representation is bounded by some polynomial function poly(size(G))
on the size of G. Multiplication, division, addition or subtraction of polynomial-
sized rational numbers, as well as the solution of a polynomial-sized system of
linear equations or a linear program, are also of polynomial size [12].

As said before, strategies in infinitely repeated games can be infinitely large
sequences, mapping the interaction history (so far) to either a probability dis-
tribution for selecting the action for the next round, or the index of a player.
Hence there is a problem with representing a strategy for each player in such
a game. For our discussion to be meaningful, we must consider some sort of a
finite representation of profiles, when computing equilibrium points of G∞. We
shall consider here the representation via finite-state automata, as well as their
counting-node extensions (cf. [10,11]). In such a description, each node (belong-
ing to a player p) is labeled by a mixed strategy σp ∈ ∆(Sp), determining how
player p will choose his/her next action, along with a (square) label indicating
the number of rounds that p will stay in this node, before considering migration
to another node. If the label is an action, it then implies that p deterministically
chooses this action so long as he/she stays at the present node. The outgoing
arcs from a node indicate the transition to another node, and they also labels
that express the proper condition that should be satisfied in order to follow these
arcs. If the label of an arc is a pure profile x ∈ S, then this implies that in the
origin–node it must have been the case that this profile appeared in all the last
rounds during which p stayed at this node. Alternatively, the label of an arc may
be “*”, indicating the default transition, or some other, polynomial–time com-
putable logical expression that must be satisfied in order to follow the arc. There
is though a significant difference with the state-machine strategies defined in [10].
In our case, apart from the players’ finite-state automata, describing their antic-
ipated behavior, we also allow the existence of some additional, globally visible
states, which actually represent correlation devices (ie, publicly known proba-
bility distributions over S) that implement the correlated threats. But it is only
up to the players to decide whether or not to abide with the recommendation of
any such state, for a (fixed) number of rounds.

1.2 Contribution and Roadmap

The present work considers the following computational problem: Given any
finite game in normal form G = 〈[k], (Sp)p∈[k], Up : ×p∈[k]Sp �→ R〉 and the
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corresponding infinitely repeated game G∞, determine in polynomial time (wrt
the representation size(G) of the stage game) a profile of state-automata of size
poly(size(G)) for the players in G∞ that is an equilibrium point wrt the limit-of-
means criterion. Our main findings are the following: In Section 2 we prove that
our alternative notion of correlated threats is polynomial time computable (and
therefore credible). Although more severe than the traditional notion of threats,
the correlated threats do not compromise the actual power of each individual
player. In Section 3 we study the case when the underlying stage game G has a
non–empty strictly individually rational region (denoted by sirr(G)). We provide
in polynomial time a polynomial–size equilibrium point for G∞, for any constant
number of players, that induces an arbitrary feasible point of polynomial–size
representation in sirr(G). Indeed, we manage to choose a feasible and enforceable
point that is also quality assuring wrt the individual players’ levels of satisfaction.
In Section 4 we focus on the case where sirr(G) = ∅. We demonstrate the efficient
construction of an equilibrium point for an arbitrary number of players and up
to 2 concurrently positive payoff coordinates in any payoff vector of the stage
game. Along with the previous result, this completely resolves the cases of 3
players, and provides a direction towards handling the cases of more players.
Due to lack of space some proofs are deferred to the full version of the paper [9].

2 The Correlated Threat Point

Fix any normal form k−player game G = 〈[k], (Sp)p∈[k], (Up)p∈[k]〉 with rational
payoff functions Up : S �→ Q for the players. Let Z = {z ∈ Qk : ∃s ∈ S s.t. ∀p ∈
[k], Up(s) = z[p]} be the set of all the payoff vectors that the k players may get at
an actions profile s ∈ S of G. We also denote by conv(Z) the convex hull of this
point set in Rk: conv(Z)=

{∑
s∈S λs ·U(s) ∈ Rk :

∑
s∈S λs =1; ∀s ∈ S, λs ≥ 0

}
.

Observe that any correlated strategy σ ∈ ∆(S) corresponds to a vector of (ex-
pected) payoffs U(σ) = Es∼σ{U(s)} ∈ conv(Z), and vice versa. Our first goal
is to determine in polynomial time the minimum acceptable payoff for player p,
as well as the player p’s defensive strategy (ensuring it) and the other players’
aggressive (correlated) strategies (enforcing it). This minimum will be exactly
p’s correlated threat value ϕp(G).

Theorem 1. For any fixed constant natural number k ≥ 2 and any finite game
in normal form G = 〈[k], (Sp)p∈[k], (Up)p∈[k]〉, the correlated threat values, the
defensive strategies (of each player) and the aggressive strategies (of the other
players against each player) are polynomial time computable wrt size(G).

Proof. For each player p ∈ [k], consider the np × (
∏

q �=p nq) matrix defined
as follows: ∀(sp, s−p) ∈ Sp × S−p, Pp[sp, s−p] = Up(sp, s−p) . Observe that Pp

contains all possible payoffs that player p may receive, in all possible outcomes
of the stage game G. The rows of Pp correspond to actions of player p, while
the columns correspond to joint actions of all the other players, ie, elements
s−p ∈ S−p. We consider the zero-sum bimatrix game 〈Pp, P−p〉, and we define
the following primal–dual pair of LPs determining the maximin strategy dp ∈
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∆(Sp) (and payoff ϕp(G) = Vp) for player p, and the maximin (due to zero sum
property) correlated strategy ap ∈ ∆(S−p) of the other players against p:

(Vp,dp) ∈ argmax
{
V̄p : ∀s−p ∈ S−p, d̄T · Pp[�, s−p] ≥ V̄p; d̄p ∈ ∆(Sp)

}
(3)

(Vp,ap) ∈ argmin
{
V̄p : ∀sp ∈ Sp, Pp[sp, �] · ā ≤ V̄p; āp ∈ ∆(S−p)

}
(4)

It is well known that these maximin-play strategies (dp,ap) comprise a Nash
equilibrium, in the zero-sum (bimatrix) game 〈Pp, P−p〉, while Vp is the minimum
payoff that player p may accept in any equilibrium play (either in 〈Pp,−Pp〉 or
G), even if his/her opponents join forces against him/her. Recall that ap is a
correlated strategy for all the other players (assumed to conspire against p). By
duality theorem of linear programming, we also know that the maximin solution
in this primal–dual pair equals the minmax solution for p on one hand, and all
the other players against p on the other hand, which is the solution to our notion
of correlated threats (cf. Equation 2). We call dp the defensive strategy of p
and Vp = ϕp(G) is his/her correlated threat value, while ap ∈ ∆(S−p) is the
aggressive (correlated) strategy of the other players against p, that pushes
p’s payoff down to ϕp(G). So long as the number of players, k is constant, we
can efficiently compute both the defensive and the aggressive strategies for each
player p ∈ [k], as well as their correlated threat values: Since the defensive and
aggressive strategies, as well as the correlated threat values, are solutions to
proper linear programs of polynomial size, they are also of polynomial-size. ��

From now on we shall consider wlog3 for the correlated threat point that ϕ(G) =
0. If this is not the case, we simply consider a stage game G′ properly shifted
utility functions by ϕ(G), so that it has ϕ(G′) = 0. Clearly the two games have
exactly the same set of (even approximate) Nash equilibria. Our next step is,
given the tractability of the correlated threat point, to construct in polynomial
time an equilibrium point for the infinitely repeated game G∞. We distinguish
two main cases, depending on whether the strictly individually rational re-
gion of G, sirr(Z) = conv(Z) ∩ {z ∈ Rk : z > ϕ(G)}, is empty or not. If
sirr(G) �= ∅ then we say that there exist payoff points of G guaranteeing a mu-
tual advantage (to comply with the desired plan) for the players, following the
terminology of [10]. In such a case we implement the rationale of the Folk Theo-
rem, by locating such a (feasible) payoff point in polynomial time and enforcing
it as the result of the players’ behavioral plan in G∞. If sirr(Z) = ∅, then we
provide an alternative construction of equilibrium points based on the stability
of subsets of players.

3 The Mutual Advantage Case

In our quest for a polynomial-time computable equilibrium point ofG∞, a crucial
task is to discover whether sirr(Z) �= ∅. In that case, as we shall see shortly, any
feasible, strictly individually rational payoff point of G may be interpreted into
an equilibrium of polynomial–size description, for G∞.
3 Without loss of generality.
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Lemma 1. For any fixed integer k ≥ 2 and game G = 〈[k], (Sp)p∈[k], (Up)p∈[k]〉,
we can determine in time poly(size(G)) whether sirr(G) �= ∅.

Proof. See full version of the paper. ��

Remark: The payoff vector that is constructed in the proof of Lemma 1 is
also some sort of quality assuring social norm, in the sense that it maximizes in
sirr(G) the minimum payoff assigned to any of the players.

The following theorem is the main result of the mutual-advantage case:

Theorem 2. For any constant k ≥ 2, and game G = 〈[k], (Sp)p∈[k], (Up)p∈[k]〉
such that sirr(G) �= ∅, there is a strategies profile M = (Mp)p∈[k] for the players
that is an equilibrium of G∞, whose description size is poly(size(G)).

Proof (sketch). In order to prove this statement, we proceed with the descrip-
tion of such a profile for the infinitely repeated game. Initially we describe a
behavioral plan for the players that assures an average payoff vector equal to
the one point of z∗ =

∑k
i=1 λ̂iẑi of sirr(G) we have already located in the proof

of Lemma 1. This was the outcome of some LP that used as input a subset of
k vertices z1, z2, . . . , zk ∈ Z. Consequently we describe how we guarantee the
compliance of all the players to this behavioral plan, via an implementation of
the correlated threats devices.

Assuring a Behavioral Plan with Payoff Vector in sirr(Z). The payoff
vector z∗ =

∑k
i=1 λ̂iẑi indicated in Lemma 1 is a rational payoff vector, since it is

the outcome of some LP with rational coefficients, over a set of k pure strategies
(also rational) payoff points ẑ1, . . . , ẑk ∈ Z. Additionally, the vector λ̂ indicates
how z∗ is expressed as a convex combination of these payoff points, and is also
rational. Finally, both these vectors are of size poly(size(G)), as the solutions
of an LP. Let xi = s(ẑi) ∈ S be the pure strategies profile providing the payoff
vector ẑi, for each i ∈ [k]. It then holds that: ∀i ∈ [k], λ̂i = γi

Γi
=

γi

�
j �=i Γj�

j∈[k] Γj
= ξi

Ξ ,

where ∀i ∈ [k], 0 ≤ γi ≤ Γi ξi = γi

∏
j �=i Γj and Ξ =

∏
j∈[k] Γj are natural

numbers of size poly(size(G)). Because
∑k

i=1 λ̂i = 1 ⇔
∑k

i=1 ξi = Ξ, we can
construct a Ξ−state machine Mp for each player p ∈ [k], so that Mp starts with
exactly ξ1 rounds of x1[p], followed by ξ2 rounds of x2[p], followed by ξ3 rounds
of x3[p], and so on. When all these machines operate in full synchrony, it holds
that during each phase of Ξ rounds the profile xi appears exactly ξi times, for all
i ∈ [k]. The payoff vector for a whole phase of Ξ consecutive rounds is therefore∑k

i=1 ξi ·ẑi = Ξ ·z∗ ≥ Ξ · ζ̂ > 0, since we have assumed non-emptiness of sirr(Z).
Ie, the average payoff vector per round is exactly z∗ ≥ ζ̂ · 1.

Inducing an Equilibrium via Cooperative Punishments. In order to en-
force the compliance of all the players to the previously mentioned behavioral
plan, which assures the average payoff vector z∗ as an equilibrium point of the re-
peated game, we must assure that the other players discourage each player from
disobeying the prescribed protocol. To this direction, we shall use the aggressive
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(correlated) strategy of the other players against the defector with the smallest
index (in order for all players to attack the same defector). In particular, assume
that at some round t ≥ 1, player q ∈ [k] is the defecting player with the smallest
index. Then, starting from round t + 1, the other players exit their own finite
state machines and give up control of their choices for a sufficient number of
rounds to an independent correlation device that uses the mixed profile aq to
determine their profiles in each of these rounds. We call this the punishment
phase of player q, and its duration is such that the positive gain that player
q had at step t is completely absorbed by his/her cumulative loss during the
punishment phase. See more details in the full version of the paper. ��

4 Handling Games with No Mutual Advantage

We now explore what happens if sirr(Z) = ∅. This situation is easily recognizable
by the fact that the point z∗ =

∑k
i=1 λ̂i · ẑi determined in the (full) proof of

Lemma 1, has minimum payoff ζ̂ = 0. The next lemma calculates the maximum
number µ(G) of players that may concurrently get a positive payoff, at some
point in conv(Z).

Lemma 2. For any constant k ≥ 2 and any game G = 〈[k], (Sp)p∈[k], (Up)p∈[k]〉,
µ(G) is computable in time poly(size(G)).

Proof. See the full version of the paper. ��

The next theorem gathers some particular cases we have handled, that may work
as a guide for coping with the general no-mutual-advantage case. Along with the
mutual-advantage result, this completely resolves the case of 3 players.

Theorem 3. For any constant k ≥ 2 and any game G=〈[k], (Sp)p∈[k], (Up)p∈[k]〉
with sirr(G) = ∅, there is an efficiently computable equilibrium point for G∞,
when µ(G) ≤ 2.

Proof (sketch). Let µ = µ(G). Observe that if µ = 0 then the defensive profile
d, which assures a non-negative payoff for every player, is a NE point of G (and
therefore, its infinite repetition is an equilibrium of G∞). But what happens
in the general (no-mutual-advantage) case? Here we demonstrate here how to
construct an equilibrium point ofG∞ for µ = 1. In the full version of the paper we
provide a similar (but more involved) argument for µ = 2. Our conjecture is that
an analogous argument also works for the more general cases of µ ∈ {3, . . . , k−1}.

The Case of µ = 1: For the defensive profile d ∈ ×p∈[k]∆(Sp) let ∀p ∈ [k],
s
(1)
p ∈ arg maxsp∈Sp {Up(sp,d−p)} ; v(1)p = Up(s

(1)
p ,d−p) be a pure best response,

and the corresponding (maximum possible) payoff, of player p against the de-
fensive profile d−p of the other players. If v(1) ≡

(
v
(1)
p

)
p∈[k]

= U(d), then the

defensive profile d is NE of G, since it already assures a maximum possible payoff
for every player against the defensive profile. So we assume (wlog) that v(1)1 >
U1(d) ≥ 0 (since d is the profile of defensive strategies). We shall prove that
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the profile
(
s
(1)
1 ,d−1

)
is NE for G. Suppose not. Then, let ∀p ∈ [k] \ {1}, s(2)p ∈

argmaxsp∈Sp

{
Up

(
s
(1)
1 , sp,d−{1,p}

)}
; v(2)p = Up

(
s
(1)
1 , s

(2)
p ,d−{1,p}

)
. It must

be the case for some p ∈ [k] \ {1} (say, for p = 2) that v(2)2 > U2

(
s
(1)
1 ,d−1

)
≥ 0.

Observe that the profile
(
s
(1)
1 ,d−1

)
produces a payoff vector U

(
s
(1)
1 ,d−1

)
=

(v̄1, ū−1)∈conv(Z) where v̄1>0 and ū−1=0 (since µ=1 and the other players adopt
their defensive strategies). On the other hand, the profile

(
s
(1)
1 , s

(2)
2 ,d−{1,2}

)
produces a payoff vector U

(
s
(1)
1 , s

(2)
2 ,d−{1,2}

)
=
(
û1, v̂2, û−{1,2}

)
∈ conv(Z) for

which we know that v̂2 > 0 and û−{1,2} = 0. Consider the points of the following
line segment in conv(Z): ∀λ ∈ [0, 1], z(λ) = λ(v̄1, ū−1)+(1−λ)(û1, v̂2, û−{1,2}) =(
λv̄1 + (1 − λ)û1, λū2 + (1− λ)v̂2, λū−{1,2} + (1− λ)û−{1,2}

)
, for which we ob-

serve that: (i) ∀λ ∈ [0, 1]λū−{1,2} + (1 − λ)û−{1,2} = 0, (ii) ∀λ ∈ [0, 1), λū2 +

(1 − λ)v̂2 = (1 − λ)v̂2 > 0, and (iii) ∀λ ∈
(

|û1|
v̄1+|û1| , 1

]
, λv̄1 + (1 − λ)û1 ≥

λv̄1−(1−λ)|û1| > 0. That is, we have proved that for any value λ ∈
(

|û1|
v̄1+|û1| , 1

)
it holds that z(λ) ∈ conv(Z) has two strictly positive payoffs (all the other are
zero payoffs), which is a contradiction to µ = 1. Therefore we conclude that
v(2) = U

(
s
(1)
1 ,d−1

)
and thus the profile (s(1)1 ,d−1) is NE point of G.

The Case of µ = 2: The details of this construction can be found in the
full version of the paper. The main idea is as follows: We locate a point in
conv(Z) corresponding to a mixed profile of the players, in which exactly two
players deviate from their defensive strategies, and get positive payoffs, while
the remaining k − 2 players get (exactly) zero payoffs, which are provably the
best possible payoffs they can get all over conv(Z). This guarantees that their
defensive strategies are weakly dominant strategies4 for these k − 2 players.

We then focus on the first two players, who may (even concurrently) get posi-
tive payoffs at some points in conv(Z). Indeed, since d−{1,2} is a profile of weakly
dominant strategies for the remaining players, we shall take for granted that all
these players adopt this profile. That is, we consider the bimatrix produced by
the expected payoffs of the first two players, given that all the other players com-
ply with the profile d−{1,2}. In particular, consider the n1 × n2 payoff matrices
∀p ∈ {1, 2}, Qp =

[
Es−{1,2}∼d−1{1,2}

{
Up(s1, s2, s−{1,2})

}]
(s1,s2)∈S1×S2

, which
are polynomial–time computable due to the constant number k of players that
we consider. Observe also that these two payoff matrices are rational and of size
poly(size(G)), given the rationality of the defensive strategies and of the payoff
values of the players in G. For the normal form (bimatrix) game Γ = 〈Q1, Q2〉 it
4 A strategy is weakly dominant if, regardless of what the other players do, the

strategy assures for this player a payoff at least as high as any other strategy, and
additionally, it assures a strictly higher payoff for some profile of other players’
strategies. If a strategy of a player is always strictly better than all other strategies
of this player, for all profiles of other players’ strategies, then it is called a strictly
dominant strategy.
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is true that the correlated threats vector ϕ(Γ ) is non-negative: Both players still
have the option of adopting their defensive strategies wrt the original game. For
the infinitely repeated game Γ∞ between players 1 and 2 we determine (induc-
tively) an equilibrium point against correlated threats. It now holds that so long
as the other players keep playing according to the profile d−{1,2}, the first two
players will have no intention to unilaterally defect from the prescribed equilib-
rium (between them) in Γ∞, in fear of one another’s retaliation. On the other
hand, due to the weak dominance of the strategies in d−{1,2}, no other player
is willing to change strategy, no matter how the first two players behave, for
the whole duration of G∞, because there is no payoff point (even correlated) in
conv(Z) that assures them a strictly positive payoff, and their defensive strate-
gies already assure a zero payoff to each of them. This completes the proof of
Theorem 3. ��

Acknowledgements. We thank Leonidas Palios for helpful discussions, espe-
cially concerning the geometric part of our arguments.
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Abstract. In this paper we present an implementation and performance
evaluation of a descent algorithm that was proposed in [1] for the com-
putation of approximate Nash equilibria of non-cooperative bi-matrix
games. This algorithm, which achieves the best polynomially computable
ε-approximate equilibria till now, is applied here to several problem in-
stances designed so as to avoid the existence of easy solutions. Its per-
formance is analyzed in terms of quality of approximation and speed of
convergence. The results demonstrate significantly better performance
than the theoretical worst case bounds, both for the quality of approxi-
mation and for the speed of convergence. This motivates further investi-
gation into the intrinsic characteristics of descent algorithms applied to
bi-matrix games. We discuss these issues and provide some insights about
possible variations and extensions of the algorithmic concept that could
lead to further understanding of the complexity of computing equilibria.
We also prove here a new significantly better bound on the number of
loops required for convergence of the descent algorithm.

1 Introduction and Definitions

The problem of computing approximate Nash equilibria in polynomial time has
received attention due to the intractability results for the problem of finding
exact Nash equilibria ([4]), even for two-player games. The two-player game is
intractable in the sense that it is PPAD-complete. Simple polynomial time al-
gorithms have been presented in the past two years for finding ε-approximate
equilibria for ε = 3

4 and ε = 1
2 ([2], [6]). Furthermore, some more complicated

polynomial time algorithms have recently been presented, achieving approxima-
tions ε = 0.38, ε = 0.36 and ε = 0.3393 ([5], [7], [1]). The last result achieves the
best constant approximation reported in the literature so far and is based on an
optimization approach applied to the problem of finding approximate equilibria
for bi-matrix games. In particular, it is based on a descent algorithm aiming
at minimizing the value of a regret function representing the approximation of
equilibria. This work is concerned with the implementation and evaluation of the
performance of this approach as well as the presentation of a new complexity
result on the convergence rate.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 222–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Let R,C denote the m × n row and column players’ payoff matrices respec-
tively, for m,n any positive integers. We assume, without loss of generality, that
both payoff matrices are positively normalized, i.e. the maximum entry is 1 and
the minimum entry is 0 for each matrix.

Let us denote by ek the k-dimensional column vector having all its entries
equal to 1 (for positive integer k) and let ∆k = {u : u ∈ Rk, u ≥ 0, eτku = 1}
denote the k-dimensional standard simplex (superscript τ denotes transpose).
Also, let (1, k) denote the set of indices from 1 to k. We will need the following
additional definitions for any vector u ∈ Rk:

– supp(u) = {i ∈ (1, k) : ui �= 0} (the set of indices in (1, k) for which u is
non-zero).

– suppmax(u) = {i ∈ (1, k) : ui ≥ uj ∀j ∈ (1, k)} (the set of indices in (1, k)
for which the maximum value of u is attained).

– max(u) = {ui : i ∈ (1, k), ui ≥ uj ∀j ∈ (1, k)} (the maximum value of u).
– maxS(u) = {ui, i ∈ S : ui ≥ uj ∀j ∈ S} (the maximum value of u in the

index set S ⊂ (1, k)).

The problem of finding an ε-approximate Nash equilibrium of the game (R,C),
for some ε ≥ 0, is to compute a pair of strategies x̂ ∈ ∆m and ŷ ∈ ∆n such
that the following relationships hold: xτRŷ ≤ x̂τRŷ + ε ∀x ∈ ∆m and x̂τCy ≤
x̂τCŷ + ε ∀y ∈ ∆n.

Following the analysis in [1], we define the following function, mapping ∆m×
∆n into [0, 1]: f(x, y) = max{fR(x, y), fC(x, y)}, where, fR(x, y) = max(Ry)−
xτRy and fC(x, y) = max(Cτx) − xτCy. For any pair of strategies (x, y) ∈
∆m × ∆n, this function measures the maximum distance between the players’
payoffs (achieved by that pair of strategies) and their respective best response
payoffs. We call this a regret function.

The descent approach attempts to minimize the regret function through an it-
erative process moving along feasible descent directions in the space of strategies
for both players simultaneously. The descent directions are computed by solv-
ing linear programs. A descent algorithm produces a monotonically decreasing
regret function which always terminates with a stationary point in the space
of strategies. It was proven in [1] that at any stationary point we obtain an
ε-approximate Nash equilibrium, where ε is ≤ 0.3393 (for positively normalized
payoff matrices).

2 Algorithm Description

In this section we give the main points underlying the descent algorithm as
derived in [1]. From any given point (x, y) ∈ ∆m × ∆n, we consider motions
away from it along feasible directions of the form (1− ε)[xτ , yτ ] + ε[(x′)τ , (y′)τ ],
where, (x′, y′) ∈ ∆m × ∆n is another pair of strategies and ε : 0 ≤ ε ≤ 1
(vectors in brackets denote m + n-dimensional vectors). The computation of a
feasible direction (x′, y′) ∈ ∆m×∆n that is also a descent direction for the regret
function at a point (x, y) involves the solution of an appropriate linear program
which is formulated as follows, for two distinct cases (A) and (B):
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(A) If fR(x, y) �= fC(x, y), then:

(a1) If fR(x, y) > fC(x, y), keep y fixed and solve the following LP with
respect to x′:

minx′{max(Ry)− (x′)τRy}
subject to: max(Cτx′)− (x′)τCy ≤ max(Ry)− (x′)τRy and x′ ∈ ∆m.
A minimizer x′ defines a descent direction (x′, y).

(a2) If fR(x, y) < fC(x, y), keep x fixed and solve the following LP with
respect to y′:

miny′{max(Cτx)− xτCy′}
subject to: max(Ry′)− xτRy′ ≤ max(Cτx)− xτCy′ and y′ ∈ ∆n.
A minimizer y′ defines a descent direction (x, y′).

(B) If fR(x, y) = fC(x, y), then solve the following (m + n)-dimensional LP
in mini-max form:

min(x′,y′)max(w,z,ρ)[ρwτ , (1− ρ)zτ ]G(x, y)
[
y′

x′

]
where:

(i) The maximum is taken with respect to dual variables w, z, ρ such that:

w ∈ ∆m and supp(w) ⊂ SR(y) ≡ suppmax(Ry)
z ∈ ∆n and supp(z) ⊂ SC(x) ≡ suppmax(Cτx)
ρ ∈ [0, 1]

(ii) the minimum is taken with respect to (x′, y′) ∈ ∆m ×∆n, and
(iii) the matrix G(x, y) is the following (m+ n)× (m+ n) matrix:

G(x, y) =
[

R− emxτR −emyτRτ + ememτxτRy
−enxτC + enenτxτCy Cτ − enyτCτ

]
The descent direction is specified by a minimizer (x′, y′) of the above problem.

It should be pointed out that in case (A) a solution of the corresponding LP
always leads to a point where the values of the two components of the regret
function are equal, i.e. fR(x′, y) = fC(x′, y) (or fR(x, y′) = fC(x, y′)) and the
regret function at this point is strictly smaller than the previous one. We make
this statement precise in the following Lemma:

Lemma 1. At a given pair of strategies (x, y), if fR(x, y) > fC(x, y) and x′ is
a minimizer of the LP in (a1) above, then:

f(x′, y) = fR(x′, y) = fC(x′, y) ≤ fR(x, y)
1 + fR(x, y)− fC(x, y)

(A similar statement holds if fR(x, y) < fC(x, y) as in case (a2) by interchanging
the roles of the row and column players).
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Proof. For fixed y, the equality of the two regrets (for the row and column
players) follows from the fact that at an optimal solution of the LP in (a1) above,
not all constraints can be inactive since the upper bound of these constraints
(which is the regret of the row player and the objective function to be minimized)
can always be made equal to 0 by a choice of a best response strategy x′ such
that supp(x′) ⊂ suppmax(Ry).

Now, choose any x1 ∈ ∆m such that: supp(x1) ⊂ suppmax(Ry). Consider the
following function:

g(ε) = fC((1 − ε)x+ εx1, y)− fR((1− ε)x+ εx1, y) for 0 ≤ ε ≤ 1

It is easy to verify that g(ε) is continuous and convex in ε and that it satisfies:
g(0) = −(fR(x, y)− fC(x, y)) < 0 and 0 ≤ g(1) = fC(x1, y) ≤ 1. So, there is an
ε′ such that g(ε′) = 0. By convexity, we should have g(ε′) ≤ (1− ε′)g(0) + ε′g(1)
which, in view of the above relationships, implies: (1 − ε′) ≤ 1

1+fR(x,y)−fC(x,y) .
Furthermore, choosing x′ = (1 − ε′)x + ε′x1, we have fC(x′, y) = fR(x′, y) =
(1 − ε′)fR(x, y). Finally, the assertion of the Lemma follows from the last two
relationships. ��

From the above Lemma it can also be observed that if we take any arbitrary
strategy y for the column player and a strategy x for the row player that is a best
response to it, then, the resulting value of the regret function in the first step will
always be ≤ 1

2 . So, for the computations in the main step (B) of the algorithm we
can always start at a point with a regret function value that is ≤ 1

2 and for which
the two components of the regret are equal, i.e. fR(x, y) = fC(x, y). We call the
overall process of computing a descent direction a Descent Direction step.

After obtaining a descent direction, say (x′, y′), from any given point (x, y),
we move on to compute the minimum of the function f(x+ε(x′−x), y+ε(y′−y))
with respect to the scalar parameter ε, producing thus a new pair of strategies
with smaller regret. We call this process a Line Search step.

For the line search computations, we exploit the fact that the above function
is piece-wise quadratic with respect to ε (for any x, y, x′, y′) and the total number
of switches from one quadratic to another is less than m + n. For the purposes
of the implementation described here, we have considered stepsizes equal to the
switching point ε� that is closest to 0. We provide explicit estimates of this
stepsize in the proof of Lemma 2 below.

Lemma 2. Let (x, y) be a pair of strategies such that fR(x, y) = fC(x, y) and
let (x′, y′) ∈ ∆m × ∆n be a solution of the LP defined in (B) above. Also, let
V (x, y) denote the optimal value of the LP. Then, if V (x, y)− f(x, y) < 0, there
is an ε� > 0 such that f(x+ε(x′−x), y+ε(y′−y))−f(x, y) < 0 for all ε ∈ (0, ε�].

Proof. The proof is based on the construction of the above difference for any
ε : 0 ≤ ε ≤ 1 and on using the properties of a solution of the mini-max LP in
(B). We also provide a new explicit bound on the decrease of the function f at
each step of the algorithm (compared to the one given in [1]), which is useful for
a more refined analysis of its convergence properties.
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At first, it can be easily verified (by setting x′ = x, y′ = y) that we always have
V (x, y)−f(x, y) ≤ 0. Let SR(y) and SC(x) be the complements of the index sets
SR(y) and SC(x) with respect to the index sets (1,m) and (1, n) respectively
(we have defined SR(y) ≡ suppmax(Ry) and SC(x) ≡ suppmax(Cτx)). Let
ε� = min{ε�1, ε�2, 1}, where:

ε�1 = mini

[
max(Ry)− (Ry)i

max(Ry)− (Ry)i + (Ry′)i −maxSR(y)(Ry′)

]
(where the minimum is taken over i such that: i∈SR(y) and (Ry′)i −maxSR(y)
(Ry′) ≥ 0)

ε�2 = minj

[
max(Cτx) − (Cτx)j

max(Cτx)− (Cτx)j + (Cτx′)j −maxSC(x)(Cτx′)

]
(where the minimum is taken over j such that: j ∈ SC(x) and (Cτx′)j −
maxSC(x)(Cτx′) ≥ 0).

Also, let

∆ = min
[
mini∈SR(y)[max(Ry)− (Ry)i],minj∈SC(x)[max(C

τx)− (Cτx)j ]
]

It is clear that we always have ∆ > 0 and that ε� ≥ ∆
1+∆ .

Following the derivations in [1] and after several manipulations that were
performed taking into account that the algorithm minimizes the difference with
respect to ε ∈ (0, ε�] at every step, we finally get the following relationship for
the new value of f (we drop the indices for notational simplicity) that is obtained
at every step:

fnew − f ≤ −min
[
|V − f |2
4(1− V )

,

(
∆

1 +∆

)2

f +
∆

(1 +∆)2
|V − f |

]

From the above relationship it is clear that there is always a decrease of the
value of f unless V −f = 0. In the latter case we have a stationary point. Notice
that a stationary point always exists as a limit point of the sequence of values of
f produced by the descent algorithm. Such a sequence has always a limit since
it is monotonically decreasing and bounded from below by 0. ��

The descent algorithm essentially consists of an iterative loop containing the
two basic steps as defined above. The execution of these steps continue until
the stationarity condition V (x, y)− f(x, y) = 0 is satisfied. We call the common
value of V (x, y) and f(x, y) at stationarity the value of the stationary point.

Schematically, the basic steps of the algorithm can be described as follows:

0. Start at an arbitrary pair of strategies
1. Apply Descent Direction
2. Apply Line Search
3. Stop if termination condition is satisfied. If not, return to step 1.
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3 Convergence Rate

We provide an improved complexity result of the descent algorithm compared
to the result presented in [1]. This is based on an estimate of a tighter bound on
the number of loops required for convergence to a stationary point.

Fix δ > 0 and let (x, y) be the current pair of strategies obtained during the
descent procedure for which fR(x, y) = fC(x, y). We define the following index
sets:

SR(y, δ) = {i ∈ (1,m) : (Ry)i ≥ max(Ry)− δ}
SC(x, δ) = {j ∈ (1, n) : (Cτx)j ≥ max(Cτx) − δ}

Using the above index sets throughout the algorithm (for the computation of de-
scent directions and all quantities associated with them), we define a δ-stationary
point as a point that satisfies the relationship V (x, y) − f(x, y) ≥ −δ. Let
SR(y, δ) and SC(x, δ) be the complements of these sets with respect to the index
sets (1,m) and (1, n) respectively. Then, we have max(Ry) − (Ry)i > δ for all
i ∈ SR(y, δ) and max(Cτx)− (Cτx)j > δ for all j ∈ SC(x, δ). Therefore, δ < ∆,
where ∆ is as defined in the proof of Lemma 2 above. The convergence rate
result is expressed in Lemma 3 below.

Lemma 3. Thedescent algorithmconverges toa δ-stationarypoint inO
( 1

δ log(1
δ )
)

loops.

Proof. Let us denote by b the value of f at a limit point of the descent algo-
rithm. We should have V ≤ b ≤ f at every loop of the algorithm (b cannot
be more than 0.3393 and the initial value of f is ≤ 1

2 ). Using the last expres-
sion in the proof of Lemma 2 for the new value of f as a function of the previous
value, it can be verified by direct calculation, that at every loop we obtain ei-
ther a descent of the form fnew − b ≤ (f − b) − (f−b)2

4(1−b) , or a descent of the form

fnew − b ≤
(
1− ∆

1+∆

)
(f − b) − ∆2

(1+∆)2 b. So we have two types of positive se-

quences sk, k = 1, 2, ... starting from values < 1
2 and converging to 0 according to

the relationships sk+1 ≤ sk − s2
k

4(1−b) and sk+1 ≤
(
1− ∆

1+∆

)
sk − ∆2

(1+∆)2 b. It can

be verified that the first sequence requires at most O
( 1

δ

)
steps to reach a point

sk such that sk ≤ δ and the second sequence requires at most O
( 1

∆ log(1
δ )
)

steps
to reach such a point. The result follows from these facts and from δ < ∆. ��

4 Evaluation Scenaria

For the evaluation of performance we have applied the algorithm to a large
number of bi-matrix game problem instances with sizes ranging from 10× 10 to
100 × 100. The games that were generated were basically of two kinds: Those
consisting of randomly generated real-valued payoff matrices R,C and those con-
sisting of 0-1 (win-loose) matrices. The example matrices were generated so as to
avoid the existence of easy solutions such as pure strategy equilibria, 2×2 equilib-
ria and uniform distribution equilibria. Furthermore, the instances were selected
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so as to avoid being close to constant sum games (for which every stationary
point is a Nash equilibrium). All example matrices were positively normalized
before running the algorithm. The 0-1 matrices R,C that were generated were
of two kinds:

(a) Randomly generated matrices, under the constraint that no small support
equilibria exist (pure and 2 × 2) and the games are not close to constant sum
games.
(b) Specifically designed matrices satisfying the above constraints and also con-
taining arbitrary cycles of consecutively interchanging assignments of ordered
pairs (0, 1) and (1, 0) to the entries of (Ri,j , Ci,j) horizontally and perpendicu-
larly ([3]). In particular, according to this pattern, we start from an arbitrary
entry (i, j) and assign either (0, 1) or (1, 0) to it. Then, keeping i (or j) fixed,
pick an arbitrary column (or row) and assign the opposite pair to it, i.e. (1, 0) or
(0, 1). The next step is to move in the perpendicular direction, i.e. to keep j (or
i) fixed and continue this process an arbitrary number of times to finally close
the cycle. We can have several such cycles in the specification of the matrices
R,C. It is expected that the presence of such cycles makes the problem of finding
equilibria more difficult. Indeed, uniform distributions of either small support or
large support (close to the dimension of the matrices) are not likely to be close
to equilibria under such patterns of payoff assignments.

For each example, we used several different starting points in order to check
the response of the algorithm to the variation of the starting distributions. In
particular, we used the uniform distributions, as one starting point, but also
several arbitrarily chosen pure strategies for both players. The algorithm was
implemented in C and the CPLEX Program was used as an LP solver. The
parameter δ was fixed to δ = 0.001 for all instances.

5 Evaluation of the Results

The results obtained from all the runs that were performed generally indicate
that the descent algorithm is a highly efficient and practical algorithm that con-
verges fast to stationary points providing high quality approximate Nash equi-
libria. In fact, for almost all cases, the approximations achieved are less than the
precision parameter δ, far better than the theoretical worst case approximation
(0.3393). This experimental conclusion is typical for all categories of instances
(as described above) upon which the algorithm was applied.

The worst approximation obtained across all experimental instances that we
considered was 0.015 (notably, this happened for a small game). The reduction
factor of the regret function f from the start to the end appears to be much
larger than the one dictated by the theoretical worst case approximation. The
curves showing the reduction of the regret function f with respect to the num-
ber of loops appear to exhibit a more or less similar pattern across all instances
of all categories of experiments. Furthermore, for instances with relatively large
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approximation (i.e. large values of f at stationarity but still less than the above-
mentioned 0.015), it was sufficient to choose a different starting point (for exam-
ple, an arbitrary pure strategy pair) for the algorithm to converge to an exact
equilibrium (for the same instance).

Overall, it appears that if one moves along paths determined by the descent
algorithm, it is very likely to hit a Nash equilibrium (or a stationary point close
to a Nash equilibrium) along the way.

These experimental results indicate that the stationary points of bi-matrix
games are rather unstable to the operation of the descent process and that this
instability tends to increase rapidly with their value f . It is also possible that
the stationary points with larger values are less probable (in fact significantly
less probable) than the ones with smaller values. It is conjectured that with
an appropriate definitions of stability of a stationary point, it may be possible
to formulate a rigorous approach that could potentially lead to better approx-
imation guarantees than the one currently available, including the possibility
of obtaining a PTAS for the equilibrium problem. More specifically, it is con-
jectured that a modification of the descent algorithm to include restarts from
new strategies obtained by small perturbations around a stationary point, could
provide an effective way to bypass stationary points with high values.

Significant further insight into the problem will certainly be achieved if we
can find harder instances. In this respect, it is worth investigating the existence
and construction of instances for which the descent process could be more or
less easily trapped into relatively high stationary points.

In regard to convergence rate, the experiments indicate that the number of
loops required for convergence differ across starting points and categories but
typically it was between 4 and 20 with a median value of 10. Also, the supports
of the resulting (approximate equilibria) distributions were relatively large, typ-
ically between n/3 and n/2 (n being the size of the game).

Overall, the number of loops required for convergence to a δ-stationary point
was found in all experiments to be much smaller than the worst case bound
theoretically predicted in [1]. This motivated a closer look into the convergence
properties of the descent algorithm which resulted in a new bound of the order
of O

( 1
δ log(1

δ )
)

(formulated and proved here in Lemma 3), a significant improve-
ment over the previous O

( 1
δ2

)
.

However, it appears that a better complexity bound of the descent algorithm
is possible, in terms of speed of convergence to a stationary point. A possible way
to obtain improved convergence results is to investigate the maximum number
of small steps that the algorithm can go through as a function of the size of
the game. It appears from the experiments that for each small step there is an
increase of the size of the support (which often occurs in large chunks rather than
one at a time), so, the total number of such small steps in a row cannot be more
than a fraction of n. Also, it was observed that the large steps were too often
large enough to enforce very fast convergence to a stationary point. Actually,
only a small number of large steps were typically needed for convergence.
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6 Discussion

The experimental results were surprising, particularly in regard to the quality of
approximation to Nash equilibria. It seems that it is quite hard to create hard
instances for the descent algorithm. We believe that the results motivate further
investigation into the complexity of finding Nash equilibria along the following
lines: (a) Study of the issue of stability of stationary points as a function of their
value, (b) Investigation of ways to bypass stationary points via small perturba-
tions around them, (c) Creation of hard instances for the descent algorithm, i.e.
instances for which it is possible to get stuck to stationary points with large val-
ues, and (d) Some further investigation of the convergence rate of the algorithm
for an improved bound.
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Abstract. We study a restricted related model of the network routing
problem. There are m parallel links with possibly different speeds,
between a source and a sink. And there are n users, and each user i
has a traffic of weight wi to assign to one of the links from a subset of all
the links, named his/her allowable set. We analyze the Price of Anarchy
(denoted by PoA) of the system, which is the ratio of the maximum
delay in the worst-case Nash equilibrium and in an optimal solution.
In order to better understand this model, we introduce a parameter λ
for the system, and define an instance to be λ-good if for every user,
there exist a link with speed at least smax

λ
in his/her allowable set. In

this paper, we prove that for λ-good instances, the Price of Anarchy
is Θ

�
min{ log λm

log log λm
, m}

�
. We also show an important application of our

result in coordination mechanism design for task scheduling game. We
propose a new coordination mechanism, Group-Makespan, for unrelated
selfish task scheduling game. Our new mechanism ensures the existence
of pure Nash equilibrium and its PoA is O

� log2 m
log log m

�
. This result improves

the best known result of O(log2 m) by Azar, Jain and Mirrokni in [2].

1 Introduction

Network routing is one of the most important problems in the network
management. In most networks, especially in a large-scale network like internet,
it is unlikely that there is a centralized controller who can coordinate the
behavior of all the users in the network. In such situations, every user in the
network decides how to rout his/her traffic, aware of the congestion caused by
other users. Users only care about the delay they suffer, and their selfish behavior
often leads the whole network to a suboptimal state. Recently, researchers start
to investigate the performance degradation due to the lack of the coordination
for the users.

In the model first studied by Kautsoupias and Papadimitriou [9], there are
m identical parallel links from the same origin to the same destination. There
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are n users, and each with a traffic of weight wi. We assume that the traffic
of each user can not be split and as a result each user chooses exactly one
link. After all the users choose their links, the delay of a link is equal to the
total weight of the traffics on it, and the delay a user suffers is equal to the
delay of the link he chooses. The performance of the system we consider here is
the maximum delay of all the links. We are mainly interested in stable states,
where no user can decrease his delay by unilaterally changing his choice. In game
theory, such a state is also called a Nash equilibrium. In order to measure the
performance degradation, they compared the performance of Nash equilibrium
with the optimal solution when there is centralized coordination. In particular,
we analyze the Price of Anarchy (PoA for short) of the system, which is defined
to be the performance ratio between the worst-case Nash equilibrium and an
optimal solution. In [9], Kautsoupias and Papadimitriou showed that the PoA
of that system is at most 2− 1/m.

Since then, a lot of research works have be done along this line. There are
mainly two generalized models of this problem which are well studied. One model
is routing with related links, where different links may have different speeds and
the delay of a link is equal to the total weight on this link over its speed. In this
uniform related model, Czumaj and Vöcking proved that the PoA is Θ

(
log m

log log m

)
[4]. The other model is routing with restricted links, where each user i is only
allowed to choose links from a subset Si of all the links. However the links are still
identically in the sense that the speed of each link is the same. In this restricted
model, Awerbuch et al. proved that the PoA is also Θ

(
log m

log log m

)
[1].

In light of these results, one may conjecture that the common extension of
these two models, where the links are both related and restricted, also has a
PoA of Θ

(
log m

log log m

)
. In fact, this model was studied by Gairing et al. in [7], and

they showed that the PoA of this problem can be as large as m− 1. However, in
their bad instance demonstrating the lower bound of m−1, some users can only
use extremely slow links (with speed less than smax

(m−1)! , where smax is the largest
speed). This is a little artificial and unlikely to appear in the real world. So in
order to better understand this model, we introduce a property called λ-goodness
for the system. An instance is called λ-good if and only if every user can at least
use a link with speed no less than smax

λ . Now in our notation, the result in [7] says
that the PoA can be as large as m− 1 when the system is only (m − 1)!-good.
So what is the exact relation between the PoA and the λ-goodness of a system?
In this paper, we answer this question completely by giving a tight bound for
the PoA of a λ-good system in term of λ.

Theorem 1. For λ-good instances, the price of anarchy isΘ
(
min{ log λm

log log λm ,m}
)
.

In the proof of Czumaj and Vöcking for related links, they essentially used the
property of uniform related, which means that each link has a fixed speed and
all the users can choose it. And in the proof of Awerbuch et al. for restricted
links, they essentially used the property of identical, which means that all the
links have the same speed. In our extended model, namely restricted related
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links, none of the two properties hold and as a result none of their technique
can be adopted to analyze the PoA of the new model directly. In this paper, we
use a new proof approach. We calculate the delay of links interval by interval,
obtain some recursive relations between them based on the property of Nash
equilibrium, and finally we are able to derive a bound of the maximum delay in
the system.

Our result also has an important application in task scheduling game with
coordination mechanism. Task scheduling can be viewed as another model for
routing problem by treating the links as machines, the traffics as tasks, the
delay of a user as the completion time of his/her task, and the delay of the
system as the makespan of the system. Then we have scheduling with identical
machines, related machines, and restricted machines corresponding to the above
three models of routing problems. Further more, we also have a more general
model, called scheduling with unrelated machines, in which each machine may
have different speeds for different tasks. An instance of scheduling unrelated
machines is denoted by a matrix t = (tij), where tij denotes the processing time
that machine j needs for task i. In this language, when each machines uses the
Makespan policy, i.e. to process its tasks in such a parallel way that all of them
are completed at the same time, the task scheduling game is essentially the same
as the routing problem. However, as observed by Christodoulou, Koutsoupias
and Nanavati in [3], the scheduling policies of the machines may affect the choices
of the users, and hence the PoA of the system. So they considered the problem
of designing a set of local scheduling policies such that the PoA of the system is
small. Such a set of scheduling policies are called coordination mechanism, and
the PoA of the system with a coordination mechanism is also called the PoA of
this mechanism.

Using our main result, we propose a new coordination mechanism, named
Group-Makespan mechanism, for scheduling unrelated machines. This Group-
Makespan mechanism ensures the existence of a pure Nash equilibrium and its
PoA is O

( log2 m
log log m

)
, improving the best known result O(log2m) by Azar, Jain

and Mirrokni in [2].

2 Preliminaries and Notations

In this section, we define our problem formally. There are m independent links
from certain origin to destination, and n independent users. We use [m] and [n]
to denote the link set {1, · · · ,m} and user set {1, · · · , n} respectively. Each link
j ∈ [m] has a speed sj and w.l.o.g, we assume s1 ≥ s2 ≥ · · · ≥ sm. Each user
i ∈ [n] has a traffic of weight wi, which can only be assigned to a link from a
set Si ⊆ [m]. We use < w, s,S > to denote an instance of the problem, where
w = (w1, · · · , wn), s = (s1, · · · , sm) and S = {S1, · · · , Sn} denote the weights,
speeds and allowable link sets. We introduce the property of λ-goodness for a
instance < w, s,S >.



234 P. Lu and C. Yu

Definition 1 (λ-Goodness). An instance < w, s,S > is λ-good if and only if
the following condition holds: for any user i ∈ [n], there exists a machine j ∈ Si

such that the speed sj is at least s1/λ.

We consider pure strategies for users, and each user’s strategy is to decide which
link to assign his/her traffic. We use a = (a1, · · · , an) ∈ S1 × · · · × Sn to denote
a combination of all users’ strategies, where user i selects a link ai ∈ Si. We also
use a−i to denote the strategies of all the other users except user i. In a state a,
the delay of link j, denoted by laj , is the total weights on it over its speed, and
the delay of the system, denoted by la, is the maximum delay over all the links.
That is laj = 1

sj

∑
i:ai=j wi, la = maxj l

a
j .

We consider the optimum when there is centralized coordination, that is, the
minimal delay of the system over all the possible states. We use opt to denote
the optimum as well as an optimal solution.

We assume the users are all non-cooperative and each one wishes to minimize
his/her own cost, without any regard to the performance of the system. The cost
of user i in a state a is the delay of link ai and we use cai to denote it. We have
cai = laai

.
Now we define the Nash equilibria of the system formally.

Definition 2 (Nash Equilibrium). A state a is called a Nash Equilibrium
(NE for short )of the system if and only if no user can decrease his/her cost by
unilaterally changing a link. That is, for any user i ∈ [n], any strategy a′i ∈ Si

and a′ = (a−i, a
′
i), we have cai ≤ ca

′

i .

For any instance of the problem, pure Nash Equilibrium always exists. The proof
of this fact is using a quite common method with an elegant potential function,
which is pointed out in several places(see [5] for example).

Theorem 2 (Existence of Nash Equilibrium). For λ ≥ 1 and any λ-good
instance < w, s,S >, there exists a Nash Equilibrium state a of it.

To compare the performance of Nash Equilibrium with the optimum, we give
the definition of Price of Anarchy.

Definition 3 (Price of Anarchy). For instance of restricted routing problem,
the Price of Anarchy (PoA for short) is defined as the performance ratio between
the worst-case Nash equilibrium and the optimal solution. That is

PoA = max
a∈S1×···×Sn

a is a NE

la

opt
.

And for any family of instances, its Price of Anarchy is defined to be the largest
PoA among all its possible instances.

3 PoA of λ-Good Restricted Routing

In this section, we prove our main result Theorem 1. If λ > (m−1)!, Gairing et al.
gave a tight bound Θ(m) [7]. So in this section, we always assume λ ≤ (m− 1)!
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and prove that the PoA of the family of λ-good instances is Θ
( log λm

log log λm

)
. We

only give the proof for the upper bound and omit the tight example here.

Theorem 3 (Upper Bound). Given any λ-good instance < w, s,S > and a
state a ∈ S1 × · · · × Sn which is a Nash equilibrium, delay of the system la is at

most opt ·O
(

log λm
log log λm

)
.

For notational simplicity, we scale the speeds and weights such that s1 = 1 and
opt = 1. We also define several notations used in the proof. For any k ∈ R+ and
j ∈ [m], let W k

j = max{laj − k, 0} · sj and W k =
∑

j∈[m]W
k
j . Especially, we use

Wj = W 0
j to denote the total weight assigned to link j, and W = W 0 to denote

the total weight of all the users. Fix an optimal solution opt, let Oj be the set
of users assigned to link j in opt. We also define Ok

j to be the set of users who
choose link j in opt and have costs at least k, that is, Ok

j = {i ∈ Oj , c
a
i ≥ k}.

Our proof of the upper bound theorem comes from the following lemmas. In
Lemma 1, we give a initial condition of W k and this is the only point we use
the condition that the instance is λ-good. Then Lemma 2 and Lemma 3 give
recursive relations between W ks, which basically says that W k should increase
significantly when k become small. So we can bound the total weight W from
below in terms of makespan la and λ. On the other hand, the total weigh is
bounded from above by m. Putting things together, we can bound la.

Lemma 1. For any λ-good instance and any Nash equilibrium a, we have
W la−2 ≥ 1

λ .

Proof. Consider a link whose delay achieves la, say link j∗. Let i be a user on
link j∗, and let link j ∈ Si has the maximum speed in Si. Now if j = j∗, we have
laj = la. If j �= j∗, since a is a Nash equilibrium, i cannot decrease his/her cost
by changing from link j∗ to link j. We have la = caj∗ ≤ laj + wi

sj
.

As in the optimal solution, task i can only be assigned to a link from Si, whose
speed is at most sj, we have wi/sj ≤ opt = 1. Therefore, we have laj ≥ la − 1.
So no matter whether j = j∗ or not, we have laj ≥ la − 1, hence

W la−2 ≥W la−2
j ≥ 1 · sj ≥

1
λ
,

where the last inequality is because the instance is λ-good. �

Lemma 2. For any Nash equilibrium a and 0 ≤ k ≤ la − 2, we have W k ≥
la

la−(k+2)W
k+2.

Proof. Firstly, we want to prove that W k
j ≥

∑
i∈Ok+2

j
wi. If Ok+2

j is empty, then

we are done. Otherwise, for any task i ∈ Ok+2
j , cai ≥ k + 2, by the definition of

Nash equilibrium, we have

k + 2 ≤ cai ≤ laj + wi/sj ≤ laj + 1.
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The last inequality is because that the task i is assigned to link j in opt.
Therefore, laj ≥ k + 1 and W k

j ≥ 1 · sj ≥
∑

i∈Oj
wi ≥

∑
i∈Ok+2

j
wi. Noticing

that
⋃

j O
k
j = {i : cai ≥ k}, we can bound W k as follows:

W k =
∑

j∈[m]

W k
j ≥

∑
j∈[m]

∑
i∈Ok+2

j

wi =
∑

i:ca
i ≥k+2

wi =
∑

j:laj ≥k+2

Wj (1)

By the definition of Wj and W k+2
j , for any j, laj > k + 2, we have:

Wj =
laj

laj − (k + 2)
W k+2

j ≥ la

la − (k + 2)
W k+2

j (2)

The last inequality is because the function f(x) = x
x−(k+2) is monotone

decreasing when x > k + 2 and for all j, we have laj ≤ la.
So from (1) and (2), we have:

W k ≥ la

la − (k + 2)

∑
j:laj >k+2

W k+2
j =

la

la − (k + 2)
W k+2

From lemma 1 and lemma 2, we have recursive relation about W k and an initial
condition. These ensures us to prove an upper bound on la, which is O(log λm).
There is a little gap between our expected bound. The reason is that in the above
estimation in (2), we bounded all the laj from above by la. This is a little weak
since there cannot be too many links with large laj . The following lemma uses
a more careful estimation, and explores a recursive relation between W k,W k+2,
and W k+4, which helps us to obtain a better bound on la.

Lemma 3. For any λ-good instance and any Nash equilibrium a, we have W k ≥
k+6
4 (W k+2 − 2W k+4).

Proof. First, we omit some links in the summation of the last term in (1), then

W k ≥
∑

j:laj >k+2

Wj ≥
∑

j:k+6≥laj >k+2

Wj .

Now, the estimation occurred in (2) can be more tight: for any link j such that
k + 6 ≥ laj > k + 2, we have

Wj =
lAj

laj − (k + 2)
W k+2

j ≥ k + 6
k + 6− (k + 2)

W k+2
j =

k + 6
4

W k+2
j

So, we can bound W k as

W k ≥ k + 6
4

∑
j:k+6≥laj >k+2

W k+2
j =

k + 6
4

(
W k+2 −

∑
j:laj >k+6

W k+2
j

)
(3)
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For ∀j, laj > k + 6, we have

W k+2
j = (laj − (k + 2)) · sj and W k+6

j = (laj − (k + 6)) · sj ,

Hence 2W k+4
j = W k+2

j +W k+6
j . Using this equality, we can bound the negative

term in (3) as follows:∑
j:laj >k+6

W k+2
j ≤

∑
j:laj >k+6

2W k+4
j ≤ 2W k+4.

Substituting this into (3), and we finish the proof. �

Putting things together, we have the proof of Theorem 3.

Proof of Theorem 3: Let k0 = � la

6 �. For any k ≥ la − 2k0 ≥ 2la

3 , we have:

W k ≥ k + 6
4

(
W k+2 − 2W k+4

)
≥ k + 6

4

(
W k+2 − 2 · l

a − (k + 4)
la

W k+2
)

=
2(k + 4)− la

4la
· (k + 6)W k+2

≥
2(2la

3 + 4)− la
4la

· (2la

3
+ 6)W k+2

≥ la

18
W k+2

The first inequality is by lemma 3 and the second inequality is by lemma 2.
So using this recursive relation and lemma 1, we have:

W la−2k0 ≥W la−2 ·
(
la

18

) la

6

≥ 1
λ
·
(
la

18

) la

6

.

Since ∀j, sj ≤ s1 = 1, and opt = 1, we have W ≤ opt ·
∑

j sj ≤ m. By

W ≥ W la−2k0 , we have
(

la

18

) la

6

≤ λm. Since the solution to the equation

xx = y is x = Θ

(
log y

log log y

)
, we can obtain that la is at most O

(
log λm

log log λm

)
. �

4 An Application in Coordination Mechanism

In this section, we see an application in coordination mechanism design for selfish
task scheduling game. We give the high level ideas of our new mechanism.
This new mechanism is inspired by the mechanism Split & Shortest in [2].
Given an instance t for scheduling with unrelated machines, we can define
ti = minj∈[m] tij as the weight of task i, and define the speed sij of a machine
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j with respect to a task i as sij = ti/tij, namely the minimum running time
of task i on all the machines over the running time of task i on machine j. In
our Group-Makespan mechanism, every machine simulates logm sub machines
and submachine k of machine j only run those tasks i for which machine j
has speed sij ∈ [2−k, 2−k+1). We artificially delay a task so that the k-th sub
machines of different machines all have fixed speed 2−k. Each machine simulates
its sub machines by round-robin, and for each submachine we use the Makespan
scheduling policy. In the submachine level, each submachine has a fixed speed,
and a task can only be assigned to some of the sub machines. So it becomes
a problem of scheduling with restricted related machines. Further more, all the
instance obtained in this way have a very good structure, namely it is 1-good.
Therefore in the submachine level, the PoA is bounded by Θ

( log m
log log m

)
. Since

each machine has to simulate logm machines all the time, this may loss a factor
of at most logm.

We give the theorem as following, and omit the formal definition of the Group-
Makespan mechanism and the proof of this theorem due to the space limitation.
Readers may see [2] for idea of the submachine and related analysis.
Theorem 4. The Group-Makespan mechanism for scheduling m unrelated
machines ensures the existence of pure Nash equilibria, and the PoA of the task
scheduling game with this mechanism is O

( log2 m
log log m

)
.

References

1. Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case equilibria.
Theoretical Computer Science 361, 200–209 (2006)

2. Azar, Y., Jain, K., Mirrokni, V.: (Almost) optimal coordination mechanisms for
unrelated machine scheduling. In: Proceedings of SODA 2008, pp. 323–332 (2008)

3. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. In:
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Abstract. We investigate the impact of Stackelberg routing to reduce the price of
anarchy in network routing games. In this setting, an α fraction of the entire de-
mand is first routed centrally according to a predefined Stackelberg strategy and
the remaining demand is then routed selfishly by (nonatomic) players. Although
several advances have been made recently in proving that Stackelberg routing can
in fact significantly reduce the price of anarchy for certain network topologies,
the central question of whether this holds true in general is still open. We answer
this question negatively. We prove that the price of anarchy achievable via Stack-
elberg routing can be unbounded even for single-commodity networks. In light
of this negative result, we consider bicriteria bounds. We develop an efficiently
computable Stackelberg strategy that induces a flow whose cost is at most the
cost of an optimal flow with respect to demands scaled by a factor of 1+

√
1−α .

Finally, we analyze the effectiveness of an easy-to-implement Stackelberg strat-
egy, called SCALE. We prove bounds for a general class of latency functions that
includes polynomial latency functions as a special case. Our analysis is based on
an approach which is simple, yet powerful enough to obtain (almost) tight bounds
for SCALE in general networks.

1 Introduction

Over the past years, the impact of the behavior of selfish, uncoordinated users in con-
gested networks has been investigated intensively in the theoretical computer science
literature. In this context, network routing games have proved to be an appropriate
means of modeling selfish behavior in networks. The basic idea is to model the in-
teraction between the selfish network users as a noncooperative game. We are given a
directed graph with latency functions on the arcs and a set of origin-destination pairs,
called commodities. Every commodity has a demand associated with it, which specifies
the amount of flow that needs to be sent from the respective origin to the destination.
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We assume that every demand represents a large population of players, each control-
ling an infinitesimal small amount of flow of the entire demand (such players are also
called nonatomic). The latency that a player experiences to traverse an arc is given by
a (non-decreasing) function of the total flow on that arc. We assume that every player
acts selfishly and routes his flow along a minimum-latency path from its origin to the
destination; this corresponds to a common solution concept for noncooperative games,
that of a Nash equilibrium (here Nash or Wardrop flow). In a Nash flow no player can
improve his own latency by unilaterally switching to another path.

It is well known that Nash equilibria can be inefficient in the sense that they need not
achieve socially desirable objectives [2,7]. In the context of network routing games, a
Nash flow in general does not minimize the total cost; or said differently, selfish behav-
ior may cause a performance degradation in the network. Koutsoupias and Papadim-
itriou [13] initiated the investigation of the efficiency loss caused by selfish behavior.
They introduced a measure to quantify the inefficiency of Nash equilibria which they
termed the price of anarchy. The price of anarchy is defined as the worst-case ratio
of the cost of a Nash equilibrium over the cost of a system optimum. In recent years,
considerable progress has been made in quantifying the degradation in network perfor-
mance caused by the selfish behavior of noncooperative network users. In a seminal
work, Roughgarden and Tardos [21] showed that the price of anarchy for network rout-
ing games with nonatomic players and linear latency functions is 4/3; in particular, this
bound holds independently of the underlying network topology. The case of more gen-
eral families of latency functions has been studied by Roughgarden [16] and Correa,
Schulz, and Stier-Moses [3]. (For an overview of these results, we refer to the book by
Roughgarden [19].) Despite these bounds for specific classes of latency functions, it
is known that the price of anarchy for general latency functions is unbounded even on
simple parallel-arc networks [21].

Due to this large efficiency loss, researchers have proposed different approaches to
reduce the price of anarchy in network routing games. One of the most prominent ap-
proaches is the use of Stackelberg routing [12,18]. In this setting, it is assumed that
a fraction α ∈ [0,1] of the entire demand is controlled by a central authority, termed
Stackelberg leader, while the remaining demand is controlled by the selfish nonatomic
players, also called the followers. In a Stackelberg game, the Stackelberg leader first
routes the centrally controlled flow according to a predetermined policy, called the
Stackelberg strategy, and then the remaining demand is routed by the selfish follow-
ers. The aim is to devise Stackelberg strategies so as to minimize the price of anarchy
of the resulting combined flow.

Although Roughgarden [18] showed that computing the best Stackelberg strategy,
i.e., one that minimizes the price of anarchy of the induced flow, is NP-hard even for
parallel-arc networks and linear latency functions, several advances have been made
recently in proving that Stackelberg routing can indeed significantly reduce the price
of anarchy in network routing games. As an example, Roughgarden [18] showed that
for parallel-arc networks Stackelberg strategies exist that reduce the price of anarchy to
1/α , independently of the latency functions. That is, even if the Stackelberg leader con-
trols only a small constant fraction of the overall demand, the price of anarchy reduces
to a constant (while it is unbounded in the absence of any centralized control). More
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recently, Swamy [23] obtained a similar result for single-commodity, series-parallel
networks and Fotakis [8] for parallel-arc networks and unsplittable flows. Despite these
positive results, a central question regarding the effectiveness of Stackelberg routing is
still open: Does there always exist a Stackelberg strategy such that the price of anar-
chy is bounded? This question has been posed explicitly by Roughgarden [17, Open
Problem 4].

Besides these efforts, researchers have also tried to characterize the effectiveness of
easy-to-implement Stackelberg strategies for specific classes of latency functions. One
of the simplest Stackelberg strategies is SCALE (see also [18]), which simply computes
an optimal flow for the entire demand and then scales this flow by α . The currently
best known bound for the price of anarchy induced by SCALE on multi-commodity
networks and linear latency functions is due to Karakostas and Kolliopoulos [11]. More
recently, Swamy [23] derived the first general bounds for polynomial latency functions.

Our Results. We investigate the impact of Stackelberg routing to reduce the price of an-
archy in network routing games with nonatomic players. Our contribution is threefold:

1. We show that there are single-commodity networks for which every Stackelberg
strategy induces a price of anarchy of at least Ω(n), where n is the number of nodes
of the network. The result holds independently of the fraction α ∈ (0,1) of the
centrally controlled demand. This settles the open question raised by Roughgar-
den [17].

2. In light of this negative result, we investigate the effectiveness of Stackelberg rout-
ing strategies compared to an optimum flow for a larger demand; i.e., we consider
bicriteria bounds. We develop an efficiently computable Stackelberg strategy in-
ducing a flow whose cost is at most the cost of an optimal flow with respect to
demands increased by a factor of 1 +

√
1−α.

3. We give upper bounds on the efficiency of SCALE for a general class of latency
functions which, among others, contains polynomial latency functions with non-
negative coefficients. We also derive the first tight lower bounds for SCALE. Our
bound is tight for concave latency functions; for higher degree polynomials our
bounds are almost tight (though there remains a small gap for small values of α).

Significance and Techniques. Our first result settles an important open question regard-
ing the applicability of Stackelberg routing in general networks. While most existing
results show that the performance degradation due to the absence of central control
is independent of the underlying network topology, our result shows that the network
topology matters in the context of Stackelberg routing. Our negative result also carries
over to the unsplittable flow setting. However, due to lack of space, we omit the details
from this extended abstract.

One important application of Stackelberg routing is the routing of Internet traffic
within the domain of an Internet service provider, see also Sharma and Williamson [22].
Here, the Internet service provider centrally controls a fraction of the overall traffic
traversing its domain. In this setting, our second result provides the Internet service
provider with an efficient algorithm to route the centrally controlled traffic. The per-
formance of this routing algorithm is characterized by a smooth trade-off curve that
scales between the absence of centralized control (doubling the demands is sufficient)
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and completely centralized control (no scaling is necessary). Additionally, our result
has a nice interpretation for the class of (practical relevant) M/M/1-latency functions
that model arc-capacities: In order to beat the cost of an optimal flow, it is sufficient
to scale all arc capacities by 1 +

√
1−α. Our bound is a natural generalization of the

bicriteria bound by Roughgarden and Tardos [21] (see Correa et al. [4] for other related
results).

We introduce a general approach, which we term λ -approach, to prove upper bounds
on the price of anarchy of Stackelberg strategies for specific classes of latency func-
tions. This approach is simple, yet powerful enough to obtain (almost) tight bounds
for SCALE in general networks. For polynomial latency functions, our approach yields
upper bounds that significantly improve the bounds by Swamy [23]. For linear latency
functions, we derive an upper bound that coincides with a previous bound of Karakostas
and Kolliopoulos in [11]. Their analysis is based on a (rather involved) machinery pre-
sented in [15]. However, our analysis is much simpler; in particular, we do not rely on
the machinery in [15]. Moreover, we show that this bound also holds for concave la-
tency functions. We present a generalized Braess instance that shows that for the linear
case our bound is tight; a similar instance can be used to show that for higher degree
polynomials our bounds are almost tight, leaving only a small gap for small values of α .
We are confident that our λ -approach will prove useful to derive upper bounds on the
price of anarchy also in other settings. For instance, the λ -approach can be applied to
prove upper bounds when flows are unsplittable; details will be given in the full version
of the paper. So far, such upper bounds for general networks are only known for linear
latency functions (see Fotakis [8]).

Related Work. The idea of using Stackelberg strategies to improve the performance of a
system was first proposed by Korilis, Lazar, and Orda [12]. The authors identified nec-
essary and sufficient conditions for the existence of Stackelberg strategies that induce
a system optimum; their model differs from the one discussed here. Roughgarden [18]
first formulated the problem and model considered here. He also proposed some natural
Stackelberg strategies such as SCALE and Largest-Latency-First (LLF). For parallel-
arc networks he showed that the price of anarchy for LLF is bounded by 4/(3 + α)
and 1/α for linear and arbitrary latency functions, respectively. Both bounds are tight.
He also showed that for certain types of Stackelberg strategies, which he termed weak
strategies (see Section 2 for a definition), the price of anarchy for multi-commodity net-
works can be unbounded [18]. However, this did not rule out the existence of effective
Stackelberg strategies in general. Moreover, he also proved that it is NP-hard to com-
pute the best Stackelberg strategy. Kumar and Marathe [14] investigated approximation
schemes to compute the best Stackelberg strategy. The authors gave a PTAS for the case
of parallel-arc networks.

Karakostas and Kolliopoulos [11] proved upper bounds on the price of anarchy for
SCALE and LLF. Their bounds hold for arbitrary multi-commodity networks and linear
latency functions. Their analysis is based on a result obtained by Perakis [15] to bound
the price of anarchy for network routing games with asymmetric and non-separable
latency functions. Furthermore, Karakostas and Kolliopoulos [11] showed that their
analysis for SCALE is almost tight. More recently, Swamy [23] obtained upper bounds
on the price of anarchy for SCALE and LLF for polynomial latency functions. Swamy
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also proved a bound of 1+1/α for single-commodity, series-parallel networks with ar-
bitrary latency functions. Fotakis [8] studied LLF and a randomized version of SCALE
for the case of unsplittable flows. He proved upper and lower bounds on the price of
anarchy for linear latency functions. For parallel-arc networks, Fotakis proved that LLF
still achieves an upper bound of 1/α for arbitrary latency functions in this case.

Correa and Stier-Moses [5] proved, besides some other results, that the use of opt-
restricted strategies, i.e., strategies in which the Stackelberg leader sends no more flow
on every edge than the system optimum, does not increase the price of anarchy. Sharma
and Williamson [22] considered the problem of determining the smallest value of α
such that the price of anarchy can be improved. They obtained results for parallel-
arc networks and linear latency functions. Kaporis and Spirakis [10] studied a related
question of finding the minimum demand that the Stackelberg leader needs to control
in order to enforce an optimal flow.

2 Model

In a network routing game we are given a directed network G = (V,A) and k origin-
destination pairs (s1,t1), . . . ,(sk,tk) called commodities. For every commodity i ∈ [k], a
demand ri > 0 is given that specifies the amount of flow with origin si and destination ti.
Let Pi be the set of all paths from si to ti in G and let P = ∪iPi. A flow is a function
f : P → R+. The flow f is feasible (with respect to r) if for all i, ∑P∈Pi

fP = ri.
For a given flow f , we define the flow on an arc a ∈ A as fa = ∑P%a fP. Moreover,
each arc a ∈ A has an associated variable latency denoted by 
a(·). For each a ∈ A the
latency function 
a is assumed to be nonnegative, nondecreasing and differentiable. If
not indicated otherwise, we also assume that 
a is defined on [0,∞) and that x
a

(
x) is

a convex function of x. Such functions are called standard [16]. The latency of a path
P with respect to a flow f is defined as the sum of the latencies of the arcs in the path,
denoted by 
P( f ) = ∑a∈P 
a( fa). The triple (G,r, 
) is called an instance. The cost of a
flow f is C( f ) = ∑P∈P fP
P( f ). Equivalently, C( f ) = ∑a∈A fa
a( fa). The feasible flow
of minimum cost is called optimal and denoted by o. A feasible flow f is a Nash flow, or
selfish flow, if for every i ∈ [k] and P,P′ ∈Pi with fP > 0, 
P( f )≤ 
P′( f ). In particular,
if f is a Nash flow, all si-ti paths to which f assigns a positive amount of flow have
equal latency. It is well-known that if f1 and f2 are Nash flows for the same instance,
then C( f1) = C( f2), see e.g. [21].

In a Stackelberg network game we are given, in addition to G, r and 
, a param-
eter α ∈ (0,1). A (strong) Stackelberg strategy is a flow g feasible with respect to
r′ = (α1r1, . . . ,αkrk), for some α1, . . . ,αk ∈ [0,1] such that ∑k

i=1 αiri = α ∑k
i=1 ri. If

αi = α for all i, g is called a weak Stackelberg strategy. Thus, both strong and weak
strategies route a fraction α of the overall traffic, but a strong strategy can choose how
much flow of each commodity is centrally controlled. For single-commodity networks
the two definitions coincide. A Stackelberg strategy g is called opt-restricted if ga ≤ oa

for all a ∈ A. Given a Stackelberg strategy g, let 
̃a(x) = 
a(ga + x) for all a ∈ A and let
r̃ = r− r′. Then a flow h is induced by g if it is a Nash flow for the instance (G, r̃, 
̃).
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The Nash flow h can be characterized by the following variational inequality [6]: h is a
Nash flow induced by g if and only if for all flows x feasible with respect to r̃,

∑
a∈A

ha
a(ga + ha)≤ ∑
a∈A

xa
a(ga + ha). (1)

We will mainly be concerned with the cost of the combined induced flow g+h, given
by C(g + h) = ∑a∈A(ga + ha)
a(ga + ha). In particular, we are interested in bounding
the ratio C(g + h)/C(o), called the price of anarchy.

Due to lack of space, we omit some of the proofs from this extended abstract; details
will be given in the full version of the paper.

3 Limits of Stackelberg Routing

In this section, we prove that there does not exist a Stackelberg strategy that induces
a price of anarchy bounded by a function of α only. More precisely, we show that for
any fixed α ∈ (0,1), the ratio between the cost of the flow induced by any Stackelberg
strategy and the optimum can be arbitrarily large, even in single-commodity networks.

Theorem 1. Let M > 0 and α ∈ (0,1). Then, there exists a single-commodity instance
I = (G,r, 
,α) such that, if g is any Stackelberg strategy for I inducing a Nash flow
h, and o is an optimal flow for the instance (G,r, 
), then C(g + h)≥M ·C(o).

To prove the theorem we use the instance Gk = (Vk,Ak) depicted in Figure 1. For a
positive integer k, the graph Gk has 4k + 4 nodes. There is a single commodity (s, t),
with unit demand. Define r0 := (1−α)/2 and r1 := (1 + α)/2k. Note that the total
demand is equal to r0 + kr1. Every arc is of one of five different types {A,B,C,D,E}
as indicated in Figure 1. The latency of an arc is determined by its type. Type B arcs
have constant latency 1, and type C arcs have constant latency 0. Arcs of type A have
the following latency function:


0(x) =

{
0, if x≤ r0

1− r0+r1−x
r1

, if x > r0.

Although 
0(x) is not differentiable in r0, it can be approximated with arbitrarily small
error by standard functions.

s t

s0
p1 q1 p2 q2 p3

s1 t1 s2 t2

. . .

qk−2 pk−1 qk−1 pk qk
t0

sk−1 tk−1
sk

tk

C A C A C C A C A C

B

C C

B

C C

B

C C

B

C C

D

E E E E

D

Fig. 1. The graph Gk, used in the proof of Theorem 1. Arcs are labeled with their type.
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For fixed L,τ > 0, let uL,τ(x) be any standard function satisfying uL,τ(L) = 0 and
uL,τ(L+ τ) = M/τ . Type D arcs have latency ur0,δ/3k3(x), and type E arcs have latency
ur1,δ/3k3(x). We will fix the constant δ later in the proof.

Lemma 1. C(o)≤ 1.

Proof. Let P0 be the path (s,s0, p1,q1, p2, . . . , pk,qk,t0,t), and for i ∈ [k], let Pi be the
path (s,si,ti,t). Consider the feasible flow f such that fP0 = r0 and fPi = r1 for i ∈ [k].
The latency induced by f is 0 on arcs of type A, C, D, E and 1 on arcs of type B. So
C(o)≤C( f ) = k · r1 = (1 + α)/2≤ 1. ��

The following lemma will allow us to focus on the case where the combined flow on
type D and E arcs does not exceed a certain threshold value.

Lemma 2. For any Stackelberg strategy g inducing a Nash flow h, the following hold:

(i) If a is a type D arc and ga + ha ≥ r0 + δ/3k3, then C(g + h)≥M ·C(o).
(ii) If a is a type E arc and ga + ha ≥ r1 + δ/3k3, then C(g + h)≥M ·C(o).

Proof. We prove statement (i); the proof for (ii) is similar. We have C(g + h) ≥ (ga +
ha) · 
a(ga + ha) = (ga + ha) ·ur0,δ/3k3(ga + ha)≥ (r0 + δ/3k3) ·M/(δ/3k3) ≥M. The
proof follows from Lemma 1. ��

For the remainder of the proof we assume that there is no arc satisfying the conditions
of Lemma 2; otherwise the theorem follows immediately.

Lemma 3. For any Stackelberg strategy g inducing a Nash flow h, the following hold:

(i) For any arc a = (qi−1, pi), i ∈ [k], ga + ha ≥ r0− δ/k.
(ii) For any arc a = (s,si), i ∈ [k], ga + ha ≥ r1− δ/k.

We are now ready to conclude the proof of Theorem 1.

Proof (Theorem 1). For any i ∈ [k], consider the ith block in the graph (Figure 2). Let
gi,hi be the Stackelberg and selfish flow on the arc (si,ti), respectively. We have two
cases:

1. hi = 0: in this case, using Lemma 3, the flow on arc (pi,qi) is at least r0− δ/k +
r1− δ/k−gi. The latency on that same arc is thus at least 
0(r0 + r1−2δ/k−gi).

2. hi > 0: in this case, the Nash flow on path P′i = (s,si, ti, t) is strictly positive. Con-
sider the path P′′i = (s,si, pi,qi, ti, t). By definition of a Nash flow, we get 
P′′i

(g +
h) ≥ 
P′i

(g + h). Notice that the two paths P′i ,P
′′
i share all their nonzero-latency

from qi−1 pi qi to pi+1

si ti

from s to t

gi +hi

Fig. 2. The ith block of the graph Gk
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arcs except for (si,ti) (only present in P′i ) and (pi,qi) (only present in P′′i ). Thus

P′′i

(g+h)≥ 
P′i
(g+h) implies 
(pi,qi)(g+h)≥ 
(si,ti)(g+h)= 1. As a consequence,


(pi,qi)(g+h)≥ 1 = 
0(r0 + r1)≥ 
0(r0 + r1−2δ/k−gi) since gi and δ/k are non-
negative.

In both cases, 
(pi,qi)(g + h)≥ 
0(r0 + r1−2δ/k−gi)≥ 1− gi+2δ/k
r1

.

The latency 
P0(g + h) on the path P0 = (s,s0, p1,q1, . . . , pk,qk,t0,t) is at least

k

∑
i=1


(pi,qi)(g + h)≥
k

∑
i=1

(
1− gi + 2δ/k

r1

)
≥ k− α

r1
− 2δ

r1
=
(

1−α−4δ
1 + α

)
k.

The last inequality is a consequence of the fact that the total Stackelberg flow is α , so
∑i gi ≤ α .

Choosing δ < (1−α)/4, we can conclude that 
P0(g + h) = Ω(k). Together with
Lemma 1 and Lemma 3, this gives

C(g + h)≥ (r0− δ/k) · 
P0(g + h)≥ ( 1
2 · (1−α)− δ ) ·Ω(k) = Ω(k) ·C(o).

Thus, C(g+h)/C(o) can be made arbitrarily large by picking a sufficiently large k. ��

Remark 1. Suppose the Stackelberg leader (e.g., a navigation systems provider) is solely
interested in minimizing the travel time of his players (customers), i.e., C1(g + h) =
∑a∈A ga
a(ga + ha). Our result also implies that even the ratio C1(g + h)/C(o) can be
unbounded, independent of the Stackelberg strategy g.

4 A Bicriteria Bound for General Latency Functions

As we have seen in the previous section, no Stackelberg strategy controlling a constant
fraction of the traffic can reduce the price of anarchy to a constant, even if we consider
single-commodity networks. In light of this negative result, we therefore compare the
cost of a Stackelberg strategy on an instance I = (G,r, 
,α) to the cost of an optimal
flow for the instance I β = (G,β r, 
) in which the demand vector has been scaled up
by a factor β > 1.

We propose the following simple Stackelberg strategy, which we term Augmented
SCALE (ASCALE):

1. Compute an optimal flow oβ for the instance I β .
2. Define the Stackelberg flow by g := α

β oβ .

We prove that the resulting flow induced by the Stackelberg strategy ASCALE satisfies
C(g+h)≤C(oβ ) if we choose β = 1+

√
1−α. This result can be seen as a generaliza-

tion of the result by Roughgarden and Tardos that the cost of a Nash flow is always less
than or equal to the cost of the optimal flow for an instance in which demands have been
doubled [21]. Our bound gives a smooth transition from absence of centralized control
(where doubling the demands is sufficient) to completely centralized control (where no
augmentation is necessary).
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Theorem 2. If g is the ASCALE strategy, C(g + h) ≤ 1
β−1 ·

(
1− α

β
)
·C(oβ ). Further-

more, this bound is tight.

Corollary 1. Let β = 1+
√

1−α. If g is the ASCALE strategy, then C(g+h)≤C(oβ ).

For a given instance I = (G,r, 
,α), the SCALE strategy is defined as g = αo, where
o is an optimal flow for (G,r, 
). The next theorem shows that our result for ASCALE
has a consequence for the SCALE strategy as well.

Theorem 3. Let g = αo be the SCALE strategy for instance I = (G,r, 
,α). Define a
modified instance Î = (G,r, 
̂,α) with latency functions 
̂a(x) = 
a(x/β )/β for every
arc a, where β = 1 +

√
1−α, and let Ĉ(·) denote the cost of a flow with respect 
̂. Let

ĥ be the Nash flow induced by ĝ = g in Î . Then, Ĉ(ĝ + ĥ)≤C(o).

5 Bounds for Specific Classes of Latency Functions

In this section, we first present a general approach, which we call λ -approach, to an-
alyze the price of anarchy of opt-restricted Stackelberg strategies. We then use the λ -
approach to derive bounds on the price of anarchy of the SCALE strategy for a general
class of latency functions, including polynomial latency functions with nonnegative co-
efficients.

λ -Approach. We start by proving an upper bound on the cost of the combined flow
induced by an opt-restricted Stackelberg strategy.

Lemma 4. For any opt-restricted strategy g, C(g + h)≤∑a∈A oa
a(ga + ha).

Proof. The proof follows immediately by applying the variational inequality (1) with
x = o−g. ��

For any latency function 
a and nonnegative numbers ga, λ , we define the following
nonnegative value:

ω(
a;ga,λ ) := sup
oa,ha≥0

oa

ga + ha
· 
a(ga + ha)−λ 
a(oa)


a(ga + ha)
. (2)

(We assume by convention 0/0 = 0.) In order to bound the price of anarchy, we use the
variational inequality (Lemma 4) and bound the cost of the induced flow on every arc
by some λ -fraction of the optimal cost plus some ω-fraction of the cost of the induced
flow itself:

C(g + h)≤ ∑
a∈A

λ ·oa
a(oa)+ ω(
a;ga,λ ) · (ga + ha)
a(ga + ha). (3)

Now, the idea is to determine a λ that provides the tightest bound possible. Choos-
ing λ = 1, the above approach resembles the one that was previously used by Correa,
Schulz, and Stier-Moses [3] to bound the price of anarchy of network routing games;
however, optimizing over the parameter λ provides an additional means to obtain bet-
ter bounds. The idea of introducing the scaling parameter λ was first introduced in
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the context of bounding the price of anarchy in atomic splittable network games (see
Harks [9]).

For a given opt-restricted strategy g we further define ω(g,λ ) = maxa∈A ω(
a;ga,λ ).
Before we state the main theorem, we need one additional definition. Given an opt-
restricted strategy g, the feasible λ -region is defined as Λ(g) := {λ ∈R+ |ω(g,λ ) < 1}.
Notice that every λ ∈Λ(g) induces a bound on the price of anarchy.

Theorem 4. Let λ ∈Λ(g). Then C(g + h)≤ λ
1−ω(g,λ )C(o).

Proof. The proof follows immediately from (3), Lemma 4 and the definition of ω . ��

Bounds for SCALE. In the following, we will analyze the SCALE strategy defined by
g = αo. Let Ld , d ≥ 1, be a class of continuous, nondecreasing, and standard latency
functions satisfying 
(cz) ≥ cd
(z) for all c ∈ [0,1]. Ld contains, among others, poly-
nomials with nonnegative coefficients and degree at most d. This characterization has
been used before by Correa et al. [3].

Lemma 5. Assume λ ∈ [0,1] and latency functions in Ld. Then, we have

ω(αo,λ )≤max

{
1
α

(1−λ ),
d

d + 1
· 1

((d + 1)λ )1/d

}
.

Proof. By the definition of ω = ω(
a;αoa,λ ):

ω = sup
oa,ha≥0

oa

α oa + ha
· 
a(α oa + ha)−λ 
a(oa)


a(α oa + ha)
.

We consider two cases: (i) α oa + ha ≥ oa. Define µ := oa
α oa+ha

∈ [0,1]. We have

ω = sup
oa,ha≥0,µ∈[0,1]

µ · 
a(α oa + ha)−λ 
a(µ (α oa + ha))

a(α oa + ha)

≤ max
µ∈[0,1]

µ (1−λ µd) =
d

d + 1
· 1

((d + 1)λ )1/d
.

where the last inequality follows from the definition of Ld . The second case (ii) α oa +
ha ≤ oa leads to

ω ≤ sup
oa,ha≥0

oa

α oa + ha
· 
a(α oa + ha)−λ 
a(α oa + ha)


a(α oa + ha)

≤ sup
oa,ha≥0

oa

α oa + ha
(1−λ )≤ 1

α
(1−λ ),

where the first inequality is valid since latencies are nondecreasing. ��
Lemma 6. There is a unique λ ∈ (0,1), call it λd, such that 1

α (1−λ )= d
d+1 ·

1
((d+1)λ )1/d .

Then: λd = zd
d/(d +1), where zd ≥ 1 is the unique solution to the equation zd+1− (d +

1)z+ αd = 0.

Proof. Substituting λ = zd
d/(d +1) in the starting equation and rewriting yields zd+1−

(d + 1)z + αd = 0. To verify that this equation has indeed exactly one solution larger
than 1, use for example Descartes’ rule of signs. ��
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Theorem 5. The price of anarchy of the SCALE strategy for latency functions in the
class Ld is at most

(d + 1)zd−αd
(d + 1)zd−d

,

where zd ≥ 1 is the unique solution of the equation zd+1− (d + 1)z+ αd = 0.

Proof. We will use Theorem 4 with λ = λd . However, in order to apply the theorem,
we first need to upper bound ω(αo,λd). Using Lemma 5 and Lemma 6, we know that

ω(αo,λd)≤
d

d + 1
· ((d + 1)λd)−1/d =

d
d + 1

· z−1
d < 1.

This implies λd ∈Λ(αo) and we can invoke Theorem 4 to obtain a bound on the price
of anarchy given by

λd

1−ω(αo,λd)
≤ zd

d/(d + 1)
1− d

d+1 z−1
d

=
zd+1

d

(d + 1)zd−d
=

(d + 1)zd−αd
(d + 1)zd−d

. ��

The bound thus obtained gives an improvement with respect to the previously best
bounds obtained by Swamy [23].

For the class of L1 latency functions, which, in particular, contains continuous, non-
decreasing, standard, and concave latencies, the above theorem reads as stated in Corol-
lary 2 below. The same bound has been proven by Karakostas and Kolliopoulos [11] for
the special case of affine latencies.

Corollary 2. The price of anarchy of the SCALE strategy for latency functions in L1

is at most
(
(1 +

√
1−α)2

)
/
(
2(1 +

√
1−α)−1

)
.

A lower bound for polynomial latency functions of degree d can be obtained by consid-
ering generalized Braess graphs [1,20] (details omitted).

Theorem 6. Let n ≥ 2 be an integer and let c = (1− (n− 1)α/n)d. Then, the price
of anarchy of the SCALE strategy for latency functions in the class Ld is at least
(nc1+1/d +(n−1)αc)/((n−1)c +n−d).

Note that the theorem does not fix n, so it is possible to optimize n based on α . For
functions in L1 the stated lower bound pointwise matches the upper bound of Corollary
2 for infinitely many values of α . More precisely, the upper bound is matched for all
values of α such that 1/

√
1−α is an integer. To the best of our knowledge, this is the

first tight bound for values of α �= 0,1.
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3 Dipartimento di Informatica, Università di L’Aquila, 67010 L’Aquila, Italy
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Abstract. Let a communication network be modelled by a directed
graph G = (V, E) of n nodes and m edges. We consider a one-round
two-player network pricing game, the Stackelberg Shortest Paths Tree
(StackSPT) game. This is played on G, by assuming that edges in E
are partitioned into two sets: a set EF of edges with a fixed positive real
weight, and a set EP of edges that should be priced by one of the two
players (the leader). Given a distinguished node r ∈ V , the StackSPT

game is then as follows: the leader prices the edges in EP in such a way
that he will maximize his revenue, knowing that the other player (the
follower) will build a shortest paths tree of G rooted at r, say S(r), by
running a publicly available algorithm. Quite naturally, for each edge
selected in the solution, the leader’s revenue is assumed to be equal to
the loaded price of an edge, namely the product of the edge price times
the number of paths from r in S(r) that use it. First, we show that
the problem of maximizing the leader’s revenue is NP-hard as soon as
|EP | = Θ(n). Then, in search of an effective method for solving the
problem when the size of EP is constant, we focus on the basic case in
which |EP | = 2, and we provide an efficient O(n2 log n) time algorithm.
Afterwards, we generalize the approach to the case |EP | = k, and we
show that it can be solved in polynomial time whenever k = O(1).

Keywords: Communication Networks, Shortest Paths Tree, Stackelberg
Games, Network Pricing Games.

1 Introduction

From a game theoretic point of view, the Internet is usually seen as an economic
system in which a multitude of firms (i.e., the final users) compete on a wide
range of applications involving the allocation of the network resources. Quite
naturally, the firms are assumed to share the very same market quote, and then
the economic model which usually captures the strategic side of the system
is that of a Nash game, in which all firms simultaneously compete against each
other. However, as soon as a firm has a leadership position (which often happens
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in an oligopoly of service providers like the Internet tendentially is), it could in
practice manipulate the market to its own advantage. This setting requires a
different economic model, so as to be able to discriminate between the leader
(i.e., the dominating subject), and the followers (i.e., the residual players).

Leader-follower games were introduced to model heterogeneous markets by
von Stackelberg as early as 1934 [11]. In the basic formulation, the game is
played in a single round by only two players: the leader which moves first, and
the follower which observes the leader’s move and then makes its own move,
after which the game is over. In our setting, the follower computes a solution by
optimizing an objective (public) function, while the leader has its own objective,
based on the solution used by the follower. Therefore, the strategic aspect of
the game consists of the fact that the leader can anticipate the response of the
follower and take it into account when optimizing his own objective.

1.1 Stackelberg Network Games

Despite their importance in economics, leader-follower games have not yet been
extensively studied from a computational complexity point of view. Instead, the
so called network games have been mainly studied under the Nash model which
served as a paradigm in most of the developments of algorithmic game theory
[8]. In these games, classic combinatorial optimization problems on networks
(e.g., network design problems, flow networks, etc.) are revised in a strategic
setting in which users own physical network components, or selfishly decide which
part of the network must be used for their personal purposes. In this context,
the potentially large size of an instance of a network game revealed itself as a
boosting motivation for focusing on its computational aspects. However, network
games can be easily regarded as Stackelberg games, as soon as a situation arises
in which a subset of the players has a dominant position, by controlling a higher-
level decision phase in which part of the game instance is set (e.g., cost of a subset
of network arcs, routing of a substantial amount of the flow, etc.). In particular,
Stackelberg network games in which the leader(s) fixes the costs of a subset of
links in the network, which are of interest for this paper, are widely known as
network pricing games (NPG).

The probably oldest NPG is that in which we are given a directed graph
G = (V, E), where E is partitioned into a set EF of edges with a fixed positive
real weight and a set EP of priceable edges, and two nodes s, t ∈ V ; then, the
follower wants to travel along a shortest path in G between s and t, after the
leader has fixed the costs for edges in EP (see [10] for a survey). The problem for
the leader of fixing the costs so as to maximize its revenue (given by the sum of
the costs of edges in EP used by the follower), has been shown to be strongly NP-
hard, as well as O(log |EP |)-approximable [9]. For the case of multiple followers
(each with a specific source-destination pair), Labbé et al. [6] derived a bilevel
LP formulation of the problem (and proved NP-hardness), while Grigoriev et al.
[5] gave algorithms for a restricted shortest path problem on parallel edges.

Another basic NPG game, which quite surprisingly was considered only very
recently, is that in which the follower wants to eventually use a minimum
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spanning tree of G (now considered as undirected). For this game, in [3] the
authors proved the APX-hardness already when the number of possible weights
for the edges in EF is 2, and gave a logarithmic-approximation algorithm.

1.2 Our Problem

In this paper, we focus on a NPG concerning one of the most popular network
topologies, namely the single-source shortest paths tree. Our setting is the fol-
lowing: We assume the existence of a leader which can set the costs for using
a certain set of links in a network modelled by a directed graph. The follower
needs to send a message from a given, fixed source node to each of the other
nodes. This models the situation in which the follower realizes a broadcast by a
sequence of unicasts, the predominant protocol in the Internet. More formally,
our game, that we call StackSPT, can be described as a bilevel optimization
problem (all the paths are assumed to be directed):

– Instance: A directed graph G = (V, E = EF ∪EP , EF ∩EP = ∅), a function
w : e ∈ EF �→ R+, and a source node r ∈ V ;

– Leader feasible solution: A pricing p : e ∈ EP �→ R+;
– Follower feasible solution: A spanning arborescence T of G rooted at r

(after edges in EP have been priced);
– Follower objective: Minimize the sum of all the path lengths in T from

r to any node in G;
– Leader objective: For a given optimal solution w.r.t. the follower objective,

say S(r) = (V, ES), maximize the revenue

ρ(S(r)) =
∑

e∈EP∩ES

p(e) · ||e||

where ||e|| is the number of paths in S(r) emanating from r and using e.

For the follower’s objective we assume that in the graph G, edges in EF are
weighted w.r.t. w(·), while edges in EP are weighted w.r.t. p(·). Moreover, to
make the problem bounded, we assume that in G − EP = (V, EF ), for each
v ∈ V there exists a path from r to v. Finally, when multiple optimal solutions
are available for the follower, we adopt the standard tie-breaking rule which
enforces to select an optimal solution maximizing the leader’s revenue.1 We will
see later (see Lemma 3) how this tie-breaking rule can be actually implemented.
Moreover, in the paper we adopt the following notation:

– π(u, v): a shortest path in G = (V, E) between u and v;
– ei = (ui, vi): an edge in EP directed from ui to vi;
– πi1...ih

�j1... �jk
(u, v): for a subset ei1 , . . . , eih

, ej1 , . . . , ejk
of edges of EP , a short-

est path in G between u and v constrained to contain edges in ei1 , . . . , eih
,

and to avoid edges in ej1 , . . . , ejk
;

– |πi1...ih
�j1... �jk

(u, v)|: the length of the path.

1 While this rule may appear unnatural in our competitive setting, it simply avoids
the undesired technicality that an optimal solution for the leader can only be reached
within an arbitrarily small subtracted term.
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1.3 Our Results

First of all, notice that if |EP | = 1, then our problem can be solved efficiently
by using a classic sensitivity analysis algorithm. More precisely, it suffices to
compute, for each v ∈ V , the length of a shortest path between r and v in the
graph deprived of the priceable edge, and the length of a shortest path between
r and v in the graph in which the weight of the priceable edge is set to 0. Then,
we consider all the nodes for which these two lengths differ, and we sort in
non-increasing order the difference between the two lengths. These values, once
multiplied by their position in the sorted sequence, correspond exactly to the
revenue associated with each given threshold price. Since finding the length of
all the replacement paths can be done in O(m + n log n) time [7], it is not hard
to see that this an upper bound for solving the problem.

On the other hand, for |EP | > 1 our problem can be faced by using the very
general results given in [2], where the authors show how to handle NPGs in
which the followers optimize a polynomial-time network optimization problem.
More precisely, it can be shown that our problem can be rephrased as an (n−1)-
follower game, for which the authors provide, for any ε > 0, a H(n−1)|EP |(1 +
ε)-approximation algorithm, where Hi denotes the i-th harmonic number (see
Theorem 2 in [2]).

In this paper, we contribute to the knowledge on the StackSPT game by
analyzing it under several respects. More precisely, firstly we analyze the com-
plexity of the game, and we show that finding an optimal pricing for the leader’s
edges is NP-hard, as soon as |EP | = Θ(n). Then, we turn our attention to the
development of an efficient algorithm for the case in which |EP | is fixed. To
this aim, we analyze in detail the basic case |EP | = 2, for which we provide
an efficient O(n2 log n) time algorithm. This result forms the basis for the case

|EP | = k, for which we are then able to design an O
(

4k2

k! nk(k3 + m + n log n)
)

time algorithm.

2 NP-Hardness of the StackSPT Game

In this section we prove the following:

Theorem 1. StackSPT in directed graphs is NP-hard.

Proof. The reduction is from 3-Sat, and is an extension of the hardness result
proved in [9] for the NPG in which the follower wants to compute a shortest
path between two given nodes. Let k be the number of clauses in the formula.
Figure 1 shows the gadget for the i-th clause, and how the gadgets are linked
in order to obtain the graph corresponding to the entire formula. In particular,
there is a shortcut of cost 1/2 connecting the head of an edge ei,p with the tail
of an edge ej,q, with j > i and p, q ∈ {1, 2, 3}, iff in the corresponding clauses,
the variable xi,p is the negation of xj,q. Moreover, we add a set of h− 1 vertices
that can be reached from the last gadget with edges of cost 0. The edges that
have to be priced are {e1, . . . , ek} ∪

⋃k
i=1{ei,1, ei,2, ei,3}.
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Fig. 1. The gadget for clause i, and the network for the formula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨
x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4). Priceable edges are in bold, the weight of backward edges
from ti-nodes in the network is 6, while all other unspecified weights are equal to 0.

A slightly different version of the following lemma was already proven in [9]:

Lemma 1. The formula is satisfiable if and only if there is a pricing for the
corresponding graph such that the revenue obtained from the path from r to v1
is strictly greater than 2k − 1/2. Moreover, if the formula is satisfiable then the
revenue that can be achieved from the path is exactly 2k.

Proof. Given a truth assignment for the formula, we can define a pricing inducing
a revenue of value 2k as follows. We set the price of ei,j to 1 if ei,j corresponds
to a true literal, a sufficiently high value otherwise. All the other priceable edges
are set to 1. On the other hand, consider a pricing inducing a revenue of value
strictly greater than 2k−1/2. First, notice that there is fixed cost path of length
2k from r to v1. Therefore the shortest path P from r to v1 selected by the
follower cannot use any edge having a fixed cost greater or equal to 1/2. As a
consequence, P contains 2k priceable edges each having a price in the interval
(1/2, 1]. Now, putting the literals corresponding to the selected priceable edges
to true provides a valid truth assignment: each clause has a true literal, and the
path does not contain two edges corresponding to a literal and its negation, since
in that case the shortest path would take the shortcut of cost 1/2. ��

Now, let h > 48k2. Then we claim that the 3-Sat instance has a positive answer
if and only if the corresponding StackSPT instance admits a pricing yielding
a total revenue strictly greater than 24k2 + (2k − 1/2)h. Indeed, if the formula
is satisfiable, from Lemma 1 we can price the edges in such a way that the total
revenue is at least 2kh > 24k2+(2k−1/2)h (we can guarantee a revenue of 2k for
each vj). On the other hand, if the formula does not admit a truth assignment,
then the total revenue is upper bounded by 24k2+(2k−1/2)h. To see this, notice
that the revenue obtained from each path from r to any vj is at most 2k − 1/2
(Lemma 1). Moreover, a path from r to any other vertex can bring a revenue
that is at most 3k, since each vertex belonging to a gadget can be reached with
a path of non-priceable edges of total cost upper bounded by 3k. Since there are
8k of such vertices, the claim follows. ��

3 The Case |EP | = 2

Let us focus on the case in which EP = {e1, e2}. For the sake of generality, let us
assume that for p(e1) = p(e2) = 0, a SPT of G rooted at r contains both edges.
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Moreover, we also assume that e2 = (u2, v2) descends from e1 = (u1, v1) in such a
tree, since the case in which the two edges are unrelated is just a particularization
of our analysis. From our assumptions, the aforementioned SPT will induce a
partition of the nodes of G into three sets: those using both edges, those using
only e1, and finally those not using them. In the following, we analyze in detail
the set of nodes of the first type, since the set of nodes of the second type can
be studied in a very similar and simpler way, while nodes in the third set are
just not affected by the pricing strategy.

Let then v ∈ V be a node whose path from the root in the SPT passes
through u1, v1, u2 and v2, in this order (it is easy to see that such order will then
be maintained regardless of the values p(e1), p(e2)). Then, we need to compute
the partition of the set of points (p(e1), p(e2)) ∈ R+× R+ into four regions, say
v[{0, 1}2], in which the first (resp., second) component of the argument is set to
1 if e1 (resp., e2) is used in the (shortest) path in S(r) between r and v. The
four regions are then defined by the following set of points:

v[1, ·] :=
{
(p(e1), p(e2)) s.t. |π1(r, v)| <

∣∣π
�1(r, v)

∣∣} ;
v[·, 1] :=

{
(p(e1), p(e2)) s.t. |π2(r, v)| <

∣∣π
�2(r, v)

∣∣} ;
v[1, 1] := v[1, ·] ∩ v[·, 1]; v[0, 0] := R+× R+ \ (v[1, ·] ∪ v[·, 1]).

As far as v[1, ·] is concerned, it can be exploited as a function of whether e2 either
belongs or not to π1(r, v), π

�1(r, v) (in the formula we omit the (r, v) argument
for the sake of readability):

v[1, ·] =
{
(p(e1), p(e2)) s.t. min{|π12|, |π1�2|} < min{|π

�1�2|, |π2�1|}
}

=
{
(p(e1), p(e2)) s.t. (|π12| < |π2�1|) ∧ (|π12| < |π�1�2|)

}
∪ (1)

∪
{
(p(e1), p(e2)) s.t. (|π1�2| < |π2�1|) ∧ (|π1�2| < |π�1�2|)

}
The above can be rewritten as the union of the solutions of the following two
systems of inequalities:

(S1) :=
{
|π12| < |π�1�2|
|π12| < |π2�1|

(S2) :=
{
|π1�2| < |π�1�2|
|π1�2| < |π2�1|.

By noticing that π12 and π2�1 both contains e2, (S1) can be rewritten as:{
|π
�1�2(r, u1)|+ p(e1) + |π

�1�2(v1, u2)|+ p(e2) + |π
�1�2(v2, v)| < |π

�1�2(r, v)|
|π
�1�2(r, u1)|+ p(e1) + |π

�1�2(v1, u2)|+ |π�1�2(v2, v)| < |π
�1(r, u2)|+ |π�1(v2, v)|

and from our assumptions on the relative positions of u1, v1, u2, v2 w.r.t. r, it
follows that |π

�1�2(v2, v)| = |π
�1(v2, v)| = |π(v2, v)|, and |π

�1�2(r, u1)| = |π(r, u1)|,
and |π

�1�2(v1, u2)| = |π(v1, u2)|, and then (see Figure 2 for checking out the lines
defining the half-planes associated with the inequalities)

(S1) :=
{

p(e1)+p(e2)< |π�1�2(r, v)| − |π(r, u1)| − |π(v1, u2)| − |π(v2, v)| (line 
6)
p(e1) < |π

�1(r, u2)| − |π(r, u1)| − |π(v1, u2)|. (line 
2)
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Similarly, for (S2) we obtain

(S2) :=
{

p(e1) < |π
�1�2(r, v)| − |π(r, u1)| − |π�2(v1, v)| (line 
4)

p(e1)−p(e2)< |π�1(r, u2)|+|π(v2, v)|−|π(r, u1)| − |π�2(v1, v)|. (line 
3)

Simmetrically, for v[·, 1] we get the following systems of inequalities:

(S′
1) :=

{
p(e1)+p(e2) < |π

�1�2(r, v)|−|π(r, u1)| − |π(v1, u2)| − |π(v2, v)| (line 
6)
p(e2) < |π

�2(v1, v)| − |π(v2, v)| − |π(v1, u2)| (line 
1)

(S′
2) :=

{
p(e2) < |π

�1�2(r, v)| − |π(v2, v)| − |π
�1(r, u2)| (line 
5)

p(e1)−p(e2)> |π�1(r, u2)|+|π(v2, v)|−|π(r, u1)| − |π�2(v1, v)|. (line 
3)

The partition of the plane induced by v[1, ·] and v[·, 1] depends on the mutual
positions of the half-planes obtained from the constraints in the system. In par-
ticular, if |π

�1�2(r, v)| − |π(r, u1)| − |π�2(v1, v)| > |π
�1(r, u2)| − |π(r, u1)| − |π(v1, u2)|

(i.e., 
4 is to the right of 
2), which implies |π
�1�2(r, v)| − |π(v2, v)| − |π

�1(r, u2)| >
|π
�2(v1, v)|−|π(v2, v)|−|π(v1, u2)| (i.e., 
5 is above 
1), then we have the partition

on the left side of Figure 2, otherwise we have the partition on the right side
(notice that sloped lines have angular coefficient ±1).

p(e2)

p(e1)

|π1̂̂2(r, v)| − |π(r, u1)| − |π2̂(v1, v)|

v[0, 1]

D

C


4


2


5


1
v[0, 0]

p(e1)

v[1, 1]

v[0, 1]

|π1̂̂2(r, v)| − |π(r, u1)| − |π2̂(v1, v)|

B


2


3


5

A

v[1, 0]


4

|π1̂(r, u2)| − |π(r, u1)| − |π(v1, u2)|


6
1
v[1, 1]

v[0, 0]

v[1, 0]

|π1̂(r, u2)| − |π(r, u1)| − |π(v1, u2)|

|π2̂(v1, v)| − |π(v2, v)| − |π(v1, u2)|
|π1̂̂2(r, v)| − |π(v2, v)| − |π1̂(r, u2)|

|π1̂̂2(r, v)| − |π(v2, v)| − |π1̂(r, u2)|
|π2̂(v1, v)| − |π(v2, v)| − |π(v1, u2)|p(e2)

Fig. 2. The two possible partitions of the plane

Now, observe that w.r.t. any given node v, the maximum revenue is obtained
by selecting the maximum in either of the points belonging to the associated solid
lines, depending on the plane partition. However, when all the nodes have to be
considered simultaneously for selecting an optimal solution, say (p∗(e1), p∗(e2)),
all the plane partitions have to be overlayed. Such an overlaying will generate a
new partition of the plane into closed regions holding the following property:

Lemma 2. For each region R, the relative maximum is placed onto some vertex
of its boundary.
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Proof. Indeed, R is convex and is homogenous w.r.t. each node, meaning that
for any node v ∈ V , R is covered by either of v[0, 0], v[0, 1], v[1, 0], v[1, 1]. Then,
from the monotonicity of the revenue function, it is easy to see that for each of
these cases, the maximum for node v is retained onto a vertex of the boundary
of R, from which the claim follows. ��

Thus, to find (p∗(e1), p∗(e2)), we check all the points of the plane in which
the boundary lines of the various partitions intersect. Since the partition of the
plane for every vertex is determined by a constant number of lines, we have O(n)
lines in total. As a consequence, the O(n) lines can generate O(n2) intersection
points. Observe now that all these intersection points can be found in O(n2)
time, after an O(m + n log n) preprocessing time. Indeed, to compute each node
partition, it suffices to find all the distances from the root in the four possible
configurations where p(e1), p(e2) ∈ {0,∞}. Thus, in order to solve our problem,
it remains to check efficiently each of these points. The following lemma (which
holds independently of the size of EP ) provides a way to do that:

Lemma 3. For a given pricing p : EP → R+, a shortest path tree maximizing
the total revenue can be computed in O(m + n log n) time.

Proof. Consider the graph where all priceable edges are priced according to p(·).
By a trivial modification of Dijkstra’s algorithm, it is possible to compute in
O(m + n log n) time the subgraph H of G containing an edge f ∈ E(G) iff f
is an edge of some shortest path tree of G rooted at r. Now we show how to
compute in O(m) time a shortest path tree S∗(r) of H rooted at r which gives the
maximum revenue for the leader w.r.t. p. We define a new weight function φ(·) as
follows. For each edge e ∈ E(H), φ(e) is defined as −p(e) if e ∈ EP , 0 otherwise.
Then we compute an SPT of H rooted at r w.r.t. φ(·), say S∗(r). This can be
done in O(m) time since H is acyclic [4]. Now the claim follows from the fact
that for any SPT S(r) of H we have that ρ(S(r)) =

∑
e∈E(S(r))∩EP

p(e)||e|| =
−
∑

e∈E(S(r)) φ(e)||e||. ��

Hence, from the above discussion, it follows that the case |EP | = 2 can be
handled in O(mn2 +n3 log n) time. As we will see, in next section we will extend
this result to the case in which |EP | = k. In the remaining of this section we show
that the running time for the case |Ep| = 2 can be actually reduced to O(n2 log n)
after a careful geometrical analysis and the use of geometric data structures.
Although we leave open the problem of generalizing this faster algorithm to
the case |EP | = k, we believe this result is of independent interest, due to the
importance of the case |EP | = 2, which models the atomic situation in which
there is an agent owning more than one edge in the network.

3.1 A Faster Algorithm

In the sequel, we denote each of the possible lines as depicted in Figure 2 and
we only refer to intersections between lines associated with distinct nodes. We
start by observing that since the abscissa of points A and C is independent of
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node v, then all 
2-segments lie on the same line. Thus, the closed rectangles
in the first partition and the pentagons in the second partition are all adjacent
on three sides (the two axis and line 
2). Moreover, as all the lines are vertical,
horizontal or with angular coefficient ±1, it follows that

Fact 1. Each intersection point is on the boundary of at most 8 regions.

For each region R of the partitioning of the plane obtained by overlaying all the
partitions associated with the nodes, let R(||e1||, ||e2||) denote the (constant)
load of each interior point of the region, namely the number of nodes using e1
and the number of nodes using e2.

Let us divide the plane in two zones, the part we will call zone 1, which is
on the left side of line 
2 (line 
2 is included), and the part we will call zone 2,
which is on the right side of line 
2 (line 
2 is included). Since all 
2-segments lay
on the same line, we have that all B-points of the first partition are in zone 2,
all A-points of the first partition lay on 
2, while all the C-points of the second
partition are in zone 1.

Let (x, y) be any point in zone 2 which is internal to a region, say R. Partition
zone 2 into three subzones as shown in Figure 3.a by drawing the lines p(e1) =
x, p(e2) = y, and the line with angular coefficient 1 passing through (x, y).
Let Be1 , Be2 , and Bnot be the natural partitioning of the B-points (multiple
occurrences are allowed as the B-points of some vertices might be the same)
induced by the three subzones.2 From Figure 3.a it is not hard to see that
R(||e1||, ||e2||) = (|Be1 |, |Be2 |).

(c)

p(e2) Be2

Be1

Bnot

�2 p(e1)

(x, y)

p(e2)

p(e1)�2

(x, y)

Pe1

Pboth

Pnot

p(e2)

p(e1)

(x, y)

(a) (b)

Fig. 3. (a) Partitioning of zone 2 into three subzones w.r.t. point (x, y): the three dotted
lines emanating from some B-point are the lines determining the plane subdivision of
some vertex that generates that B-point; (b) Partitioning of zone 1 into three subzones
w.r.t. point (x, y): the three dotted lines emanating from some C-point are the lines
determining the plane subdivision of some vertex that generates that C-point, while the
dashed line emanating from some A-point is the line determining the plane subdivision
of some vertex that generates that A-point; (c) How to compute the load of all the
regions whose boundaries contain the point (x, y) (the circle has a very tiny radius)

2 Observe that there is no B-point which is on some of the three lines emanating from
(x, y) (see Figure 3.a), as (x, y) is internal to region R and because of the structure
of the first partition (see Figure 2).
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Let (x, y) be any point in zone 1 which is internal to a region, say R. Partition
zone 1 into three subzones as shown in Figure 3.b by drawing the lines p(e1) =
x, p(e2) = y, and the line with angular coefficient −1 passing through (x, y). Let
Pboth, Pe1 , and Pnot be the natural partitioning of the A-points and C-points
(again, multiple occurrences are allowed) induced by the three subzones.3 From
Figure 3.b it is not hard to see that R(||e1||, ||e2||) = (|Pboth| + |Pe1 |, |Pboth|).
Moreover, observe that at most a new intersection point belonging to zone 1 is
generated if we overlap the partitions associated with any two nodes. We can
state the following

Theorem 2. StackSPT with |EP | = 2 can be solved in O(n2 log n) time.

Proof. First of all, recall that the set X of O(n2) intersection points (which
clearly includes also the A, B, C-points) can be found in O(n2) time, after an
O(m + n log n) preprocessing time.

For all the intersection points (x, y) ∈ X , we compute the best revenue the
leader can get if its edges are priced p(e1) = x, p(e2) = y. From Lemma 2, we
have that the maximum revenue is obtained on some of these points. To compute
the best revenue for (x, y) it is enough to compute the load of the regions whose
boundaries contain the point (x, y), and check which load gives the best revenue.
As from Fact 1 (x, y) belongs to the boundaries of at most 8 regions, and as (x, y)
can be generated by lines which are vertical, horizontal or with angular coefficient
±1, it is enough to compute the load for the 8 points which are close to (x, y)
as shown in Figure 3.c. This guarantees that all the regions whose boundary
contains (x, y) are taken into account. Indeed, using standard data structures
known for range counting problems (see for example [1]), after a preprocessing
phase requiring O(n log n) time, we can compute in O(log n) time the number of
B-points belonging to all the three regions in Figure 3.a, as well as the number
of A-points and C-points belonging to all the three regions in Figure 3.b, where
(x, y) is an input parameter. Since it is possible to check in constant time if (x, y)
is in zone 1 or in zone 2, we have that the best revenue of every point can be
computed in O(log n) time. As we have O(n2) points, the claim follows. ��

4 The Case |EP | > 2

In this section we extend the basic result we obtained for |EP | = 2 to the general
case in which the leader owns k edges. As a consequence of the generalization,
the runtime of the algorithm we propose is O

(
4k2

k! nk(k3 + m + n log n)
)
.

Before providing the description of the algorithm, we need to introduce some
notation which was not needed for the case |EP | = 2. Given a vector b, we will
denote by bi the i-th component of the vector, while (b−i, b

′
i) denotes the vector

which is equal to b except for its i-th component whose value is b′i. Finally, by

3 Observe that neither A-points nor C-points can be on some of the three lines ema-
nating from (x, y) (see Figure 3.b), as (x, y) is internal to region R and because of
the structure of the second partition (see Figure 2).
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(·−i, b̄i) we will denote the set of all vectors for which the i-th component is fixed
to be b̄i.

Along the same line of the previous section, we focus our attention on the
more general case in which, given a vertex v ∈ V , we have that a shortest path
in G from r to v passes through all the k edges, once their weight is set to
0. For vertices using only a subset of edges, the analysis will follow by prop-
erly considering the corresponding set of vector components. Now, for a given
i, 1 ≤ i ≤ k, we define v[·−i, 1] =

{(
p(e1), . . . , p(ek)

)
s.t. |πi(r, v)| < |π

�i(r, v)|
}

.

Obviously v[·−i, 0] = (R+)k \ v[·−i, 1]. Therefore, for any given vector b =
(b1, . . . , bk) ∈ {0, 1}k, we have that v[b1, . . . , bk] =

⋂k
i=1 v[·−i, bi].

Let πb(r, v) denotes a path between r and v which includes ei iff bi = 1.
Expanding the definition of v[·−i, 1] leads to the following collection of systems
of linear inequalities

v[·−i, 1] =
{(

p(e1), . . . , p(ek)
)

s.t. |πi(r, v)| < |π
�i(r, v)|

}
=

⋃
b′∈{0,1}k

{(
p(e1), . . . , p(ek)

)
s.t. |π(b′

−i,1)(r, v)| < |π
�i(r, v)|

}

=
⋃

b′∈{0,1}k

⎧⎨⎩(p(e1), . . . , p(ek)
)

s.t.
∧

b′′∈{0,1}k

|π(b′
−i,1)(r, v)| < |π(b′′

−i,0)(r, v)|

⎫⎬⎭ .

Hence, v[b1, . . . , bk] is determined by a system of linear inequalities. LetH denote
the set of all the hyperplanes corresponding to some linear inequality of the
system. More formally

H =
⋃

v∈V \{r}

k⋃
i=1

{
|πb′(r, v)| = |πb′′(r, v)| s.t. b′, b′′ ∈ {0, 1}k, b′i = 1, b′′i = 0

}
. (2)

We are now ready to give our main result for the case in which |EP | = k:

Theorem 3. StackSPT can be solved in O
(

4k2

k! nk(k3 + m + n log n)
)

time.

Proof. First of all, notice that since the coefficients of each hyperplane can be
computed in O(m + n log n) time by means of two constrained shortest-path
computations, and given that by definition |H| ≤ n4k, we have that H can be
found in O(n4k(m + n log n)) time.

Then, the algorithm first computes a set X of possible pricings for the leader’s
edges. Consider the subdivision of the k-dimensional Euclidean space into regions
obtained from overlaying all the hyperplanes in H. The set X computed by the
algorithm contains all the extremal points for all the regions resulting from the
subdivision specified above. Clearly, inside every region the load of the leader’s
edges is constant. Obviously, every region is convex because its boundary is
determined by a system of hyperplanes in H. Therefore, an extremal point of
some of these regions gives an optimal pricing of the edges. This proves that X
contains an optimal pricing for the edges.
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Next, the algorithm searches for a point in X that maximizes the leader’s
revenue. From Lemma 3 this can be done in O(|X |(m + n log n)). Therefore,
the running time of the algorithm is O(|X |(m + n log n)) plus the time needed
to compute X . In what follows we prove that it is possible to compute X in
O
( 4k2

k! k3nk
)

time, thus proving the claim. Any extremal point is determined by
the intersection of k hyperplanes in H. Thus, we have

|X | ≤
(
|H|
k

)
≤
(

n4k

k

)
≤ nk4k2

k!
.

Since each point in X can be found in O(k3) time by solving the corresponding

k×k system of hyperplanes [4], we have that X can be computed in O
( 4k2

k! k3nk
)

time. Since from Lemma 3 each point can be checked in O(m + n log n) time,
the claim follows. ��
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Abstract. Network formation games capture two conflicting objectives of self-
interested nodes in a network. On one hand, such a node wishes to be able to reach
all other nodes in the network; on the other hand, it wishes to minimize its cost of
participation. We focus on myopic dynamics in a class of such games inspired by
transportation and communication models. A key property of the dynamics we
study is that they are local: nodes can only deviate to form links with others in a
restricted neighborhood. Despite this locality, we find that our dynamics converge
to efficient or nearly efficient outcomes in a range of settings of interest.

1 Introduction

Viewing modern data-networks, such as the Internet or ad-hoc networks, as a federation
of selfish, independent actors leads to a range of interesting game theoretic questions.
The goal of a selfish agent in a data network is two-fold. On one hand, it wishes to be
able to reach all other agents in the network. On the other hand, it wishes to minimize
its cost for participating in the network. The recent literature on network formation
games (NFGs) provides a natural model with which to study this tradeoff between cost
and connectivity; NFGs have been suggested as models for many domains, from trade
networks to peer-to-peer networks (see [1] for a comprehensive review).

In the model we consider, nodes derive utility from connectivity to each other, and
incur a cost comprised of three terms: (1) traffic related costs; (2) costs to maintain
links to other nodes; and (3) payments made to other nodes. The payments are a natural
mechanism for users to compensate each other for the costs required to establish links;
we assume these payments are bilaterally negotiated through contracts. Because link
formation is bilateral in NFGs, the equilibrium concept of interest for NFGs is pairwise
Nash stable equilibrium [2], as opposed to Nash equilibrium in traditional game theo-
retic models. Roughly speaking, a graph is pairwise Nash stable if it is a Nash equilib-
rium, and if it is pairwise stable as first introduced in [3]: no node can profitably remove
edges adjacent to it, and no two nodes can deviate jointly by altering their contract to
improve both their payoffs.

This paper studies dynamic processes of network formation in the setting described
above; in particular, we study whether realistic dynamics exist that also naturally select

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 263–277, 2008.
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efficient equilibria. The most basic dynamic network formation process is best response
dynamics, where at each round a profitable deviation is undertaken by one or a pair
of nodes at a time. An outcome is a fixed point of best response dynamics if and only
if it is a pairwise stable equilibrium. Although best response dynamics are attractively
simple, they may fail to converge; further, since any pairwise Nash stable equilibrium
is a fixed point, best response dynamics can lead to inefficient equilibria.

Our main insights are that, in a model we previously introduced in [4], there exist
a natural class of dynamics that also select efficient equilibria. When there is no cost
to maintain links and some equilibria with redundant edges exist, our dynamics can
select those non-tree equilibria; however, in this case the resulting equilibria may be
inefficient.

The dynamics we study are a generalization of local-best response dynamics. First,
nodes only deviate with other nodes in a local neighborhood; this is consistent with
the observation that in modern data networks, nodes are typically only aware of the
local topology of the network around them. Second, we allow nodes to deviate twice in
succession, using the first deviation to improve its bargaining power in the second step.

Formally, the dynamics proceed in rounds. Each round is divided into two stages.
During the first stage, an exogenously designated node u considers all possible unilat-
eral deviations. During the second stage, the same node considers all possible unilateral
and bilateral deviations with nodes in its local neighborhood. The key assumption is
that u seeks to maximize its prospective payoff at the end of the round, while nodes
involved in bilateral deviations choose their actions in order to maximize prospective
payoff at the end of the stage, considering the current network when making a deci-
sion. As such, one can think of our dynamics as constrained local-best response dy-
namics with one-step look-ahead for the active node. It is straightforward to show in
the models we consider that any fixed point of these dynamics must be pairwise Nash
stable.

The one-step look-ahead feature allows the deviating node more flexibility than best-
response dynamics—and thus in principle encourage more selfish behavior. The main
benefit of the proposed dynamics is that they serve as a local and decentralized equi-
librium selection mechanism. In particular, we show that for the utility model from
[4], where potentially inefficient pairwise Nash stable equilibria exist, these dynamics
in fact converge to desirable pairwise Nash stable equilibria instead. Also, when there
is no link maintenance cost and equilibria with redundant edges exist, we prove that
it is possible for the most inefficient equilibria selected to be less efficient than those
selected when there is a positive link-maintenance cost. Thus we prove that there is a
possible efficiency loss when the link maintenance cost vanishes.

In the NFG model we consider, a node incurs a traffic related cost that depends on the
total volume of traffic routed through it. In [4], it was shown that, for a very restricted
class of global dynamics, the network converges to a desirable pairwise Nash stable
equilibrium under certain conditions. Our paper recovers this convergence result and
extends it to the case when the link maintenance cost is nil using significantly more
general and natural, local dynamics; at the same time, the proofs are simplified via an
ordinal potential function argument (see [2]).
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Related Work

Our work touches on several related threads of the literature. Most closely related is the
work on network formation games in economics (see [1] for a survey). In the context of
communication networks [5] considered a static network formation game related to the
model in this paper; by contrast, the focus of the current paper is on the dynamics of
such formation processes. The work of Jackson and Watts also considers dynamics for
network formation games [6, 7], but for a utility model that is unrelated to ours. While
in their dynamics only a unilateral or a bilateral deviation may occur in a given round,
our dynamics are designed so that each round consists of two stages, thus allowing a
unilateral deviation to be followed by a bilateral deviation. This latter property allows
our dynamics to select desirable equilibria. Despite the dissimilarities in cost structure
and dynamics, random activation of nodes in the dynamics is needed for obtaining
convergence results both in our setting and in that of [7].

In [4], we considered essentially the same utility model and static game as in this
paper. There are several important differences that we summarize bellow.

– In [4] we used a variant of pairwise stability as the solution concept. Here we use
pairwise Nash stability, which allows us to define our dynamics in a more natural
framework, and also allows us to provide a complete characterization of equilib-
rium outcomes.

– In [4] we considered a restricted version of the dynamics we introduce in this pa-
per. Each round is again composed of two stages. In [4], at the beginning of each
round, an edge is sampled from the set of all possible edges, the active node is se-
lected among the two end-points of the sampled edge. Two main differences can be
pointed out:

• During the first stage, the active node is allowed to unilaterally deviate only
with respect to the sampled edge. This is in sharp contrast to the dynamics of
this paper where the active node can unilaterally deviate with respect to any set
of edges adjacent to it.

• During the second stage, the active node can bilaterally deviate with a node
selected from all possible nodes, thus requiring all nodes to be aware of the
global topology of the network. In our current dynamics, the active node can
choose to unilaterally or bilaterally deviate, and can only do so with nodes in
its local neighborhood.

Not only are the dynamics in [4] a very restricted version of those considered in this
paper (as the type of deviations allowed during each stage are explicitly restricted),
but also the nodes are required to have global information about the network (which
is not realistic in most modern data-networks).

The main result of [4] is that the network converges to a stable and desirable
equilibrium under certain conditions; we recover this result here, but for the more
general model of dynamics.

– Further, in this paper we are able to prove a convergence result even in the setting
where the link formation cost may be zero. This result is nontrivial because, as
noted, the limiting topologies may not be trees (as is always the case in the analysis
of [4]).
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In contrast to our approach, which is inspired by the literature on network formation
games, in recent years a large body of literature has considered efficiency loss due to
self-interested behavior in routing-related applications; see, e.g., [8]. A related thread
of literature has considered the efficiency of equilibria in network design games; see,
e.g., [9, 10, 11]. In this line of work, a network is formed based on unilateral decisions
of the players, and the cost of the resulting network is shared among the players. The
goal of that body of research is to design mechanisms that incentivize agents to choose
to use the network in an efficient manner.

Our work is also related to the literature on learning in games; see, e.g., [12, 13, 14]
for surveys. In this literature the emphasis is on studying classes of dynamic methods
that converge into the set of equilibria (e.g., correlated or Nash equilibria), without
regard to efficiency. Our approach departs significantly from this literature, as we are
interested in convergence to desirable equilibria.

Finally, there is an extensive body of research in the application of game theory to
networks; see, e.g., [15] for a survey, and [16, 17] for a discussion of pricing in net-
works. In the application domain, our work is related to papers on topology formation
in ad hoc networks; e.g., [18, 19, 20]. However, these works all consider Nash equilib-
ria, whereas our focus is on pairwise interactions between nodes.

The rest of the paper is organized as follows. In Section 2 we present the notation
used in the paper. In Section 3 we present the utility model considered In Section 4 we
define the static game, and recall the definition of pairwise Nash stability. In Section 6
we define the proposed two-stage dynamics. The main results are stated in Section 7
and are discussed in Section 8. The proofs of the main results are in online appendices
in [21].

2 Notation

Let G(V, E) be an undirected graph over V , with edge set E. We assume that V has
n elements, and E has m elements. For a given pair of nodes u and v in V , we call
d(u, v; G) the distance in G (i.e., number of edges) from u to v. If u and v are in two
distinct connected components, we set the distance d(u, v; G) to be n. Finally, for a
given node u ∈ V , we call δG(v) its degree in G.

3 Utility Model

We assume the nodes of the graph are strategic agents. We assume the cost to a node
v ∈ V is of the form:

C(v; G) = πδG(v) + h(v; G), (1)

for some positive function h. We assume that the cost is arbitrarily large (but finite) if
G is disconnected; thus we will restrict our model and analysis to connected networks.

The function h models a situation where the cost to a node v is proportional to
f(v; G), the number of packets v forwards and receives in G.

We now define more precisely the function h.
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Definition 1 (Routing-Related Cost). Let v ∈ V be a node in a connected network G.
Let cv > 0 be given. We call cv the per-unit routing cost associated to v. We define the
routing-related cost to v in G as

h(v; G) = cvf(v; G), (2)

where f(v, G) is determined by the routing policy and the traffic matrix. In our setting,
we assume all-to-all traffic routed uniformly over all shortest paths.

Next, we assume that links in the network are the result of bilateral agreements between
the participating nodes. We further assume that such an agreement induces a utility
transfer, or payment, between the nodes participating in the agreement. Let P be a n by
n matrix where, for all 1 ≤ i, j ≤ n, pij is the utility transfer from node i to node j.
We call P the payment matrix.

Let G(V, E) be a given connected network topology, and let (P ) be a given n by n
matrix with real entries, and Pii = 0 for all i. The total utility U(i; G,P) to node i in
G, given the payment matrix P, is:

U(i; G,P) =
∑
j �=i

(pji − pij)− C(i; G), (3)

i.e., the total payments made to i, minus the total payments made by i, minus the cost
of being in network topology G.

3.1 Contracting

In order to completely define the total utility to node i as in Equation 3, we need to
establish how entries in the payment matrix P are calculated. Recall that we assumed
that a link e = ij in G is the result of a bilateral agreement between i and j. We assume
that the link arises due to a contract between i and j. Contracts are directional, i.e., the
link ij may exist due to either the contract (i, j) or the contract (j, i).

If ij /∈ G, and the contract (i, j) is agreed upon by both i and j, then we assume
that i pays j an amount Q(i, j; G + ij); the function Q here is called the contracting
function. This function gives the value of the contract formed between i and j, given
the resulting network topology.

We believe two interpretations of the contracting function are reasonable. First, we
might imagine that an external regulator has dictated that contracts between nodes must
have pre-negotiated tariffs associated with them; these tariffs are encoded in the con-
tracting function. Note that the regulator in this case dictates changes in the value of the
contract as the surrounding network topology changes.

A second interpretation of the contracting function does not assume the existence
of the regulator; instead, we presume that the value of the contracting function is the
outcome of bilateral negotiation between the nodes in the contract. Note that the struc-
ture of our game assumes that this negotiation takes place holding the network topology
fixed; i.e., the negotiation is used to determine the value of the contract, given the topol-
ogy that is in place. One example is simply that Q(i, j; G) is the result of a Rubinstein
bargaining game of alternating offers between i and j, where i makes the first offer
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[22]. If both players are infinitely patient, the resulting contracting function is identical
to uniform cost sharing. More details can be found in [4].

We will be interested in contracting functions exhibiting two natural properties:
monotonicity and anti-symmetry. Informally, monotonicity states that, given a network
topology, the utility transfer associated with a contract is increasing in the burden asso-
ciated to the contract proposed. Anti-symmetry asserts that Q(i, j; G) must be equal to
the negation of Q(j, i; G). Anti-symmetric contracting functions ensure that direction-
ality of the contract does not affect the value of the contract (i.e., (i, j) and (j, i) lead to
the same utility transfer).

Assumption 1 (Anti-symmetry). The contracting function is anti-symmetric, i.e., for
all u �= v and for all G,

Q(u, v; G + uv) = −Q(v, u; G + uv)

Assumption 2 (Monotonicity). We assume that the contracting function is monotone
in the change of traffic cost to a node. In other words, let u, v and w be three distinct
nodes such that uv /∈ G and uw /∈ G. Let Gu, Gv and Gw be the connected components
where u, v and w lie respectively. Then if h(w; Gu∪Gw+uw)−h(w; Gw) < h(v; Gv∪
Gu + uv) − h(v; Gv), then Q(u, w; G + uw) < Q(u, v; G + uv); and if h(w; Gu ∪
Gw + uw)− h(w; Gw) = h(v; Gv ∪Gu + uv)− h(v; Gv), then Q(u, w; G + uw) =
Q(u, v; G + uv).

3.2 State of the Game

From Equation 3 we see that the utility of all nodes is defined by G and P. In order
to keep track of the contracts in place at a given time in the network, we introduce the
contracting graph Γ to be a directed graph over V such that (i, j) ∈ Γ if nodes i and j
have agreed to the corresponding contract.

Thus the state of the system is completely determined by the tuple (G,P, Γ ).

Remark 1. Note that, from our contracting assumption, we have the following proper-
ties:

1. for all i �= j, ij ∈ G if and only if (i, j) ∈ Γ or (j, i) ∈ Γ ; and
2. for all i �= j, pij �= 0 implies (i, j) ∈ Γ .

4 Static Game

We can now formally define the game we consider. We use the same static game we
defined in [4]. Note that variants of this game have been considered in previous literature
(see [23, 24, 5]). We consider a network formation game in which each node selects
nodes it wishes to connect to, as well as nodes it is willing to accept connections from.
Formally, each node i simultaneously selects a subset Fi ⊆ V of nodes i is willing to
accept connections from, and a subset Ti ⊆ V of nodes i wishes to connect to. We let
T = (Ti, i ∈ V ) and F = (Fi, i ∈ V ) denote the composite strategy vectors.
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An undirected link is formed between two nodes i and j if i wishes to connect to j
(i.e., j ∈ Ti), and j is willing to accept a connection from i (i.e., i ∈ Fj). All edges that
are formed in this way define the network topology G(T,F) realized by the strategy
vectors T and F; i.e., j ∈ Ti, i ∈ Fj implies that ij ∈ G(T,F).

Further, if i ∈ Fj and j ∈ Ti, then a binding contract is formed from i to j; we denote
this contract by (i, j), and add it to the contracting graph Γ (T,F). The contracting
graph captures the inherent directionality of link formation: in our model a link is only
formed if one node asks for the link, and the target of the request accepts.

Finally, given a contracting function Q, as presented in Section 3.1, we define the
payment matrix P(T,F): if the formed network is G, then the contract (i, j) leads to
a payment Q(i, j; G) from i to j. This completely defines the state of the system. The
utility of each node is defined as in Section 3, and thus the outcome of the game is well
defined.

By an abuse of notation, and where clear from context, we will often use the short-
hand G = G(T,F), Γ = Γ (T,F), and P = P(T,F) to represent specific instan-
tiations of the network topology, contracting graph, and payment matrix, respectively,
arising from strategy vectors T and F. We refer to a triple (G, Γ,P) arising from strate-
gic decisions of the nodes as a feasible outcome if there are strategy vectors T and F
that give rise to (G, Γ,P).

5 Stability and Efficiency

In this section we define our solution concept, pairwise Nash stability, and formally
define efficiency. While this is related to our earlier work in [4], the modification of our
solution concept is an important change from our previous work: it allows us to present
the dynamics in a succinct way (as will be clear in Section 6), and to better interpret the
results (as will be clear in Section 8).

As is commonly observed in network formation games, Nash equilibrium lacks pre-
dictive power because link formation is inherently a bilateral process; thus we adopt
the notion of pairwise Nash stability as our solution concept [2]. Informally, pairwise
Nash stability requires that no unilateral deletion of contracts by a single node are prof-
itable, and that no two nodes can simultaneously increase their utility by adding new
contract(s) between them. In that sense, a network is pairwise Nash stable if it is a Nash
network and pairwise stable (as originally defined by Jackson and Wolinsky in [3]).

Formally, suppose that the current strategy vectors are T and F, and the current
network topology and contract graph are G = G(T,F) and Γ = Γ (T,F) respectively.
First, suppose that node i attempts to unilaterally deviate. Then the strategy (T ′

i , F
′
i ) if

i after deviation is such that (T ′
i , F

′
i ) ⊆ (Ti, Fi). 1 Next, suppose that two nodes i and j

attempt to bilaterally deviate; this involves changing the pair of strategies (Ti, Fi) and
(Tj , Fj) together such that, after the deviation, j ∈ T ′

i & i ∈ F ′
j or i ∈ T ′

j & j ∈ F ′
i .

Any deviation will of course change both the network topology, as well as the contract
graph.

1 Although we restrict a unilateral deviation to only encompass the deletion of contracts, it can
be shown that this is equivalent to allowing any unilateral deviation.
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However, we assume that any contracts present both before and after the deviation
retain the same payment. This is consistent with the notion of a contract: unless the de-
viation by i and j entails either breaking an existing contract or forming a new contract,
there is no reason that the payment associated to a contract should change. With this
caveat in mind, we formalize our definition of pairwise Nash stability as follows.

Definition 2. Assume Q is a contracting function. Given strategy vectors T and F, let
G = G(T,F), Γ = Γ (T,F), and P = P(T,F). Given strategy vectors T′ and F′,
define G′ = G(T′,F′) and Γ ′ = Γ (T′,F′). Define P′ according to:

P ′
k
 =

⎧⎨⎩
Pk
, if (k, 
) ∈ Γ ′ and (k, 
) ∈ Γ ;
Q(k, 
; G′), if (k, 
) ∈ Γ ′ and (k, 
) /∈ Γ ;
0, otherwise.

(4)

Then (T,F) is a pairwise Nash stable equilibrium if: (1) No unilateral deviation is
profitable, i.e., for all i, and for all T′ ⊆ T and F′ ⊆ F that differ from T and F
(respectively) only in the i’th components,

Ui(P, G) ≥ Ui(P′, G′);

and (2) no bilateral deviation is profitable, i.e., for all pairs i and j, and for all T′ and
F′ that differ from T ⊆ T′ and F ⊆ F′ only in the i’th and j’th components,

Ui(P, G) < Ui(P′, G′) =⇒ Uj(P, G) > Uj(P′, G′).

Notice that (4) is a formalization of the discussion above. The first condition in the
definition ensures no unilateral deviation is profitable, and the second condition ensures
that if node i benefits from a bilateral deviation with j, then node j must be strictly
worse off.

We will typically be interested in pairwise Nash stability of the network topology
and contracting graph, rather than pairwise Nash stability of strategy vectors. We will
thus say that a feasible outcome (G, Γ,P) is a pairwise Nash stable outcome if there
exists a pair of strategy vectors T and F such that (1) (T,F) is a pairwise Nash stable
equilibrium; and (2) (T,F) give rise to (G, Γ,P). Note that by our definition of the
game, for all i and j such that (i, j) ∈ Γ we must have Pij = Q(i, j; G) in a pairwise
Nash stable outcome.

We are also interested in system-wide performance from a global perspective, and
for this purpose we must study the efficiency of pairwise Nash stable equilibria; we
measure the efficiency of a network topology via the total value obtained by all nodes
using that topology.

Given two feasible outcomes (G, Γ,P) and (G′, Γ ′,P′), we say that (G, Γ,P) Pareto
dominates (G′, Γ ′,P′) if all players are better off in (G, Γ,P) than in (G′, Γ ′,P′), and
at least one is strictly better off. A feasible outcome is Pareto efficient if it is not Pareto
dominated by any other feasible outcome. Since payoffs to nodes are quasilinear in our
model, i.e., utility is measured in monetary units, it is not hard to show that a feasible
outcome (G, Γ,P) is Pareto efficient if G ∈ arg minG′ S(G′), where S(G) is the social
cost function:

S(G) =
∑
i∈V

Ci(G).
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We call such feasible outcomes efficient. (Note that, in particular, the preceding con-
dition does not involve the contracting function; contracts induce zero-sum monetary
transfers among nodes, and do not affect global efficiency.)

Let V0 = {u ∈ V : ∀v ∈ V, cu ≤ cv}, and for u ∈ V0, let cmin = cu. In [25] we
proved that, for π > cmin, all efficient outcomes were stars centered around nodes in
V0. Thus, in such settings, all efficient outcomes have the same number of edges.

An immediate consequence from the definition of pairwise Nash stability is that a
node has to either delete edges or add an edge during a deviation, but not both. By as-
sumption, all nodes experience an arbitrarily large cost when in a disconnected network.
Thus we can prove the following important theorem.

Theorem 1 (Pairwise Nash Stable Networks). Assume that G is connected, and as-
sume π > 0. For any contracting function Q, there exists a pairwise Nash stable out-
come (G, Γ,P) if and only if G is a tree.

Hence all pairwise Nash stable networks also have the same number of edges. Thus,
whenever π > cmin, we define the efficiency ratio of a given tree T as the ratio
S′(T )/S′(Geff) where S′ is equal to S − 2(n − 1)π (i.e. S′(T ) is the cost of routing
traffic through T ), and Geff is the network topology in an efficient outcome.

6 Dynamics

Although the utility model discussed in Section 5 is essentially the same as that from
[4] (with minor modifications), the dynamics considered in this paper constitute a major
departure from our previous work in [4]. We describe our new dynamics in this section.

Before we begin, note a direct consequence of Theorem 1 is that the line network
is pairwise Nash stable. It is easy to see that its efficiency ratio is linear in n, because
its social cost is O(n3) while the social cost of an efficient network is O(n2). Thus the
price of anarchy (as defined by Papadimitriou in [26]) is at least linear in n. Another
consequence is that all efficient networks are pairwise Nash stable, whenever π > cmin;
thus it is important to try to select good equilibria (in terms of efficiency). The dynamics
we consider are well matched to this purpose.

Let 
 > 1 be a given integer. We study discrete-time dynamics that proceeds in
rounds. At each round k, an exogenous process (called an activation process) selects an
active node uk ∈ V . An important case that we study is the uniform activation process:
at each round k, the active node is selected independently and uniformly at random
from the set of nodes. Thus, under the uniform activation process, for all k > 0 and all
v ∈ V , P[uk = v] = 1/n independent of the past history of the activation process.

Let
(
G(k),P(k), Γ (k)

)
be the state of the network at the beginning of round k. The

dynamics at round k proceeds in two stages.
During the first stage, the active node uk selects a set of contracts (possibly empty)

from Γ (k) it currently participates in, and removes them. All payments associated to
those contracts are set to zero. If all contracts associated to an edge ukx ∈ G(k) are

removed, then the edge ukx is removed. Let
(
G

(k)
1 , Γ

(k)
1 ,P(k)

1

)
be the resulting state

of the network following stage 1 of round k.
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During the second stage, the active node uk either selects a new set of contracts
(possibly empty) from Γ

(k)
1 it participates in and remove them, or it selects a node w in

its 
-neighborhood from G(k), i.e., from among those nodes such that d(uk, w; G(k)) ≤

). In this case uk proposes the contract (uk, w) to w. If w accepts, the contract (uk, w)
is added to Γ

(k)
1 , the edge ukw is added to G

(k)
1 , and we set

pukw = Q(uk, w; G(k)
1 + ukw).

Note that the active node only contemplates deviating with nodes in its

-neighborhood, thus making our equilibrium selection process both decentralized and
local.

We assume the dynamics are myopic in the following sense:

– the active node uk selects its actions in order to maximize its utility at the end of
the round; and

– the node w selected during the second stage accepts or rejects the contract in or-
der to maximize its utility given the state at the end of the first stage, i.e., given(
G

(k)
1 , Γ

(k)
1 ,P(k)

1

)
.

As a tie-breaking rule, we assume the following notion of “inertia.”

Assumption 3 (Inertia). Let uk be the active node at round k, and let(
G

(k)
1 ,P(k)

1 , Γ
(k)
1

)
be the state of the network after the first stage of round k. Let

W ⊆ V be the subset of nodes to whom uk considers offering a contract at the second
stage, i.e., such that the utility of uk is maximized after the second stage. If |W | > 1,
then uk selects the node in W it was most recently connected to. If no such node exists,
uk picks one uniformly at random.

Assumption 3 states that, if the active node has more than one optimal choice after the
first stage, it will choose to deviate with the node it was most recently connected to.

A tie-breaking rule is necessary as the active node at a round, say uk, may not have
a unique utility-maximizing choice of a “partner” node at stage 2. Thus, in order to
avoid oscillations induced by the possibility of multiple optimal choices, a tie-breaking
rule must be assumed. While we have chosen a specific notion of inertia, we emphasize
that many other assumptions can also lead to convergent dynamics. For instance, among
utility-maximizing choices of w, if node uk always chooses the node w with the highest
degree, our convergence results remain valid.

Convergence of our dynamics is defined as follows.

Definition 3 (Convergence). Given an initial state
(
G(0),P(0), Γ (0)

)
, we say that the

dynamics converge if, almost surely, there exists K > 0 such that, for all k > K ,(
G(k),P(k), Γ (k)

)
=
(
G(k+1),P(k+1), Γ (k+1)

)
.
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7 Results

In this section we state and prove our main results. We interpret these results by analyz-
ing the efficiency of the limiting topologies in our dynamics.

Theorem 2 (Convergence Theorem for π > 0). Let 
 ≥ 2 be given. Suppose that
Assumptions 1 to 3 hold. Further, assume that π > 0.

Let
(
G(0),P(0), Γ (0)

)
be an outcome of the static game such that G(0) is connected.

Assume that the activation process is such that, almost surely, all nodes are activated

infinitely often. Then the dynamics started at
(
G(0),P(0), Γ (0)

)
converge. Further, if

the activation process is uniform, the convergence time is polynomial.
For a given realization of the activation process, let (G,P, Γ ) be the limiting state.

Then:

1. G is a tree where all internal (i.e., non-leaf) nodes are of minimum routing cost;
and

2. the limiting state (G,P, Γ ) is pairwise Nash stable.

In order to state our result when π = 0, we need two extra tie-breaking assumptions.
The idea is that π = 0 can induce bilateral deviations where the increase in cost for
adding a new edge is nil. For such deviations, we want the value of the corresponding
contracts to be zero. This is consistent with our interpretation of contracts as a way
incentivize nodes to accept connections even when their cost in the network increases.
Thus, if the cost of adding a connection is zero, there should be no need for an incentive.
That is the content of the following assumption.

Assumption 4 (Zero Value Contracts). We assume that the contracting function yields
a zero utility transfer if and only if there is no extra cost associated to adding the pro-
posed contract. More formally, for all distinct nodes u and v, for all network topologies
G, Q(u, v; G) = 0 if and only if C(v; G + uv) = C(v, G).

We now need to decide whether the active node should contemplate adding zero-value
contracts. This is a tie-breaking rule as contracts can only be added during the second
stage of the dynamics, and thus the utility of the active node would stay constant should
it propose a zero-value contract. As a tie breaking rule, we assume that the active node
would not propose a zero value contract.2

Assumption 5 (Dynamics of Zero Value Contracts). Let uk be the active node, and
let (G,P, Γ ) be the state of the network prior to the bilateral deviation considered. If
the utility of uk after successfully adding the link ukw (for any such w) is identical to
that when in state (G,P, Γ ), then uk does not propose any contract to w.

The motivation for Assumption 5 is that even if a contract has zero value, in reality
there is some implicit “burden” to setting up a contract, so that establishing a contract

2 Note that if a node is proposed a zero value contract we assume that it would accept it. The
rationale behind Assumption 5 is that the active node can choose what node to bilaterally
deviate with, which is not the case for a node being proposed a zero-value contract.
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with no value is not desirable. Assumption 5, together with Assumption 4, implies that
if the best action for the active node is to add a zero value contract, it prefers to pass.

In order to prove our second theorem, we also need to assume that 
 ≥ 3, i.e. we
allow nodes to be aware of their 3-neighborhood when considering their second stage
deviation (recall that Theorem 2 requires only 
 ≥ 2).

Theorem 3 (Convergence Theorem for π = 0). Let 
 ≥ 3 be given. Assume that
Assumptions 1 to 5 hold. Further, assume that π = 0.

Let
(
G(0),P(0), Γ (0)

)
be an outcome of the static game such that G(0) is connected.

Assume that the activation process is such that, almost surely, all nodes are activated

infinitely often. Then the dynamics started at
(
G(0),P(0), Γ (0)

)
converge. Further, if

the activation process is uniform, the convergence time is polynomial.
For a given realization of the activation process, let (G,P, Γ ) be the limiting state.

Then the following hold:

1. Let G′ be the graph obtained by contracting all cliques in G and replacing them
with a node whose per-unit routing cost is set to be that of the smallest routing cost
in that clique. Then,
(a) G′ is a tree;
(b) all internal nodes have minimum per-unit routing cost.

2. For any clique in G, only nodes with the smallest per-unit routing cost (among
nodes of the same clique) can have edges to nodes outside of the clique.

3. The limiting state (G,P, Γ ) is pairwise Nash stable.

Upon inspection of the dynamics considered in this paper, a generalization one might
consider is to allow the active node to unilaterally or bilaterally deviate during both
stages (recall that our dynamics allow only unilateral deviations during the first stage).
However, as shown in [21], such dynamics may fail to converge under our assumptions.

8 Discussion of Results

In this section we provide a brief analysis of the results of Theorem 2, and a formal
analysis of the results of Theorem 3.

In our previous work [4], under the same assumptions, we proved that a significantly
restricted version of the dynamics considered in this paper converge to the same set of
outcomes. In particular, in this paper activated nodes choose which links to break in the
first stage of each round, whereas our model in [4] imposed random breaking of edges.
Further, this paper analyzes a setting where nodes may be limited in their visibility of
the network, and thus only contract with nodes in their 
-neighborhood; by contrast, the
dynamics in [4] requires nodes be able to “see” the entire network (i.e., that 
 = n). In
addition, we provide a novel proof technique via a Lyapunov argument that succinctly
addresses these generalizations.

As argued in [4], our dynamics select good equilibria in that only nodes of minimum
routing cost forward packets. An important special case is where there is a unique node
i of minimum per-unit routing cost, i.e., such that ci < cj for all j �= i. In that case, our
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dynamics converge to a star centered around node i, which is the most efficient pairwise
stable outcome. In [27, 10], the term price of stability was coined to refer to the ratio
of the efficiency of the best equilibrium to the optimum efficiency; thus our dynamics
select an equilibrium that achieves the price of stability.

We now consider the case where π = 0 (cf. Theorem 3), with a view towards demon-
strating that significantly different results are obtained when compared with the case
where π > 0. First, we note that when π = 0, any outcome of the static game such that
the network topology is the complete network is pairwise Nash stable. To see this, it
suffices to note that when the network topology is the complete network, no node for-
wards any traffic, and thus the cost to all nodes is minimized. Next, by Assumption 4, it
follows that all contracts in such network topology have a zero payment associated with
them. Thus no unilateral deviation is profitable, and no bilateral deviation is possible
as all edges are already part of the network. Recall that in [25] it is proved that, when
π < cmin, the only efficient outcomes of the static game are those where the network
topology is the complete network. Thus, when π = 0, we conclude that any efficient
outcome is pairwise Nash stable.

Surprisingly, allowing π = 0 can lead both to situations where more efficient out-
comes are chosen than when π > 0, as well as situations where less efficient outcomes
are chosen than when π > 0. First, from Theorem 2, note that when 0 < π < cmin,
our dynamics cannot select an efficient outcome. By contrast, in [21] we select a set
of parameters of the model, and construct a contracting function such that the efficient
outcome is a fixed point of our dynamics when π = 0. Thus, by allowing π = 0, we
can select more efficient outcomes than when π > 0.

However, allowing π = 0 can also make the most inefficient outcome selected worse.
This is also shown in [21]. where we select a set of parameters, and construct a contract-
ing function such that the social cost of a fixed point when π = 0 is strictly larger than
the social cost of any fixed point using the same parameters and contracting function
when 0 < π < cmin. Thus, in this setting, by allowing π = 0 we can select less efficient
outcomes than when π > 0.

Acknowledgments

The authors benefited from helpful conversations with John N. Tsitsiklis and Matthew
O. Jackson. This work was supported by DARPA under the ITMANET Program, by
the Canada Research Chairs Program, by the NSERC, and by the NSF under grant
CMMI-0620811.

References

[1] Jackson, M.O.: A survey of models of network formation: Stability and efficiency. Work-
ing Paper 1161, California Institute of Technology, Division of the Humanities and Social
Sciences (2003)

[2] Jackson, M.O.: The stability and efficiency of economic and social networks. Microeco-
nomics 0211011, EconWPA (November, 2002)

[3] Jackson, M.O., Wolinsky, A.: A strategic model of social and economic networks. Journal
of Economic Theory 71(1), 44–74 (1996)



276 E. Arcaute, R. Johari, and S. Mannor

[4] Arcaute, E., Johari, R., Mannor, S.: Network formation: Bilateral contracting and myopic
dynamics. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 191–207.
Springer, Heidelberg (2007)

[5] Johari, R., Mannor, S., Tsitsiklis, J.N.: A contract-based model for directed network for-
mation. Games and Economic Behavior 56(2), 201–224 (2006)

[6] Jackson, M.O., Watts, A.: The existence of pairwise stable networks. Seoul Journal of Eco-
nomics 14(3), 299–321 (2001)

[7] Jackson, M.O., Watts, A.: The evolution of social and economic networks. Journal of Eco-
nomic Theory 106(2), 265–295 (2002)

[8] Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005)
[9] Lin Chen, H., Roughgarden, T., Valiant, G.: Designing networks with good equilibria. In:

Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2007) (2008)
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Abstract. We present a game-theoretic approach to the study of scheduling com-
munications in wireless networks and introduce and study a class of games that
we call Interference Games. In our setting, a player can successfully transmit
if it “shouts strongly enough”; that is, if her transmission power is sufficiently
higher than all other (simultaneous) transmissions plus the environmental noise.
This physical phenomenon is commonly known as the Signal-to-Interference-
plus-Noise-Ratio (SINR).

1 Introduction

We study Interference Games which arise in the context of wireless communications
where multiple transmissions create interference and thus unnecessary energy loss for
the nodes. Each node can be regarded as a player who has her own “profit” from suc-
cessfully transmitting data, and a cost proportional to the energy spent for transmitting.

The scenario in which each player of the network acts independently so to optimize
her own payoff (the “net profit” given by the energy loss and the success/unsuccess
in transmitting) gives rise to an interesting class of games which we call Interference
Games. Unlike the classical congestion games [14], in Interference Games there is a
single resource (the physical media) but each player has a number of strategies available
(the transmitting power). Players essentially compete for the media and, in a single slot,
at most one player can transmit successfully. Indeed, a player transmits successfully if
her signal strength at the receiver is larger than the sum of the signals of all other players
plus the environmental noise (see Section 2). Though transmitting with higher power
is more expensive, players may strategically decide to do so because they care more
about successfully transmitting. This creates a mutual interference which may result
in suboptimal performance like unnecessary energy consumption and/or transmissions
failures (it may be well be the case that all players transmit with high power and thus
they all fail).

1.1 Our Contribution

It is natural to ask how well does the system work if players optimize their own payoff,
that is, if they only care about the success of their own transmission and the energy they
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spent for it. To this aim, we study several notions of equilibria and their global effi-
ciency. In particular, we consider Nash equilibria [12] where no player has an incentive
to unilaterally change her strategy, correlated equilibria [2,3] where players have no
incentive to deviate from a “suggested” strategy, and sink equilibria where players peri-
odically perform best response and the whole system cycles through a “sink” consisting
of a set of states of the game [6]. For all of these notions, it is possible to quantify the
“system” performance in terms of social welfare and fairness. The former measures the
overall “happyness” of the players, while the second one concerns how “equally” play-
ers have been treated. Finally, we consider repeated games [13], in which the “basic”
Interference Game is played (possibly infinitely) many times. In such a context, we con-
sider subgame perfect equilibria which provide a stronger solution concept compared
to Nash equilibria (intuitively, the underlying “protocol” is also robust to deviations that
occur for a finite amount of iterations).

We prove the following results on the existence and performance of the considered
notions of equilibria for the case of a “perfectly symmetric” game in which all players
valuate a successful transmission the same amount v, and they have the same set of
strategies (see Section 2). We show that pure Nash equilibria do not exist if there are at
least two transmission powers. Since mixed Nash equilibria and sink equilibria always
exist [12,6], we consider these two notions. For two players, there exist sink equilibria
with social welfare v − k, with k being the number of possible transmission powers,
and these equilibria are also fair for odd k.

We show that every mixed Nash equilibrium has either bad social welfare or bad
fairness (i.e., one of the two is equal zero). In contrast, we prove that correlated equi-
libria can be fair and attain a positive social welfare greater than v − 2k (this improves
to v − k in the case of odd k). We also show optimal fair correlated equilibria for some
specific games (namely, for k ≤ 3).

Finally, we consider the case of infinitely repeated games with discount factor [13].
We prove that for the two-player scenario it is possible to obtain fair subgame perfect
equilibria with optimal social welfare (i.e., v−1). The result holds for the case in which
every player knows only if her previous transmissions were successful or not.

1.2 Related Work

Fiat et al. [4] study contention resolution protocols for selfish agents aiming at accessing
a broadcast channel. They focus on the scenario in which each player has one packet
to transmit and she can choose either to transmit or not to transmit at each time slot
(that is, each player has two possible strategies). They analyze the well known Aloha
protocol and provide a new protocol being a Nash equilibrium for the game and having
better performances (in terms to transmission delays) with respect to Aloha.

Adlakha et al. [1] study Bayesian Interference Games in a wireless scenario in which
players select a power profile over the available bandwidth to maximize their own data
rate (measured via Shannon capacity). They analyze Nash equilibria of the incomplete
information game in which players are unaware of the interference they cause to the
other ones.

In Timing Games [8,9,10] two players must decide when to make a single move
at some time between 0 and T . The payoffs of the players usually depend on which
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player moves first and/or the time that she moves. Though Timing Games can be seen
as special Interference Games, in Timing Games the payoffs are always positive which
is not true for Interference Games. This determines a different structure of equilibria.

Scheduling wireless communications under the Signal-to-Interference-plus-Noise-
Ratio (SINR) model have been studied in [7,11].

2 Model and Definitions

In the Signal-to-Interference-plus-Noise-Ratio (SINR) model (see for instance [7,11]),
a node α is successful in transmitting if and only if

pα/da
α

Noise +
∑

β �=α(pβ/da
β)
≥ B, (1)

where dα is the distance of node α from the receiver and pα is the power of node α’s
transmission.

We study the SINR model from a game theoretical point of view and introduce a class
of games which we call Interference Games. There are n players corresponding to the
nodes aiming to communicate. A strategy of a player α is an integral power transmission
level in {0, 1, . . . , k} and all players have the same set of strategies. Moreover, we
denote by v how much a successful transmission is worth to a player (we assume this
value to be the same for all players).

Given a strategy profile or state s = (s1, . . . , sα, . . . , sn) of the game, player α is
successful if sα is larger than the sum of all other si’s. Notice that sα is the power of
α and the condition for being successful corresponds to the case in which all nodes
are at the same distance from the receiver, Noise > 0, and B = 1 (see Equation 1).
The utility or payoff uα(s) of player α depends on her power consumption and the fact
that her transmission is successful or not. Namely, if in s player α is successful and
has used power pα, then her payoff is uα(s) = v − pα. Otherwise, if in s player α
is not successful and has used power pα, then her payoff is uα(s) = −pα. If we deal
with probabilistic choices, we are interested in the expected utility. Each players aims
to maximize her own (expected) utility.

We consider the social welfare function SW (s) =
∑

α∈N uα(s) that is the sum
of the payoff’s of all players. The fairness of a state s is defined as the ratio between
the minimum and the maximum (expected) utility of players; i.e., minα∈N uα(s)

maxα∈N uα(s) ; if the
utilities of all the players are 0, the fairness is defined equal to 1. Moreover, we call fair
a state with fairness equal to 1, and unfair a state with fairness equal to 0.

We now review the equilibrium notions that we use in this paper. A pure Nash equi-
librium is a state in which no player can obtain a higher utility by changing her strategy,
given the strategies of the other players. In a mixed Nash equilibrium we consider play-
ers picking a strategy independently according to some probability distribution (each
player decides her own distribution). In a mixed Nash equilibrium no player can im-
prove her expected payoff by changing her probability distribution, given the probabil-
ity distributions of the other players. In correlated equilibria a “mediator” picks a state s
according to some probability distribution and “suggests” strategy sα to each player α.
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Each player α is only aware of her suggested strategy and of the probability distribution
used to pick the state. A probability distribution over the set S of all states is a correlated
equilibrium if no player can improve her expected payoff by replacing her suggested
strategy with a different one, given that the other players follow the suggested strategy
(note that the expected payoff of α is conditional to the fact that player α has been sug-
gested some strategy sα). In sink equilibria we consider a so called state graph in which
every node corresponds to a state of the game and there is a directed edge from s to s′ if
there is a player α such that uα(s) < uα(s′) and state s′ is obtained from s by changing
strategy sα with some other strategy s′α. Intuitively, edges corresponds to best response
of some player and, in a sink equilibrium, players moves will “cycle” through some
connected component (when the component has only one node we have a pure Nash
equilibrium). More formally, sink equilibria are the strongly connected components of
the state graph. Let Q be a sink equilibria and let π : Q → R+ ∪ {0} be the steady
state distribution of the random walk over states q ∈ Q of the sink equilibrium. The
(expected) social welfare of Q is the expected social value of states given by the steady
distribution of the random walk over its states; i.e. SW (Q) =

∑
q∈Q π(q)SW (q).

3 A Simple Interference Game

In this section we analyze a simple Interference Game characterized by n = 2 players
and k = 2. The game is perfectly symmetric and a player α is successful if and only
if pα > pβ , where β is the other player. Despite its simplicity, we can already derive
some indications from this simple game. The utility matrix is

0 1 2
0 0, 0 0, v − 1 0, v − 2
1 v − 1, 0 −1,−1 −1, v − 2
2 v − 2, 0 v − 2,−1 −2,−2

We start by proving that this simple game has no pure Nash equilibrium.

Theorem 1. For any k ≥ 2, the Interference Game has no pure Nash equilibrium, even
for two players.

Proof. Observe that the best response for a player to strategy x < k of the other player
is strategy x + 1 and the best response to strategy k is strategy 0. Therefore, the only
possible pure equilibria are (0, k) or (k, 0). Since the best response to strategy 0 is
strategy 1, such states are Nash equilibria only if k = 1. Similar arguments apply for
the case of n > 2 players.

We now turn our attention to sink equilibria.

Theorem 2. The Interference Game with n = 2 and k = 2 has a unique sink equilib-
rium with social welfare v − 2 and fairness 1.

Proof. By recalling the above considerations on the best response moves, there exists a
unique sink equilibrium given by the cycle:

(0, 1), (2, 1), (2, 0), (1, 0), (1, 2), (0, 2), (0, 1).
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Since the equilibrium is a cycle, the steady distribution of the random walk is the uni-
form one, and it is easy to check that its social value is v − 2. Moreover, since for each
state in the sink also its symmetric state is present, the fairness of the equilibrium is 1.

We continue our study by analyzing mixed Nash equilibria.

Theorem 3. The Interference Game with n = 2 and k = 2 has a mixed Nash equilib-
rium with social welfare 0 and fairness 1.

Proof. The equilibrium corresponds to the probability distribution q = (q0, q1, q2) with

q0 = q1 = 1/v. To see that this is a Nash equilibrium, let u
(q)
α (i) be the payoff of

player α when it plays strategy i, given that the other one plays according to probability
distribution q. Clearly u

(q)
α (0) = 0, while

u(q)
α (1) = q0(v − 1)− q1 − q2 = q0v − 1 = 0.

Similarly

u(q)
α (2) = q0(v − 2)− q1(v − 2)− 2q2 = (q0 + q1)v − 2 = 0.

Since the payoff is constant for all three strategies, when both players play according to
the probability distribution q, none has an incentive in unilaterally deviating. That is, q
is a Nash equilibrium and the payoff of each node is 0; thus, also the social welfare is 0
and the equilibrium is fair.

We conclude the study of the case n = 2 and k = 2 by showing the best possible
correlated equilibrium X , and proving that its social welfare is very close to the opti-
mum. Each player receives a suggestion on the power to use for the transmission. We
denote by x(i, j) the probability that the first and the second players are suggested to
transmit at power i and j, respectively. We will consider only symmetric distributions,
that is, distributions for which x(i, j) = x(j, i) that thus give fair correlated equilibria.
We denote by qij the probability that player 2 receives suggestion j given that player

1 has received suggestion i, that is qij = x(i,j)�
h x(i,h) . Since transmission of player 1 at

power i is successful if and only if player 2 transmits at a power j < i, we have that the
probability Pr[j|i] that player 1 is successful at power j given that he was suggested to
transmit at power i is equal to

Pr[j|i] =
∑
h<j

qih

and the expected payoff uα[j|i] of player α when transmitting at power j, given that he
was suggested to transmit at power i, is equal to vPi[j|i]−j. The definition of correlated
equilibrium is that uα[i|i] ≥ uα[j|i].

Theorem 4. For the Interference Game with n = 2 and k = 2, the optimal symmetric
correlated equilibria has social welfare v − 2 + v

v2−2 .
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Sketch of proof. The following matrix turns out to be an optimal correlated equilibrium:

X :=

⎡⎢⎢⎢⎣
0 v−1

v2−2
v2−3v+2
2v2−4

v−1
v2−2 0 v−2

2v2−4

v2−3v+2
2v2−4

v−2
2v2−4 0

⎤⎥⎥⎥⎦
thus proving the theorem.

4 Two Players and Arbitrarily Many Strategies

While for k = 2 the only Nash equilibrium has social welfare 0, it turns out that when
k is odd there are Nash equilibria whose social welfare is strictly positive.

Theorem 5. For every odd k, there exists a mixed Nash equilibrium with social welfare
v − k.

Sketch of proof. The following matrix is a mixed Nash equilibrium:

CF :=
[

0 2
v 0 2

v 0 · · · 2
v 0 1− k−1

v

1− k−1
v 0 2

v 0 2
v · · · 0 2

v 0

]
.

Since CF is an unfair Nash equilibrium, we next investigate the existence of fair equi-
libria.

Theorem 6. For any Interference Game, there exists a unique (fair) fully mixed Nash
equilibrium, that is, a Nash equilibrium in which every player assigns nonzero proba-
bility to every strategy. Moreover, every fair Nash equilibrium has social welfare 0.

Sketch of proof. In a fully mixed equilibrium, strategy 0 is in the support of every player
which implies that the expected payoff of every player must be 0. Calculations show that
the condition for having a Nash equilibrium impose that the probability distribution of
each player is q = ( 1

v , 1
v , . . . , 1

v , 1− k
v ).

At Nash equilibrium, at least one player must have 0 in her support. Thus, in every
fair Nash equilibrium 0 is in the support of all players and therefore the social welfare
must be 0.

Correlated equilibria can be both fair and achieve good social welfare:

Theorem 7. For any Interference Game there exists a fair correlated equilibrium with
social welfare greater than max (0, v − 2k + 1).

Sketch of proof. We modify the joint probability distribution of the Nash equilibrium
given in the proof of Theorem 6 and obtain a correlated equilibrium given by the fol-
lowing matrix:

C =

⎡⎢⎢⎢⎢⎣
0 c2λ2 · · · cλ2 cλ(1− kλ)

2cλ2 0 · · · cλ2 cλ(1− kλ)
· · · · · · · · · · · · · · ·
cλ2 cλ2 · · · 0 c(λ(1 − kλ) + λ2)

cλ(1− kλ) cλ(1 − kλ) · · · c(λ(1 − kλ) + λ2) 0

⎤⎥⎥⎥⎥⎦
where λ = 1/v and c is a suitable constant such that C is a probability distribution.
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The social welfare can be further improved for even k:

Theorem 8. For any Interference Game with k even there exists a fair correlated equi-
librium with social welfare at least v − k. Moreover, for k = 3 there exists an optimal
symmetric Correlated Equilibrium with social welfare v − 3 + 4v2−11v+7

v3−v2−4v−5 .

We next generalize the sink equilibria described in Section 3. The main difference is
that for odd k there exist two sink equilibria both with fairness less than 1.

Theorem 9. The Interference Games with n = 2 and k even have a unique sink equi-
librium with social welfare v−k and fairness 1. The Interference Games with n = 2 and

k odd have two sink equilibria with social welfare v−k and fairness (2k−2)v−2k2+2
(2k+6)v−k2−2k−1 .

Sketch of proof. For k = 3, there are two sink equilibria:

(0, 1), (2, 1), (2, 3), (0, 3), (0, 1) and (1, 0), (1, 2), (3, 2), (3, 0), (1, 0).

In each of them, one player has expected utility v
4 − 1, and the other one 3

4v − 2.
Therefore, the fairness is v−4

3v−8 . A similar argument generalizes to any even k.

5 Arbitrarily Many Players

The following theorem extends the results on Nash equilibria for two players given in
Section 5.

Theorem 10. There exists a fair Nash equilibrium with n ≥ 3 players with social
welfare equal to 0. Moreover, if k is odd, there exists an unfair Nash equilibrium with
n ≥ 3 players with social welfare equal to v − k.

Sketch of proof. It is possible to show that, given a Nash equilibrium for the case of two
players and in which at least one player having expected utility 0, it is possible to obtain
a Nash equilibrium for n ≥ 3 players by adding n − 2 players playing strategy 0 with
probability 1. The theorem thus follows from the results on two players (Theorems 5-6).

Correlated equilibria achieve both fairness and good social welfare:

Theorem 11. For any n and for odd k there exists a fair Correlated Equilibrium with
social welfare v − k.

6 Repeated Interference Games

In the repeated interference game, the same interference game is played (infinitely)
many times and, at each repetition i, player α accumulates a new payoff δi · uα(s(i)),
where s(i) are the strategies played at repetition i and δ < 1 is the discount factor. A
simple protocol for two players consists in alternating transmissions, with the transmit-
ting player using power 1; Every deviation from this results in a “punishment” phase in
which both players transmit with maximal power for prescribed amount of time steps;
Deviations from the punishment phase will “restart” of the punishment phase itself.
This results in an optimal subgame perfect equilibrium:



Interference Games in Wireless Networks 285

Theorem 12. For every v and k there exists δ < 1 such that the following holds. For
any δ > δ, the repeated Interference Game with v and k and discount factor δ has a
fair subgame perfect equilibrium with expected payoff profile ((v − 1)/2, (v − 1)/2).1

The main idea is that if a player deviates from this punishment phase, this can be de-
tected by the other player who sees that her transmission is successful (deviations from
the “non-punishment” phase are detected because of transmission failure). This is suf-
ficient for applying the result in [5].

References

1. Adlakha, S., Johari, R., Goldsmith, A.J.: Competition in wireless systems via bayesian inter-
ference games. CoRR, abs/0709.0516 (2007)

2. Aumann, R.J.: Subjectivity and correlation in randomized games. Journal of Mathematical
Economics 1, 67–96 (1974)

3. Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of correlated equi-
libria of linear congestion games. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS,
vol. 3669, pp. 59–70. Springer, Heidelberg (2005)

4. Fiat, A., Mansour, Y., Nadav, U.: Efficient contention resolution protocols for selfish agents.
In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, New Orleans, Louisiana, USA, pp. 179–188 (2007)

5. Fudenberg, D., Maskin, E.: The folk theorem in repeated games with discounting or with
incomplete information. Econometrica 54(3), 533–554 (1986)

6. Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink equilibria and convergence. In: FOCS, pp.
142–154. IEEE Computer Society, Los Alamitos (2005)

7. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in Geometric SINR. In: ACM
International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC),
Montreal, Canada (September 2007)

8. Hendricks, K., Weiss, A., Wilson, C.: The war of attrition in continuous time with complete
information. International Economic Review 29(4), 663–680 (1988)

9. Hendricks, K., Wilson, C.: Discrete versus continuous time in games of timing. Working
Papers 85-41, C.V. Starr Center for Applied Economics, New York University (1985)

10. Lotker, Z., Patt-Shamir, B., Tuttle, M.R.: Timing games and shared memory. In: Fraigniaud,
P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 507–508. Springer, Heidelberg (2005)

11. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology Control Meets SINR: The Schedul-
ing Complexity of Arbitrary Topologies. In: 7th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MOBIHOC), Florence, Italy (May 2006)

12. Nash, J.F.: Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences 36, 48–49 (1950)

13. Osborne, M.J., Rubinstein, A.: A course in Game Thoery. MIT Press, Cambridge (1994)
14. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. International

Journal of Game Theory 2, 65–67 (1973)

1 Every two rounds the “non-discounted” payoff of each player is v − 1.



Taxing Subnetworks�

Martin Hoefer, Lars Olbrich, and Alexander Skopalik

Department of Computer Science, RWTH Aachen University, Germany

Abstract. We study taxes in the well-known game theoretic traffic model due to
Wardrop. Given a network and a subset of edges, on which we can impose taxes,
the problem is to find taxes inducing an equilibrium flow of minimal network-
wide latency cost. If all edges are taxable, then marginal cost pricing is known to
induce the socially optimal flow for arbitrary multi-commodity networks. In con-
trast, if only a strict subset of edges is taxable, we show NP-hardness of finding
optimal taxes for general networks with linear latency functions and two com-
modities. On the positive side, for single-commodity networks with parallel links
and linear latency function, we provide a polynomial time algorithm for finding
optimal taxes.

1 Introduction

An important problem in traffic management is to set incentives for rational users to
act in a favorable manner. An effective means to achieve this is to set appropriate taxes.
In this paper, we study the problem of computing optimal taxes in the Wardrop model,
a well-studied model for traffic routing with important applications in road networks
and computer networks. In this model, we are given a network equipped with non-
decreasing non-negative latency functions mapping flow on the edges to latency. For
each of several commodities a fixed demand has to be routed between a source-sink
pair. The cost of a flow assignment is the weighted sum of travel times between the
source and target nodes. A flow that minimizes the total latency is called (socially)
optimal. A common interpretation of the Wardrop model is that flow is controlled by
an infinite number of selfish users each of which carries an infinitesimal amount of
flow. Each user aims at minimizing its path latency. An allocation, in which no user can
improve its situation by unilaterally deviating from its current path is called Wardrop
equilibrium. In general a Wardrop equilibrium is not socially optimal, i.e, it does not
minimize the total latency. The inefficiency of selfish flows has been extensively studied
in previous work [2, 18, 19, 21].

Taxing can be successful in improving total latency of equilibria. In this case users
are assumed to minimize the sum of their latencies and taxes. A fundamental result is
that using marginal cost pricing to tax every edge results in equilibrium flows that are
optimal with respect to total latency [1]. A serious drawback of marginal cost pricing is
that it requires every edge of the network to be taxable. In many situations there might
be technical or legal restrictions that prevent an operator from imposing a tax on all
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edges. Therefore, we adjust the model to a more realistic case in which only a subset of
edges can be taxed. The problem is to find a set of taxes for the subset of taxable edges
that minimizes the total latency of the resulting Wardrop equilibrium. To the best of our
knowledge, this generalization has not been considered before.

Taxing subnetworks can be more difficult and non-trivial. Consider a parallel link
network of two links and linear latency functions. If one can tax only one edge, the la-
tency cost is generally not monotone in the imposed tax. Using this insight, we carefully
construct networks with one taxable edge and several distinct optimal taxes. A combi-
nation of these networks establishes NP-hardness of the problem for two commodities
and linear latency functions in Sect. 3. On the other hand, for parallel link networks
with linear latency functions, we derive a precise structural analysis of optimally taxed
equilibrium flows in Sect. 4. This allows to construct a polynomial-time algorithm to
find optimal taxes. Most proof details are omitted and will be given in the full version
of the paper.

Related Work. There is a huge amount of work addressing the inefficiency of equilib-
ria in the Wardrop model. Therefore, we only give a rough overview and concentrate
on the classical results and recent developments. The game theoretic traffic model con-
sidered in this paper was introduced by Wardrop [24]. Beckmann et al. [1] observe that
such an equilibrium flow is an optimal solution to a related convex program. They give
existence and uniqueness results for traffic equilibria (see also [6] and [19]). Dafermos
and Sparrow [6] show that the equilibrium state can be computed efficiently under some
assumptions on the latency functions.

The inefficiency of Wardrop equilibria is a well-known phenomenon [16], which
is exemplified by Braess paradox [2]. Bounding the inefficiency of equilibria, however,
has only recently been considered, initiated by Koutsoupias and Papadimitriou [14], and
for the Wardrop model by Roughgarden and Tardos [19]. Roughgarden [21] provides a
cumulative overview of the most important results that have been obtained.

There are several approaches that have been proposed to address the inefficiency of
equilibria. The effectiveness of taxes has been observed by Pigou [16] and generalized
by Beckmann et al. [1]. They show that marginal cost pricing completely eliminates
the inefficiency of selfish routing. Cole et al. [5] show existence of taxes inducing the
optimal flow for single-commodity networks and heterogeneous users that value tax
versus latency in an individual way. Fleischer [7] reduces the required taxes to linear
functions. In the more general setting of multi-commodities, Fleischer et al. [8] and
Karakostas and Kolliopoulos [10] independently prove the existence of optimal taxes.

Other approaches for coping with selfishness are, for example, proposed by Korilis
et al. [13], who give methods for improving system performance by adding additional
capacity to system resources. Cocchi et al. [3] study the role of various pricing policies
in networks with selfish users. Roughgarden [20] studies designing networks that ex-
hibit good performance when used selfishly and proves tight inapproximability results.
Cole et al. [4] show hardness of computing taxes minimizing the total user disutility
(latency plus tax) at equilibrium.

Korilis et al. [12] consider the problem of a Stackelberg leader, who in a first phase
can fix the routes for a certain fraction of the demand. In a second phase, selfish users
enter the system and route their own flow on top of the leader demand. The objective
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of the leader is to minimize the resulting total cost of the total (both leader and selfish)
flow. Roughgarden [17] shows that it is weakly NP-hard to compute the optimal leader
strategy even for parallel links with linear latency functions. Kumar and Marathe [15]
give a FPAS for this problem. Kaporis and Spirakis [9] show that for single-commodity
networks the minimal fraction of flow needed by the leader to induce optimal cost can
be computed in polynomial time. Subsequent papers [23, 22, 11] consider Stackelberg
routing in different variants for more general networks.

2 Preliminaries

We consider Wardrop’s traffic model originally introduced in [24]. We are given a di-
rected graph G = (V,E) with vertex set V , edge set E, a set of commodities [k] =
{1, . . . , k} specified by source-sink pairs (si, ti) ∈ V × V , and flow demands di > 0.
For single-commodity networks we normalize the demand to one. Considering only
parallel edges, we speak of parallel link networks and denote the set of links by [n] =
{1, . . . , n}. The edges are equipped with non-decreasing, continuous latency functions
�e : R≥0 → R≥0. We allow a set of non-negative taxes {τe}e∈T to be imposed on a
subset of edges T ⊂ E. We call edges in T taxable and edges in N = E \ T non-
taxable.

Let Pi denote the admissible paths of commodity i, i. e., all paths connecting si and
ti, and let P =

⋃
i∈[k] Pi. A non-negative path flow vector (fP )P∈P is feasible if it sat-

isfies the flow demands
∑

P∈Pi
fP = di for all i ∈ [k]. Throughout this paper, we will

consider only feasible path flow vectors. A path flow vector (fP )P∈P induces an edge
flow vector f = (fe)e∈E with fe =

∑
i∈[k]

∑
P∈Pi:e∈P fP . For single-commodity net-

works, we drop the index i. The latency of an edge e ∈ E is given by �e(fe) and the
latency of a path P is given by the sum of the edge latencies �P (f) =

∑
e∈P �e(fe).

The latency cost of a flow is defined as C(f) =
∑

P∈P �P (f)fP =
∑

e∈E �e(fe)fe. A
flow f of minimal latency cost is called (socially) optimal. The cost of a path is defined
as latency plus tax, i.e., �P (f)+

∑
e∈P τe. Finally, we call the quadruple (V, T,N, (di))

an instance.
A flow vector is considered stable when no fraction of the flow can improve its

sustained cost by moving unilaterally to another path. Such a stable state is generally
known as Nash equilibrium. In our model a flow is stable if and only if all used paths
within a commodity have the same minimal cost, whereas unused paths may have larger
cost. We call such a flow Wardrop equilibrium.

Definition 1. A feasible flow vector f is at Wardrop equilibrium if for every commodity
i ∈ [k] and paths P1, P2 ∈ Pi with fP1 > 0 it holds that �P1(f) +

∑
e∈P1

τe ≤
�P2(f) +

∑
e∈P2

τe.

In particular, without taxes, if f is at Wardrop equilibrium then all used paths in com-
modity i have equal latency Li(f) and the latency cost can be expressed as C(f) =∑

i∈[k] Li(f)·di (see [19, 24]). A classical result on taxing selfish flow, called marginal
cost pricing, is that with taxes τe = xe · �′e(xe) for all e ∈ E the resulting equilibrium
flow minimizes the latency cost. With �∗e(x) = (x · �e(x))′ = �e(x)+x · �′e(x) denoting
the marginal cost of increasing flow in edge e we have the following lemma.
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Lemma 1 ([1, 6, 19]). Let (V, T, ∅, (di)) denote an instance in which x · �e(x) is a
convex function for each edge e. Then a flow f minimizes the latency cost w.r.t. (�e)e∈T

if and only if it is at Wardrop equilibrium w.r.t. (�∗e)e∈T .

In the restricted case with only a subset of edges being taxable such a result is obviously
out of reach. This directly leads us to the following definition.

Definition 2. Given an instance (V, T,N, (di)), a set of taxes {τe}e∈T is called opti-
mal, if there is an equilibrium flow fτ w.r.t. �+ τ with C(fτ ) ≤ C(fτ ′) for all equilib-
rium flows fτ ′ w.r.t. �+ τ ′ for any {τ ′e}e∈T .

3 NP-Hardness for Multi-commodity Networks

In this section we study the optimization problem of computing an optimal set of taxes.
We show that this turns out to be NP-hard even for the two-commodity case with lin-
ear latency functions. We start with an observation which allows us to discretise the
problem and enables us to prove the main result of this section.

Lemma 2. There is a family of instances (V, T,NA, dA)A∈N with parallel link net-
works allowing for two separated optimal tax values.

Proof. Consider a parallel link network, in which two nodes s and t are connected via
three links with �1(x) = x + A and �2(x) = �3(x) = x. Suppose we can only tax the
third link. Set dA = A(1 +

√
3

2 ). For tax 0 ≤ τ ≤ A(1 −
√

3
2 ), the total demand is split

among links two and three at equilibrium. Since both used links are identical, τ = 0 is
optimal with an induced cost of (7

8 +
√

3
2 )A2. For A(1 −

√
3

2 ) < τ < A(1 +
√

3
4 ) all

links are used and the corresponding cost function 2
3τ

2 − 1
3Aτ + (11

12 +
√

3
2 )A2 yields

an optimal tax of A/4 with cost (7
8 +

√
3

2 )A2 as well. For τ ≥ A(1 +
√

3
4 ) the latency

cost at equilibrium is (11
8 + 3

√
3

4 )A2. Thus, both τ = 0 and τ = A/4 are optimal. ��

Theorem 3. Given an instance (V, T,N, (di)), the problem of computing optimal taxes
is NP-hard, even for only two commodities and linear latency functions.

Proof. We reduce from the PARTITION problem: given n positive integers a1, . . . , an,
is there a subset S ⊆ {1, 2, . . . , n} satisfying

∑
i∈S ai = 1

2

∑n
i=1 ai? We will show

that deciding the PARTITION problem reduces to deciding if a given 2-commodity in-
stance (V, T,N, (di)) with latency functions admits taxes inducing a Wardrop equilib-
rium with a given cost. Given an arbitrary instance of PARTITION specified by positive
integers a1, . . . , an, we define an instance (V{ai}, T{ai}, N{ai}, (d{ai})) as depicted in
Fig. 1. Let the set of taxable edges T consist of the bold edges. Commodity one has a
demand ofA =

∏n
i=1 ai to route between s1 = v1 and t1 = vn+1, the second commod-

ity has to route a demand of
∑

i ai between s2 and t2. For i ∈ [n] define the following

constants: A−i =
∏n

j �=i aj , Di = 2−4A−i+A2
−i

4A−i−2 and Ei = 2ai(Di + 1) = AA−i

2A−i−1 .
We show that {a1, . . . , an} is a YES instance if and only if there are taxes for in-
stance (V{ai}, T{ai}, N{ai}, (d{ai})) inducing a Wardrop equilibrium with cost of at
most C = n

2A
2 + 7

8 (
∑

i ai)2. The idea is that the minimal latency cost is reached if and
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Fig. 1. The network of an instance (V{ai}, T{ai}, N{ai}, (d{ai})). The edges are labeled with the
latency functions. Unlabeled edges have latency 0. Taxes can be imposed on the set of bold edges
only.

only if the tax between vi and vi+1 is 0 or ai (inducing a latency cost of A2/2 for this
set of edges) and the sum of all taxes is exactly

∑
i ai/2. ��

4 Parallel Links with Linear Latency Functions

We have seen that the latency cost is generally not monotone in the imposed tax even
in case of linear latency functions and one taxable link. Further, such instances do not
necessarily admit a unique optimal tax. These observations indicate that studying op-
timal taxes in parallel link networks might be intriguing. Our main goal in this sec-
tion is to provide an algorithm for finding optimal taxes in single-commodity parallel
link networks (V, T,N, 1) in which every link i ∈ [n] has a linear latency function
�i(x) = aix + bi. This setting has been of special interest in the related problem of
computing a Stackelberg leader strategy [17] described in the introduction. While this
problem is already NP-hard in this setting, it may be surprising that we will be able to
formulate a polynomial time algorithm for computing optimal taxes. Suppose the links
are numbered by N = {1, . . . , k} and T = {k + 1, . . . , n}, such that b1 ≤ . . . ≤ bk
and bk+1 ≤ . . . ≤ bn. We use this labelling for convenience, but note that the ordering
conditions apply only within N and T . We do not require bi ≤ bj for all i ∈ N and
j ∈ T or any other restriction or relation between the links of N and T . W.l.o.g. we
assume at most one constant latency link in N ∪ T .

4.1 Candidate Supports Sets

A flow f is at Wardrop equilibrium if and only if there is a constant L > 0, s.t. all used
links i ∈ [n] have the same latency L = �i(fi), whereas L ≤ �i′(0) = bi′ for unused
links i′ ∈ [n]. Lemma 1 shows that a flow f is socially optimal if and only if there is
a constant C > 0, s.t. C = �∗j (fj) = 2ajfj + bj for all used links j ∈ [n], whereas
C ≤ �∗j′(0) = bj′ for unused links j′ ∈ [n].

Now consider an instance and increase the demand. The characterization yields that
in equilibrium and in optimum links j will be filled with flow in order of increasing



Taxing Subnetworks 291

bj . Regarding cost the set of taxes will induce an equilibrium assigning flow to some
link set S ⊂ N ∪ T . All used non-taxable links have the same latency L. Since we
allow for non-negative taxes only, the used taxable links will not have higher latency.
This property allows us to parametrize the problem by the set of taxable and non-taxable
links filled with flow. These sets turn out to be candidate support sets defined as follows.

Definition 3. Every set of the form S = {1, . . . , l1} ∪ {k+ 1, . . . , l2} with 1 ≤ l1 ≤ k
and k + 1 ≤ l2 ≤ n is called a candidate support set.

Note that there are at most n2/4 candidate support sets for any instance.

Lemma 4. Let f denote a socially optimal flow for a parallel link network in which
every edge is taxable. Then �1(f1) ≤ �2(f2) ≤ . . . ≤ �n(fn).

Proof. The set of used links is of the form {1, . . . , l} for some l ≤ n. Since f is a
minimal latency flow, all links j ∈ {1, . . . , l} have equal marginal cost, and there is a
constant C > 0 with 2ajfj + bj = C. Thus, �j(fj) = ajfj + bj = C/2 + bj/2. ��
Let us first argue that the consideration of candidate support sets is indeed sufficient to
find optimal taxes. Imagine two separate commodities, routing demands dN and 1−dN

exclusively overN and T , resp. In such an instance, it would be optimal to set marginal
cost taxes on T , and the set of used links form a candidate support set.

The difference to our setting is that demand can change between N and T , and thus
we also need to ensure that latency and taxes create an equilibrium. If the optimal flow
in T yields latencies smaller than L, then we can satisfy the latency constraint by setting
appropriate non-negative taxes. Otherwise, the latency restriction reduces the flow on
some used links. However, if the flow on a link is smaller than in the optimum due to
the latency constraint, the marginal cost on this link is also smaller. Therefore, it is still
optimal to fill the link with flow to the maximal possible extent (see Lemma 5). For
all links not affected by the latency restriction, however, it is optimal to equalize the
marginal costs, and the allocation of flow follows the ordering of offsets. In conclusion,
the set of links allocated with flow remains a candidate support set.

4.2 Problem Parametrization

Fixing numbers nS and tS yields a candidate support set S = NS ∪ TS with NS =
{1, . . . , nS} and TS = {k+ 1, . . . , tS}. For S denote by dNS and 1− dNS the demand
routed over NS and TS , respectively. CNS (dNS ) is the latency cost for an equilibrium
flow (fi)i∈NS of demand dNS . Denote by CTS (1−dNS) the latency cost for an optimal
flow (fj)j∈TS of demand 1−dNS additionally fulfilling the latency restriction �j(fj) ≤
L(dNS), whereL(dNS ) denotes the unique latency of all used links inNS for a demand
of dNS . Let C(dNS ) = CNS (dNS )+CTS (1− dNS) denote the latency cost of the flow.

The problem of finding a set of optimal taxes for a fixed set S can be formulated
as follows: Minimize the cost function C, s.t. the flow for N is at equilibrium and the
remaining flow on T is optimal subject to the additional constraint �j(fj) ≤ L(dNS).

We will show that, if this minimization problem has a solution, the cost function
C(dNS ) is piecewise quadratic with at most n breakpoints and the optimal demand
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distribution (d∗NS
, 1 − d∗NS

) for NS and TS is efficiently computable. Iterating this for
all possible sets S enables us to find optimal taxes.

We call a link j ∈ T full w.r.t. some L > 0 if fj > 0 and its latency equals the
constraint value, i.e., if �j(fj) = L or if fj = 0 and �j(0) = bj ≥ L. We call a
link relaxed if fj > 0 and �j(fj) < L. When shifting demand from N to T , the
common latency L of used links in N decreases, while the demand on T increases. In
the corresponding optimal flow on T respecting the constraint value, however, a full
link never becomes relaxed. More formally, consider an instance (V, T, ∅, d) and let f
denote the optimal flow respecting �i(fi) ≤ L for all i. With Lemma 4 we can assume
the full links to form a set {p, . . . , n} for some p ≥ 1. Furthermore, assume there are
L′ ≤ L and d′ ≥ d such that there is a flow of demand d′ to T such that all used links
have latency at most L′. For all non-constant links, we define �−1

i (L) to be the flow fi

such that aifi + bi = L if bi ≤ L, and 0 otherwise.

Lemma 5. The optimal flow f ′ respecting �i(f ′i) ≤ L′ for all i assigns �−1
i (L′) flow to

all non-constant links i ∈ {p1, . . . , n} for some uniquely defined p1 ≤ p.

4.3 A Polynomial-Time Algorithm for Computing Optimal Taxes

Considering an optimal flow for an increasing demand, the links become used in order
of their offsets. Lemmata 4 and 5 show that the links become full w.r.t. some bound in
reverse order. Thus, we can determine the lower and the upper bound dmin

NS
and dmax

NS

for dNS such that the following holds: There is an equilibrium flow of demand dNS on
N using exactly the links NS and there is an optimal flow of demand 1 − dNS on T
respecting the bound L(dNS ) using exactly the links TS .

Given a candidate support set S, we compute the optimal demand distribution (dNS ,
1 − dNS). If such a distribution exists, we call S feasible. The corresponding demand
interval [dmin

NS
, dmax

NS
] can be computed in polynomial time by solving systems of linear

equations.

Algorithm 1. OPTTAX (V, T,N, 1)
1: for every candidate support set S do
2: if S feasible then
3: compute the breakpoints dmin

NS
= dNSk+1 , . . . , dNS1 , dNS0 = dmax

NS

4: d∗
NS

← argmin0≤j≤k mindNS
∈[dNSj

,dNSj+1
] C(dNS )

5: end if
6: end for
7: S∗ ← argminSC(d∗

NS
)

8: compute optimal flow on TS∗ respecting L(d∗
NS∗ ) with

�
TS∗ f∗

j = 1 − d∗
NS∗ and set

f∗
j := 0 for j ∈ T \ TS∗ .

9: set taxes τj ← L(d∗
NS∗ ) − �j(f∗

j ) for j ∈ T

Lemma 6. The cost function C(dNS ) is piecewise quadratic for dNS ∈ [dmin
NS
, dmax

NS
]

with at most n breakpoints for every feasible candidate support set S. The breakpoints
can be computed in polynomial time.
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Proof. We show that while CNS is a quadratic function, CTS and therefore C is piece-
wise quadratic with at most n breakpoints.

Suppose f is an equilibrium flow forNS of demand dNS . There is some L(dNS) > 0
with L(dNS) = aifi +bi for every i ∈ NS . With

∑
NS
fi = dNS , we infer that L(dNS)

is linear and CNS (dNS ) = L(dNS) · dNS is quadratic. Considering CTS , we need to
respect the latency constraint for increasing 1 − dNS . The cost function CTS turns out
to be quadratic with at most n breakpoints. These breakpoints, i.e., the demand values
for which the number of full links increases, can be calculated by solving systems of
linear equations. ��
Given that restricting to candidate support sets is sufficient for finding optimal taxes,
the following result holds.

Theorem 7. Given an instance (V, T,N, 1) with parallel links and linear latency func-
tions, Algorithm OptTax(V,T,N,1) computes a set of optimal taxes (τj)j∈T in polyno-
mial time.
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Abstract. A (randomized, anonymous) voting rule maps any multiset of total
orders (aka. votes) over a fixed set of alternatives to a probability distribution over
these alternatives. A voting rule f is false-name-proof if no voter ever benefits
from casting more than one vote. It is anonymity-proof if it satisfies voluntary
participation and it is false-name-proof. We show that the class of anonymity-
proof neutral voting rules consists exactly of the rules of the following form. With
some probability kf ∈ [0, 1], the rule chooses an alternative uniformly at random.
With probability 1 − kf , the rule first draws a pair of alternatives uniformly at
random. If every vote prefers the same alternative between the two (and there
is at least one vote), then the rule chooses that alternative. Otherwise, the rule
flips a fair coin to decide between the two alternatives. We also show how the
characterization changes if group strategy-proofness is added as a requirement.

1 Introduction

In many settings, a decision must be made on the basis of the preferences of multiple
agents. Common examples include auctions and exchanges (where we must decide on
an allocation of resources, as well as payments to be made or received by the agents)
and elections (where we must decide on, say, one or more political representatives), but
there are many other applications. A (direct-revelation) mechanism takes each agent’s
reported preferences as input, and produces a decision as output. An important issue
is that self-interested agents will lie about their preferences if they perceive it to be to
their advantage to do so. Mechanism design studies how to design mechanisms that
produce good outcomes in spite of this. A key concept in mechanism design is that of
strategy-proofness: a mechanism is strategy-proof if no agent can ever benefit from ly-
ing about her preferences. Strategy-proofness is roughly synonymous with truthfulness
and incentive compatibility.1 In mechanism design, attention is usually restricted to in-
centive compatible direct-revelation mechanisms. This is justified by a result known
as the revelation principle [Gibbard, 1973; Green and Laffont, 1977; Myerson, 1979,
1981], which states (roughly) that, given that agents will misreport their preferences if

1 To be more precise, strategy-proofness as the term is used here corresponds to dominant-
strategies incentive compatibility. There are weaker notions of incentive compatibility, such as
Bayes-Nash incentive compatibility, where in expectation over the other agents’ preferences
an agent is best off reporting her true preferences (assuming the others do so as well).
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they perceive this to be to their benefit, anything that can be achieved by some mecha-
nism can also be achieved by an incentive compatible direct-revelation mechanism.2

In mechanism design, the spaces of possible outcomes and preferences often display
a great deal of structure, which facilitates the designer’s job. For example, in auctions
and exchanges, it is often assumed that agents can make and receive payments, that
their utility is linear in this payment, and that the effect of the payment on utility is in-
dependent of the rest of the outcome. This enables, for example, Vickrey-Clarke-Groves
mechanisms [Vickrey, 1961; Clarke, 1971; Groves, 1973], which always choose the ef-
ficient allocation. However, such structure is not always available: for example, in an
election, payments can typically not be made. If we do not assume any structure on the
agents’ preferences, then agents can rank the possible outcomes (aka. alternatives) in
any possible way. These general settings, in which each agent ranks all the alternatives,
and the mechanism chooses an alternative based on these rankings, are commonly re-
ferred to as voting settings. The rankings are the votes, and the mechanism is usually
called a voting rule.

The revelation principle applies to voting settings just as it does to any other mech-
anism design setting, so we should ask which rules are strategy-proof. Gibbard [1977]
provides a complete characterization of strategy-proof voting rules that are allowed to
use randomization. (This characterization generalizes the better-known, earlier Gibbard-
Satterthwaite theorem [Gibbard, 1973; Satterthwaite, 1975].) He shows that any strategy-
proof rule is a randomization over unilateral rules, in which only one vote affects the
outcome, and duple rules, in which only two alternatives have a chance of winning.
(Because the overall rule is a randomization over such rules, it can still be the case that
every voter affects the probability with which an alternative is chosen, and that every
alternative has a positive probability of winning. Hence, Gibbard’s characterization is
not universally seen as a negative result [Barbera, 1979a].) He also provides some addi-
tional conditions on these rules to obtain an exact characterization of the strategy-proof
voting rules.

However, strategy-proofness is often not sufficient. In open, anonymous environ-
ments such as the Internet, an agent can manipulate the mechanism in other ways. For
one, if an agent does not participate in the mechanism, then the party running the mech-
anism (aka. the center) is not even aware of her existence. Perhaps more significantly,
an agent can open multiple accounts and participate in the mechanism multiple times
under different identifiers—and the center cannot know which identifiers correspond to
the same agent. This led to the concept of false-name-proofness [Yokoo et al., 2004]. A
mechanism is false-name-proof if an agent can never benefit from using multiple iden-
tifiers. Some positive and negative results on false-name-proofness have been obtained
for combinatorial auctions and similar settings (e.g., Yokoo et al. [2001]; Yokoo [2003];
Yokoo et al. [2004, 2006]; Rastegari et al. [2007]), but to our knowledge this concept
has not yet been studied in voting settings.

In this paper, we define a (possibly randomized) voting rule to be anonymity-proof if
it is false-name-proof, and it never hurts an agent to cast her (true) vote. Under the same

2 To predict what will happen under a mechanism that is not incentive compatible, some solution
concept from game theory must be used, and the version of incentive compatibility in the
revelation principle depends on the choice of solution concept.
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model as Gibbard [1977], we obtain a complete characterization of the anonymity-proof
neutral voting rules. (A voting rule is neutral if it treats all alternatives symmetrically.)
The proof is from first principles and (arguably) of reasonable length. The resulting
class of voting rules is very limited (hence the result is mostly negative), but it does
allow a modicum of responsiveness to the votes in cases where there is complete agree-
ment among the voters on some pairs of alternatives. For example, in the special case
where there are only two alternatives, the characterization tells us that if all votes prefer
the same alternative, we can choose that alternative; but otherwise, we have to flip a fair
coin to decide between them. This is in stark contrast to the case where we require only
strategy-proofness, or even group strategy-proofness: for example, simply choosing the
alternative that is preferred by more voters (the majority rule) is group strategy-proof.

1.1 Additional Motivation

Our primary reason for studying false-name-proofness in general social choice (voting)
settings is that these settings lie at the heart of mechanism design, and hence provide the
most natural starting point for a thorough study of the concept of false-name-proofness.
Nevertheless, perhaps surprisingly, anonymous voting is in fact a very real and growing
phenomenon on the Internet. It may seem that anonymous elections are unlikely to
result in outcomes that reflect society’s preferences well (and, in fact, this paper can be
seen as a commentary on just how unlikely this is). However, it appears that in practice,
often, the party organizing the election has more interest in publicity than in a properly
chosen outcome; moreover, the convenience of anonymous Internet voting appeals to
the voters as well.

A very recent example of this phenomenon is the “New 7 Wonders of the World”
election, a global election that was organized by businessman Bernard Weber to elect
contemporary alternatives to the ancient wonders. Anyone could vote, either by phone
or over the Internet; for the latter, an e-mail address was required. One could also buy
additional votes (of course, using another e-mail address was a much cheaper alterna-
tive). In spite of various irregularities (including unreasonably large numbers of votes
in some cases) and UNESCO distancing itself from the election, the election seems to
have attained some legitimacy in the public’s mind.

For better or worse, mechanisms such as these are going to feature increasingly
prominently in our economy and social infrastructure. Hence, the theory of mecha-
nism design must be extended so that it can provide guiding principles to maximize the
efficiency and trustworthiness of such mechanisms. The sooner this happens, the fewer
bad mechanisms will take hold.

Our results also apply to Internet rating systems in which anonymous reviewers
rate products, sellers, etc. Here, the set of alternatives is the set of possible (final,
aggregate) ratings. It should be noted that in this context, it makes sense for agents’
preferences to be restricted: for example, it makes little sense for an agent to pre-
fer high'low'medium for a product’s final rating. Specifically, single-peaked pref-
erences [Black, 1948] are a natural restriction in this domain; we will discuss such
preferences in the conclusion.
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2 Definitions

Let X , |X | = m, be the set of alternatives over which the voters are voting. A voter’s
preferences are given by a total order ' over the alternatives, together with a vector
of utilities u = (u1, . . . , um) where ui is the voter’s utility for the alternative that she
ranks ith. (It is required that ui > ui+1 for all 1 ≤ i ≤ m.) Each voter seeks to
maximize her expected utility. As in Gibbard [1977], voters only report a total order
(ranking) of the alternatives (not their utilities); a reported ranking is called a vote.
Again as in Gibbard [1977], we do not allow for indifferences (real or reported) between
alternatives. We will use the notation v = a1 ' . . . ' am for a vote. We will sometimes
also use subsets in the order notation: for example, if B = {b1, b2, b3}, then a1 ' b1 '
b2 ' b3 ' a2 and a1 ' b3 ' b1 ' b2 ' a2 are both of the form a1 ' B ' a2
(but, for instance, a1 ' b3 ' b2 ' a2 ' b1 is not of this form). A voting rule f
takes a multiset3 of votes V as input, and chooses the winning alternative based on
these votes (possibly using randomization). Let Pf (V, a) denote the probability with
which f chooses a given votes V ; the function Pf defines the rule f . A voting rule is
neutral if it treats all alternatives symmetrically—that is, if π is a permutation of the
alternatives, then Pf (π(V ), π(a)) = Pf (V, a) (where π(V ) is the multiset that results
from replacing each alternative a by π(a) in each vote in V ). In fact, the following
weaker definition of neutrality will also suffice for our purposes: if a subset B of the
alternatives is symmetric in V (that is, for any permutation π for which π(a) = a for
all a ∈ X − B, π(V ) = V ), then Pf (V, b1) = Pf (V, b2) for all b1, b2 ∈ B. We are
only interested in neutral voting rules.4

Definition 1. A voting rule f is false-name-proof if for any multiset of votes V , for
any v ∈ V, v = a1 ' . . . ' am, for any decreasing u = (u1, . . . , um), and for any
multiset of votes V ′, we have

∑m
j=1 Pf (V, aj)uj ≥

∑m
j=1 Pf (V ∪ V ′, aj)uj . That is,

the voter corresponding to v cannot increase her expected utility by additionally casting
votes V ′.

It should be noted that under this definition, a voter who uses false names is assumed
to cast at least one vote representing her true preferences. This only weakens the re-
quirement. All of the rules in the characterization result of this paper are also false-
name-proof in the stronger sense where none of the votes cast by the false-name voter
are required to represent her true preferences. Hence, the characterization remains the
same if this stronger requirement is used.

Definition 2. A voting rule f satisfies participation if for any multiset of votes V , for
any v ∈ V, v = a1 ' . . . ' am, for any decreasing u = (u1, . . . , um), we have∑m

j=1 Pf (V, aj)uj ≥
∑m

j=1 Pf (V − {v}, aj)uj . That is, the voter corresponding to v
cannot increase her expected utility by not casting her vote.

3 This is implicitly assuming that every vote is treated equally; anything else would seem unrea-
sonable in open, anonymous environments. Rules that treat every vote equally are commonly
called anonymous; this is not to be confused with the definition of anonymity-proofness.

4 Sometimes rules that are not neutral are of interest, for example if one alternative is the incum-
bent and should be treated specially; but in most settings, only neutral rules are of interest.
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Definition 3. A voting rule is anonymity-proof if it is false-name-proof and it satisfies
participation.

Anonymity-proofness does not directly mention strategy-proofness. Thus, it may ap-
pear that even if a rule is anonymity-proof, it is possible that a voter can benefit from
misreporting her preferences. However, all of the rules in the characterization result of
this paper are also strategy-proof (this is implied by the fact that they satisfy the stronger
version of false-name-proofness). Hence, the characterization remains the same if
strategy-proofness is added as a requirement.

3 The Characterization of Anonymity-Proof Rules

In this section, we prove the main result. Showing that all the rules in the proposed
class are anonymity-proof is not difficult; most of the proof consists of showing that all
rules that are anonymity-proof are in the class. We prove the latter part using a sequence
of six lemmas. Assuming the rule is anonymity-proof, these lemmas demonstrate how
to transform any multiset of votes to a particular multiset of only two votes, without
affecting one given alternative’s probability of winning; and they demonstrate that this
alternative’s probability of winning in those two votes is as the theorem states.

The first lemma is a fundamental building block of the proof. It states that if we add
a vote that agrees with an existing vote on the top k and bottom l − k alternatives, then
the probability of winning for each of those alternatives does not change.

Lemma 1. Consider a multiset of votes V , and suppose that for some v ∈ V , v is of
the form a1 ' . . . ' ak ' B ' ak+1 ' . . . ' al. (Please note that l is equal to m
only if B is empty.) Let v′ (not necessarily in V ) be another vote of the form a1 ' . . . '
ak ' B ' ak+1 ' . . . ' al (that is, it is identical to v except for the internal ordering
of B). Then, if f is anonymity-proof, for any 1 ≤ i ≤ l, Pf (V, ai) = Pf (V ∪{v′}, ai).

Proof. First, let us suppose that for some 1 ≤ i ≤ k, Pf (V, ai) �= Pf (V ∪ {v′}, ai).
Without loss of generality, suppose that for any 1 ≤ j < i, Pf (V, aj) = Pf (V ∪
{v′}, aj). Consider the utility vector u = (1− ε, 1− 2ε, . . . , 1− iε, (m− i)ε, (m− i−
1)ε, . . . , ε). First, let us suppose that Pf (V, ai) < Pf (V ∪ {v′}, ai). Then, if the true
preferences are given by V , the voter casting v has utility vector u, and ε is sufficiently
small, then the voter casting v has an incentive to cast v′ as well. This is because (as
ε→ 0) she effectively seeks to maximize the probability of one of a1, . . . , ai winning,
and casting v′ as well does not affect the probabilities of a1, . . . , ai−1 winning and
increases that of ai. On the other hand, suppose that Pf (V, ai) > Pf (V ∪ {v′}, ai).
Then, if the true preferences are given by V ∪ {v′}, the voter casting v′ has utility
vector u, and ε is sufficiently small, then the voter casting v′ has an incentive to not
participate. This is because (as ε→ 0) she effectively seeks to maximize the probability
of one of a1, . . . , ai winning, and not participating does not affect the probabilities of
a1, . . . , ai−1 winning and increases that of ai. Hence, for any 1 ≤ i ≤ k, Pf (V, ai) =
Pf (V ∪ {v′}, ai).

The case where Pf (V, ai) �= Pf (V ∪ {v′}, ai) for some k + 1 ≤ i ≤ l can be
shown to contradict either false-name-proofness or participation by a symmetric argu-
ment (where, supposing without loss of generality that Pf (V, aj) = Pf (V ∪ {v′}, aj)
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for all i < j ≤ l, the voter casting v or v′ effectively tries to minimize the probability of
one of the last l − i+ 1 alternatives winning).

We obtain the following corollary, which states that it does not matter if the same vote is
cast more than once. (This corollary is usually not powerful enough to use instead of the
more general Lemma 1, but it provides some insight. In particular, for any fixed number
of alternatives, this leaves only a finite number of multisets of votes to consider.)

Corollary 1. For an anonymity-proof rule f , given that a vote is cast at least once, it
does not matter how often it is cast.

Proof. This follows from setting B = ∅ in Lemma 1.

The next few lemmas (2, 3, and 4) demonstrate how to transform any multiset of votes
into a multiset of only two votes, without affecting one given alternative a’s probability
of winning (assuming that the rule is anonymity-proof).

Lemma 1 allows us to prove the following lemma, which states that reordering the
alternatives after a given alternative a in a vote, as well as reordering those before a,
does not affect a’s probability of winning, unless we move alternatives past a.

Lemma 2. Consider a multiset of votes V , and suppose that for some v ∈ V , v is of the
form B ' a ' C. Let v′ (not necessarily in V ) be another vote of the form B ' a ' C
(that is, it is identical to v except for the internal ordering of B and C). Then, if f is
anonymity-proof, Pf (V, a) = Pf ((V − {v}) ∪ {v′}, a). That is, we can permute the
alternatives on either side of a in a vote without affecting a’s probability of winning.

Proof. Suppose first that we permute only C, that is, that B is ordered the same way in
both v and v′. Then, we can apply Lemma 1 (letting a correspond to ak in that lemma)
to obtain Pf (V, a) = Pf (V ∪ {v′}, a), and similarly Pf ((V − {v}) ∪ {v′}, a) =
Pf (V ∪ {v′}, a), hence Pf (V, a) = Pf ((V − {v}) ∪ {v′}, a). The case where we
permute only B can be proven symmetrically. But then, in the general case where both
B and C are permuted, we can transform v into v′ in two steps, as follows. Let v′′ be
the vote of the form B ' a ' C that agrees with v on B but with v′ on C. By the
above, we have Pf (V, a) = Pf ((V − {v}) ∪ {v′′}, a) = Pf ((V − {v}) ∪ {v′}, a).

The next lemma shows that we can move an alternative b past a given alternative a in
a vote, without affecting a’s probability of winning, if the other votes disagree on the
relative ranking of a and b.

Lemma 3. Consider a multiset of votes V , and suppose that for some v ∈ V , a is
ranked before b. Additionally, suppose there is another vote v′ ∈ V that ranks a before
b, and a third vote v′′ ∈ V that ranks b before a. Let v′′′ be a vote (not necessarily
in V ) that is obtained from v by improving b’s position, placing it somewhere ahead
of a (while not changing the order in any other way). Then, if f is anonymity-proof,
Pf (V, a) = Pf ((V − {v}) ∪ {v′′′}, a). That is, we can move b to the other side of a in
a vote without affecting a’s probability of winning, if there are other votes that rank a
before b and b before a.
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Proof. Let us first assume that a and b are adjacent in v and v′′′. That is, a is ranked
directly before b in v, and v′′′ is obtained from v simply by swapping a and b. By
Lemma 1 (letting {a, b} correspond to B in that lemma), for any alternative c /∈ {a, b},
Pf (V, c) = Pf (V ∪ {v′′′}, c), and also Pf ((V − {v})∪ {v′′′}, c) = Pf (V ∪ {v′′′}, c).
Now, if we suppose that Pf (V, a) < Pf (V ∪ {v′′′}, a), then, if the true preferences are
given by V , the voter corresponding to v′ would be better off casting v′′′ as well (since it
will only affect the probabilities of a and b being elected, and v′ prefers a). Conversely,
if Pf (V, a) > Pf (V ∪ {v′′′}, a), then the voter corresponding to v′′ would be better off
casting v′′′ as well. Hence, since f is false-name-proof, Pf (V, a) = Pf (V ∪ {v′′′}, a).
It similarly follows that Pf ((V −{v})∪{v′′′}, a) = Pf (V ∪{v′′′}, a) (since v′ and v′′

are still present in (V − {v}) ∪ {v′′′}). Hence, Pf (V, a) = Pf ((V − {v}) ∪ {v′′′}, a).
Now let us return to the general case where a and b are not necessarily adjacent in v

and v′′′. Let v′′′′ be the result of improving b’s position in v to just after a, and let v′′′′′

be the result of swapping a and b in v′′′′. Using Lemma 2, Pf (V, a) = Pf ((V −{v})∪
{v′′′′}, a); using the above argument, Pf ((V − {v}) ∪ {v′′′′}, a) = Pf ((V − {v}) ∪
{v′′′′′}, a); and using Lemma 2 again, Pf ((V − {v}) ∪ {v′′′′′}, a) = Pf ((V − {v}) ∪
{v′′′}, a).

In the next lemma, we use the previous lemmas to reduce a set of votes to a particular
pair of votes, without affecting a’s probability of winning. (The proofs of the remaining
lemmas and corollaries are omitted due to space constraint.)

Lemma 4. Given a nonempty multiset of votes V and a distinguished alternative a,
let B be the set of alternatives that are ranked before a by every vote in V , let C
be the set of alternatives that are ranked before a by some votes in V and after a by
others, and let D be the set of alternatives that are ranked after a by every vote in V .
Let v (not necessarily in V ) be a vote of the form B ' a ' C ∪ D, and let v′ (not
necessarily in V ) be a vote of the form B ∪C ' a ' D. Then, if f is anonymity-proof,
Pf (V, a) = Pf ({v, v′}, a).

It should be noted that Lemma 4 does not cover the case where V = ∅; in this case,
neutrality demands that an alternative be chosen uniformly at random. The next lemma
characterizes the behavior of an anonymity-proof voting rule when only a single vote is
cast.

Lemma 5. Let v = a1 ' . . . ' am. Let f be anonymity-proof and neutral, and let
pi

f = Pf ({v}, ai). Then, for some constant 0 ≤ kf ≤ 1, pi
f = kf/m+ (1 − kf )(m−

i)·2/(m(m−1)). That is, with probability kf the rule chooses an alternative at random,
and with probability 1 − kf it draws a pair of alternatives at random and chooses the
preferred one.

The final lemma characterizes the probability of a winning in the special pair of votes
from Lemma 4, using Lemma 5.

Lemma 6. Let v be a vote of the form B ' a ' C ∪ D, and let v′ be a vote of the
form B ∪ C ' a ' D. Then, if f is anonymity-proof and neutral, Pf ({v, v′}, a) =
kf/m+ (1 − kf )(2|D|+ |C|)/(m(m− 1)), where kf is defined as in Lemma 5. That
is, the probability that a wins is the same as under the following rule for selecting the
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winner: with probability kf the rule chooses an alternative at random; with probability
1 − kf it draws a pair of alternatives at random, and if every vote prefers the same
alternative between the two, it chooses that alternative, otherwise it flips a fair coin to
decide between the two alternatives.

Using the last three lemmas, the main result is now easy to prove. It states that any
anonymity-proof neutral rule is either the rule that chooses an alternative at random, or
the rule that draws two alternatives at random and runs the unanimity rule on these two
alternatives, or a convex combination of these two rules.

Theorem 1. The class of voting rules f that are anonymity-proof and neutral consists
exactly of the following rules.

– With some probability kf ∈ [0, 1], the rule chooses an alternative uniformly at
random.

– With probability 1− kf it draws a pair of alternatives uniformly at random;
• If every vote prefers the same alternative between the two (and there is at least

one vote), then it chooses that alternative.
• Otherwise, it flips a fair coin to decide between the two alternatives.

(All these rules are also false-name-proof in a stronger sense where the voter need not
cast any vote with her true preferences, and this also implies that they are all strategy-
proof.)

Proof. Let us first show that these rules indeed have the desired properties. They are
clearly neutral. Conditional on a single random alternative being chosen, voters have
no incentive to use false names or to not participate. Conditional on a random pair a, b
of alternatives being drawn, there are four possibilities for a voter (who, without loss of
generality, prefers a):

1. There are no other votes. In this case, the voter has a strict incentive to participate
so that a is chosen, and no incentive to use false names.

2. All other votes prefer a. In this case, the voter has no incentive to use false names
or not participate, since a will be chosen in any case.

3. All other votes prefer b. In this case, the voter has a strict incentive to participate so
that at least a coin is flipped, and no incentive to use false names.

4. There are other votes that prefer a and other votes that prefer b. In this case, the
voter has no incentive to use false names or not participate, since a coin will be
flipped in any case.

We now show that there are no other rules with the desired properties. Let f be
anonymity-proof and neutral. Lemma 5 defines kf for this rule. Now, for an arbitrary
multiset of votes V and an arbitrary alternative a, Lemma 4 shows how to convert V to
a particular set of two votes {v, v′}, in a way that preserves a’s probability of winning,
and also preserves a’s relationship to any other alternative b in the following sense:

– If all votes prefer a to b in V , the same is true in {v, v′}.
– If all votes prefer b to a in V , the same is true in {v, v′}.
– If some but not all votes prefer a to b in V , the same is true in {v, v′}.
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Finally, Lemma 6 shows that for this set of two votes {v, v′}, alternative a’s probability
of winning is as in the claim of this theorem. Because of the preservation properties of
the conversion, this must also be true for the original set of votes V .

4 Discussion

In this section, we study some corollaries of the main result, and make some compar-
isons to rules that are only strategy-proof.

The characterization makes it clear that the optimal anonymity-proof rule (in any
reasonable sense of the word “optimal”) is the one corresponding to kf = 0, since this
rule maximizes the probability that we can at least choose the better of two alternatives
(if all votes agree). Even this rule is limited in the extent to which it can respond to the
votes:

Corollary 2. Under an anonymity-proof rule, the probability of any given alternative
a winning is at most 2/m (for any multiset of votes). This probability is attained if and
only if kf = 0 and all votes rank a first.

This is in sharp contrast to the class of strategy-proof rules. For example, it is
strategy-proof to draw one of the votes at random and choose its most-preferred al-
ternative (often referred to as the “random-dictator” rule). Under this rule, if an alterna-
tive ranks first in all votes, it will be chosen with probability 1. Also, within the class
of strategy-proof rules, there is no rule that is clearly optimal. For example, it is also
strategy-proof to draw a pair of alternatives at random, and choose the one that is pre-
ferred by more voters. Unlike the random-dictator rule, if there is an alternative that
ranks first in all votes, this rule does not necessarily choose it; on the other hand, unlike
the random-dictator rule, this rule does not run the risk of choosing an alternative that
is ranked last by almost every vote (but first by a few).

Another sharp contrast between strategy-proof rules such as the above two and any
anonymity-proof rule is the following. For the winning alternative not to be chosen
uniformly at random, anonymity-proof rules require complete agreement on at least
one pair of alternatives:

Corollary 3. If V and a are such that for any b �= a, there is a vote in V that prefers
a to b, as well as one that prefers b to a, then for any anonymity-proof voting rule,
Pf (V, a) = 1/m.

5 Extension: Group Strategy-Proofness

A stronger notion than strategy-proofness is group strategy-proofness. A mechanism is
group strategy-proof if there is never a coalition of agents that can jointly misreport their
preferences so that they are all better off. An analogous result to Gibbard’s characteriza-
tion of strategy-proof voting rules has been given for group strategy-proofness [Barbera,
1979b].

Neither of group strategy-proofness and anonymity-proofness implies the other. For
example, with two alternatives, the majority rule is group strategy-proof. On the other
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hand, as it turns out, not all of the rules in Theorem 1 are group strategy-proof. The fol-
lowing theorem shows how the characterization in this paper changes if group strategy-
proofness is added as a requirement.

Theorem 2. The class of voting rules f that are anonymity-proof, group strategy-proof,
and neutral consists exactly of the following rules.

– For two alternatives, the rules that satisfy the conditions are the same as in Theo-
rem 1.

– For three or more alternatives, only the rule that chooses an alternative uniformly
at random satisfies the conditions.

Proof. For two alternatives, under any of the rules from Theorem 1, to increase the
probability of one alternative winning, it is necessary to get some of the voters that
prefer the other alternative to change their votes—but of course they have no incentive
to do so. Hence, these rules are group strategy-proof.

For three or more alternatives, all we need to show is that if kf < 1, then the rule
is not group strategy-proof. (The kf = 1 rule is group strategy-proof because it com-
pletely ignores the votes.) For three alternatives, consider the following profile of pref-
erences: voter one prefers a ' b ' c, with utilities 3, 1, 0, respectively; voter two
prefers c ' b ' a, also with utilities 3, 1, 0, respectively. If both voters vote truthfully,
then there is no agreement on any pair of alternatives, so that the winner will be chosen
uniformly at random, and each voter obtains an expected utility of 4/3. However, if the
voters cast the votes a ' c ' b and c ' a ' b instead, then the probability that b wins
is kf/3, whereas the probability for each of a and c is kf/3 + (1− kf )/2. This results
in an expected utility of 1(kf/3)+3(kf/3+ (1− kf)/2) = 3/2− kf/6 for each voter,
which is strictly more than 4/3 when kf < 1. Hence the rule is not group strategy-
proof. This example is easily extended to more than three alternatives (for example, by
placing the additional alternatives at the bottom of each voter’s preferences).

6 Future Research

Although Theorem 1 completely characterizes anonymity-proof neutral voting rules,
much remains to be done in future research. The most natural next direction to take
is to consider settings where the space of possible preferences is restricted. It is well-
known that such restrictions can introduce very satisfactory strategy-proof rules. For
example, in many settings there is a natural order on the alternatives (e.g., in political
elections, we can order candidates by how far to the left of the political spectrum they
are). In such a setting, a voter’s preferences are said to be single-peaked if she always
prefers alternatives that are closer to her most-preferred alternative to alternatives that
are further away (when these alternatives are on the same side of the most-preferred
alternative) [Black, 1948]. It is well-known that when preferences are single-peaked,
choosing the most preferred alternative of the median voter (the voter that, if we sort
the voters by their most preferred alternatives, ends up in the middle) is strategy-proof,
and (if the number of voters is odd) this alternative will be preferred to any other alterna-
tive by more than half of the voters (i.e., it is the Condorcet winner). Single-peakedness



Anonymity-Proof Voting Rules 305

can only be of limited help for anonymity-proofness: for example, when there are only
two alternatives, single-peakedness does not restrict preferences at all, so we cannot
do anything more than in the general case. Specific application settings can also allow
for more positive results, as has already been shown to be the case for combinator-
ial auctions. In a sense, such settings correspond to a very special way of restricting
preferences. Other directions for future research include dropping the requirement of
neutrality, and extending the result to allow voters to express indifferences.

Finally, if no good anonymity-proof mechanisms turn out to exist for a setting that
we are interested in, then we need to consider other options. One natural solution is
to verify agents’ identities, that is, to check whether multiple preference reports came
from the same agent. It is generally not necessary to verify the identities of all agents;
rather, it suffices to verify those of a select few based on the submitted preference re-
ports [Conitzer, 2007]. Another option is to suppose that each additional identifier used
comes at a small cost to the manipulating agent. Much more positive results can be ob-
tained in that setting [Wagman and Conitzer, 2008].5 In either case, the results in this
paper provide a natural starting point for analysis. A final approach is to try to stop the
problem at the source and make it impossible or impractical for an agent to sign up for
more than one account. It seems difficult to do so without compromising the anonymity
of the Internet, though it is not inconceivable: see Conitzer [2008] for one possible
approach to achieving this using memory tests (which is, for now, far from practical).
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Abstract. In multiagent domains, agents form coalitions to perform tasks. The
usual models of cooperative game theory assume that the desired outcome is ei-
ther the grand coalition or a coalition structure that consists of disjoint coalitions
(i.e., a partition of the set of agents). However, in practice an agent may be in-
volved in executing more than one task, and distributing his resources between
several (not necessarily disjoint) coalitions. To tackle such scenarios, we intro-
duce a model for cooperative games with overlapping coalitions. We then focus
on concepts of stability in this setting. In particular, we define and study a notion
of the core, which is a generalization of the corresponding notion in the tradi-
tional models of cooperative game theory. Under some quite general conditions,
we characterize the elements of core. As a corollary, we also show that any el-
ement of the core maximizes the social welfare. We then introduce a concept of
balancedness for overlapping coalitional games, and use it to characterize coali-
tion structures that can be extended to elements of the core. Furthermore, we gen-
eralize the notion of convexity to our setting, and show that under some natural
assumptions convex games have a non-empty core. To the best of our knowl-
edge, this is the first paper to provide a generic model for overlapping coalition
formation, along with a theoretical treatment of stability in this setting.

1 Introduction

In many settings, groups of agents have to form teams to perform certain tasks. In
the game theory literature, this process is known as coalition formation. Traditionally,
it is assumed that the desired outcome of this process is either the grand coalition,
i.e., the set of all agents, or a coalition structure that consists of disjoint coalitions
(i.e., a partition of the set of agents). Furthermore, most of this research focuses on
transferable utility (TU games) in which there is no restriction on how agents can split
the total payoff among themselves. In particular, agents from one coalition can make a
payment to agents not in that coalition.

While the above assumptions are natural for some settings, there are many scenarios
where they are not applicable. This is mainly for two reasons. First, in several scenarios
it may only be possible to achieve the best outcome if agents can simultaneously be-
long to more than one coalition. In such circumstances, agents almost invariably need to
distribute their resources between the coalitions in which they participate. Such “over-
laps” are natural in a plethora of interesting settings: As a straightforward e-commerce
example, consider online trading agents representing individuals or virtual enterprises,

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 307–321, 2008.
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and facing the challenge of forming coalitions and allocating their owners’ capital to
a variety of projects simultaneously. Such requirements are also common in systems
requiring multirobot coordination, computational grid networks, and sensor networks
(see, e.g., [22,15]). To date, however, there has been essentially no work on overlapping
coalition formation, with just a few exceptions which we discuss in Section 3. In par-
ticular, we are not aware of any attempt to study coalitional stability in such settings.
Second, it may not always be possible to split the value of a coalition with agents that
do not even belong to that coalition, i.e., to allow cross-coalition transfers. Indeed, the
inability of some of the agents to work together and share payoffs may be one of the pri-
mary reasons why the grand coalition does not form, and a particular coalition structure
arises (for a detailed discussion, see the work of Aumann and Dreze [4]).

To address the above concerns, we introduce and study a model that explicitly takes
overlapping coalition formation (OCF) into account. The model is applicable in situa-
tions where agents need to allocate different parts of their resources to simultaneously
serve different tasks as members of different coalitions. Further, our work departs from
the conventional transferable utility framework in several ways. First, there are no in-
herent superadditivity assumptions in our work, and hence the grand coalition does
not always emerge. (Thus, our subsequent definition of the core incorporates coali-
tion structures, unlike most traditional work in economics.) Second, we do not allow
cross-coalitional transfers (this is realistic, since an agent not contributing to a coali-
tion should not expect to receive payoff from it). Thus, though we do allow arbitrary
transfers within coalitions, our games are not, technically speaking, games with fully
transferable utility; rather, they can be considered as games with side-payments [4,19].
Finally, our model can take task (coalitional action) execution explicitly into account;
this facilitates possible extensions to tackle coalition formation under uncertainty.1

We then explore the stability concept of the core for such settings, and provide con-
ditions for its existence. In particular, under some general assumptions, we first provide
a characterization for outcomes, i.e., pairs of the form (overlapping coalition struc-
ture, imputation), to be in the core. Our proof is based on a graph-theoretic argument,
which may be of independent interest. As a corollary of this theorem, we show that any
outcome in the core maximizes the social welfare. Second, we characterize coalition
structures that admit payoff allocations such that the resulting pair is in the core. This
is done by generalizing the Bondareva-Shapley theorem to our setting (note that this
theorem does not hold for arbitrary non-transferable utility games). Following that, we
extend the notion of convexity in coalitional games to overlapping coalitions, and show
that any convex OCF game has a non-empty core. Finally, we provide some natural
extensions of our model, and suggest directions for future work.

2 Background

In this section, we provide a brief overview of the basic concepts in cooperative game
theory regarding non-overlapping coalition structures. Let N = {1, . . . , n} be a set of
players (or “agents”). A subset C ⊆ N is called a coalition. A coalition structure (CS )
(in non-overlapping environments) is a partition of the set of agents.

1 To ease notation, we only show how to incorporate coalitional actions in the model in Sec. 7.
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Under the assumption of transferable utility, coalition formation can be abstracted
into a fairly simple model. This assumption postulates the existence of a (divisible)
commodity (e.g., “money”) that can be freely transferred among players. The role of
the characteristic function of a coalitional game with transferable utility (TU-game) is
to specify a single number denoting the worth of a coalition. Formally, a characteristic
function v : 2N �→ R defines the value v(C) of each coalition C [32]. A transfer-
able utility game is completely specified by the set of players N and the characteristic
function v; we write G = (N, v).

While the characteristic function describes the payoffs available to coalitions, it does
not prescribe a way of distributing these payoffs. This is captured by the notion of an
imputation, defined as follows. We say that an allocation is a vector of payoffs x =
(x1, . . . , xn) assigning some payoff to each j ∈ N . An allocation is efficient with
respect to a coalition structure CS if

∑
j∈S xj = v(S) for all S ∈ CS . An allocation

(x1, . . . , xn) is called an imputation if it is efficient, and satisfies individual rationality,
i.e., xj ≥ v({j}) for j = 1, . . . , n. I(CS ) denotes the set of all imputations for CS .

The non-overlapping core. When rational agents seek to maximize their individual
payoffs, the stability of the underlying coalition structure becomes critical, as agents
might be tempted to abandon agreements in pursuit of further gains for themselves. A
structure is stable only if the outcomes attained by the coalitions and the payoff combi-
nations agreed to by the agents satisfy both individual and group rationality. Given this,
research in coalition formation has developed several notions of stability, among the
strongest and the most well-studied ones being the core [18] Taking coalition structures
into account, the core of a TU game is a set of outcomes (CS ,x), x ∈ I(CS ), such
that no subgroup of agents is motivated to depart from their coalitions in CS .

Definition 1. Let CS be a coalition structure, and let x ∈ Rn be an allocation of
payoffs to the agents. The core of a game (N, v) is the set of all pairs (CS ,x) such that
x ∈ I(CS ) and ∀C ⊆ N it holds that

∑
j∈C xj ≥ v(C).

Hence, no coalition would ever “block” the proposal for a core allocation. Unfortu-
nately, the core is a strong notion, and there exist many games where it is empty.

The core definition above is essentially the definition provided in [24] (and is also
very similar to the one coined in [17]). If we assume superadditivity of the characteristic
function (i.e., v(U ∪T ) ≥ v(U)+ v(T ) for any disjoint coalitions U and T ) then in the
definition above we may only consider outcomes where CS is simply the grand coali-
tion and

∑
j∈N xj = v(N). The core definition then becomes the traditional definition

that has been used in the vast majority of the economics literature (see [20]).
The environments of interest in our work however are primarily non-superadditive

and we will not make any such assumption on the characteristic function. Indeed, there
is a plethora of realistic application scenarios where the emergence of the grand coali-
tion is either not guaranteed, might be perceivably harmful, or is plainly impossible
(see, e.g., [24,23]). In addition to such motivations, Aumann and Dreze [4] also provide
a thorough and insightful discussion on why coalition structures arise: they put forward
a series of arguments on how this might happen, and explain that coalition structures
may emerge naturally even in superadditive environments for a variety of reasons.
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3 Related Work

As mentioned in the introduction, very little work exists on overlapping coalition for-
mation settings. Here we discuss some notable exceptions, as well as some related work
on the core in the context of non-overlapping coalition structures.

To begin, Shehory and Kraus present a setting for overlapping coalition formation
in [28]. In their model, the agents have goals and capabilities, i.e., abilities to execute
certain actions. To serve their goals, the agents have to participate in coalitions, to each
of which they contribute some of their capabilities, which can thus be thought of as re-
sources. The authors then propose heuristic algorithms that lead to the creation of over-
lapping coalition structures. However, the authors stop short of addressing the question
of the stability of overlapping coalitions. Dang et al. [15] also examine heuristic algo-
rithms for overlapping coalition formation to be used in surveillance multi-sensor net-
works. However, their work does not deal with payoff allocation issues, and does not
attack the overlapping coalition formation problem from a game-theoretic perspective.

Conconi and Perroni [13] present a model of international multidimensional policy
coordination in a non-cooperative setting: Agreement structures between countries can
be overlapping, namely a country may participate in multiple agreements, by contribut-
ing any number of proposed “elementary strategies” (which can be regarded as being
chosen from discrete sets of resources) to an agreement. They then introduce an equilib-
rium concept to describe stability in this setting. In contrast to our work, their setting is
non-cooperative, and there is no attempt to globally characterize the set of stable agree-
ments (as we do). While they introduce “negotiation tie-in” restrictions (i.e., require-
ments that the players must form agreements on multiple issues), they only use these
as a tool to describe conditions for the stability of “joint global agreements” (where all
players participate on agreements over all issues). Furthermore, their model can be seen
as dealing with discrete rather than continuous resources (in comparison, we deal with
continuous resources and our results also hold in the discrete case).

More recently, Albizuri et al. [1] presented an extension of Owen’s value [21]
(which, in turn, can be thought of as a generalization of the Shapley value [25]) to
an overlapping coalition formation setting. Specifically, they present an axiomatic char-
acterization of their configuration value. Though they show through an example that the
stability notion of the “large consistent set” [12] (which is a non-overlapping concept)
can be applied to their configuration value, they do not further discuss other solution
concepts. Moreover, in contrast to our approach, there is no restriction on the number
of coalitions an agent might belong to. In particular, in the model of [1] there is no
notion of resources that an agent needs to distribute across the coalitions he belongs to.

Regarding non-overlapping coalition structures as presented in Section 2, Sandholm
and Lesser [24] examine the problem of allocating computational resources to coali-
tions. They do not restrict themselves to superadditive settings, but discuss the stability
of coalition structures instead. In particular, they introduce a notion of bounded rational
core that explicitly takes into account coalition structures. Apt et al. [2,3] also do not
restrain themselves to problems where the outcome is the grand coalition only. Instead,
they introduce various stability notions for abstract games and discuss simple transfor-
mations (e.g., split and merge rules) by which stable partitions of the set of players may
emerge. However, they do not consider any extensions to overlapping coalitions.
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4 Our Model

In this section we extend the traditional model of Section 2 to cooperative games with
overlapping coalitions. In most scenarios of interest, even if overlapping coalitions are
allowed, an agent would not be able to participate in all possible coalitions due to lack of
time, cash flow, or energy. To model this, we assume that each agent possesses a certain
amount of resources which he can distribute among the coalitions he joins. Without
loss of generality, we can make a normalization and assume that each agent has one
unit of resource: an agent’s contribution to a coalition is thus given by the fraction of
his resources that he allocates to it. We can also think of this as the agent’s “participation
level”, or the fraction of time he devotes to a coalition. Of course, an agent may own
several types of resources (e.g., time and money), and his contribution to a coalition
would then be described by a vector rather than a scalar. Our model, and all of our
results, extend to this more general setting in a straightforward manner. Nevertheless,
for conciseness, we restrict our presentation to the single-resource setting.

As discussed above, in the non-overlapping model a coalition is a subset of agents,
and a game is defined by its characteristic function v : 2N �→ R, representing the
maximum total payoff that a coalition can get. In our setting, an overlapping (or partial)
coalition is given by a vector r = (r1, . . . , rn), where rj is the fraction of agent j’s
resources contributed to this coalition (rj = 0 means that j is not a member of the
coalition). The support of a partial coalition r is denoted by supp(r) and is defined as
supp(r) = {j ∈ N | rj �= 0}. We can now define the games we will be considering in
the rest of this work.

Definition 2. An OCF-game G with player set N = {1, . . . , n} is given by a function
v : [0, 1]n → R, where v(0n) = 0.

Function v maps each partial coalition r to the corresponding payoff. We denote this
game byG = (N, v), or, ifN is clear from the context, simply by v. Clearly, a “classic”
coalition S can now be represented as the vector eS , where (eS)j = 1 for j ∈ S and
0 otherwise. In the economics literature, these are sometimes called crisp coalitions,
whereas coalitions of the form (r1, . . . , rn) with at least one rj in (0, 1) are referred
to as fuzzy2 coalitions [7]. We will avoid this term in this work as in computer science
the term “fuzzy” refers to other concepts. We instead refer to coalitions of this kind as
partial coalitions, or simply coalitions.

In most scenarios of interest, v is monotone, i.e., satisfies v(r) ≥ v(r′) for any r, r′

such that rj ≥ r′j for all j = 1, . . . , n. Note that if v is monotone, we have v(r) ≥ 0
for any r ∈ [0, 1]n, since we set v(0, . . . , 0) = 0. In what follows, we will explicitly
indicate which of our results rely on the monotonicity of v.

We now need to specify what the outcomes of an OCF-game are. In the non-
overlapping setting, an outcome is a pair (CS ,x), where CS is a partition onN and x is
an imputation for CS . To extend this definition to our scenario, we start by introducing
the notion of a coalition structure with overlapping coalitions:

Definition 3. For a set of agents T ⊆ N , a coalition structure on T is a finite list
of vectors (partial coalitions) CST = (r1, ..., rk) that satisfies (i) ri ∈ [0, 1]n; (ii)

2 At the end of this section we discuss how our work differs from existing work on fuzzy games.
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supp(ri) ⊆ T for all i = 1, . . . , k; and (iii)
∑k

i=1 r
i
j ≤ 1 for all j ∈ T . We will refer to

k as the size of the coalition structure CST and write |CST | = k. Also, CST denotes
the set of all coalition structures on T .

In the definition above, each ri = (ri1, r
i
2, . . . , r

i
n) corresponds to some partial coalition

(rij being the fraction of the resources that agent j contributes to ri). The constraints
state that every agent from T distributes at most one unit of his resources between the
various coalitions he participates in (those may include the singleton coalition). This
allows coalitions to be overlapping. Note that the coalition structure is a list rather
than a set, i.e., it can contain two or more identical partial coalitions. Observe also
that an agent is not required to allocate all of his resources, i.e., it can be the case that∑

i=1,...,k r
i
j < 1. However, under monotonicity, we can assume that for each agent j

we have
∑k

i=1 r
i
j = 1 (i.e., a coalition structure is a fractional partition of the agents).

We should note here that the introduction of overlapping coalition structures imposes
some new technical challenges. While in the non-overlapping setting the number of dif-
ferent coalition structures is finite, in our setting there can be infinitely many different
partial coalitions, and hence infinitely many coalition structures. In particular, this im-
plies that it is impossible to find the social welfare-maximizing coalition structure by
enumerating all candidate solutions (in fact the maximum may not even be attained). In
contrast, in a non-OCF setting this approach is possible—though, in general, infeasible.

We now extend the definition of v to coalition structures by setting v(CS ) =∑
r∈CS v(r). Furthermore, for any S ⊆ N we define v∗(S) = supCS∈CSS

v(CS ).
Intuitively, v∗(S) is the least upper bound on the value that the members of S can
achieve by forming a coalition structure. We say that v is bounded if v∗(N) < ∞; for
most games of interest, v is likely to be bounded.

As in our setting the agents will not necessarily form the grand coalition, we will
be interested in arguing about coalition structures from CSN . The coalition structure
will impose restrictions on admissible ways of distributing the gains: a payoff vector
corresponds to an imputation iff it is obtained by distributing the value of each coalition:

Definition 4. Given a coalition structure CS ∈ CSN , |CS | = k, an imputation for CS
is a k-tuple x = (x1, ...,xk), where xi ∈ Rn for i = 1, . . . , k, such that

– (Payoff Distribution) for every partial coalition ri ∈ CS we have
∑n

j=1 x
i
j =

v(ri) and rij = 0 implies xi
j = 0;

– (Individual Rationality) the total payoff of agent j is at least as big as what he can
achieve on his own:

∑k
i=1 x

i
j ≥ v∗({j}).

The set of all imputations for CS is denoted by I(CS ). Notice that in Definition 4,
the profit from a task assigned to a partial coalition is only distributed among agents
involved in executing it. Thus, no transfers of that payoff are allowed to outsiders. Now,
the set of outcomes that is of interest to us is the set of feasible agreements:

Definition 5. A feasible agreement (or an outcome) for a set of agents J ⊆ N is a tuple
(CS ,x) where CS ∈ CSJ , |CS | = k for some k ∈ N, and x = (x1, . . . ,xk) ∈ I(CS ).
We denote the set of all feasible agreements for J by F(J).

The payoff pj of an agent j under a feasible agreement (CS ,x) is pj(CS ,x) =∑k
i=1 x

i
j . We write p(CS ,x) to denote the vector (p1(CS ,x), . . . , pn(CS ,x)).
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Definition of the core. As explained in Section 2, no group of agents should be able
to profitably deviate from a configuration in the core. Hence, any definition of the core
has to depend on the notion of permissible deviations used. In this section we consider
a fairly straightforward such notion.

In the non-overlapping setting with coalition structures, a pair (coalition structure,
imputation) is in the core if no set of agents can jointly profit by deviating and forming
a coalition on their own (Def. 1). Similarly, in the overlapping coalitions scenario, a
deviating group of agents S may also want to break its obligations to other agents,
i.e., withdraw or reduce its contribution to coalitions that contain agents in N \ S. As
the deviators do not take into account the interests of other agents, they cannot expect
to receive payoffs from the coalitions that contain non-deviating agents and therefore
might have been hurt by the deviation. We formalize this approach as follows.

Definition 6 (The overlapping core). A tuple (CS ,x) is in the core of an OCF-game
G = (N, v) (we write (CS ,x) ∈ core(G)), if for any set of agents J ⊆ N , any
coalition structure CSJ on J , and any imputation y ∈ I(CS J), we have pj(CSJ ,y) ≤
pj(CS ,x) for some agent j ∈ J .

It is easy to see that when restricted to non-overlapping coalitions, this definition col-
lapses to the traditional definition of the core.

Finally, we point out here the differences between our concept of the core and the
Aubin core [7], which is the main solution concept in fuzzy games. An outcome in the
core of an OCF game is not necessarily the grand coalition, but it can be an (over-
lapping) coalition structure. In contrast, in the Aubin core, the imputations and core
elements are always the grand coalition along with a split of the payoff v(N). Further-
more, in our definition a core outcome needs to be stable against any deviation of a set
S to a (possibly overlapping) coalition structure. In the Aubin core, an outcome need
only be stable against a deviation to a partial (“fuzzy”) coalition, but not necessarily
against deviations to a coalition structure. In short, the formation of coalition structures
(overlapping or not) is not addressed in the fuzzy games literature.

5 Core Characterization

In the previous section, we introduced a definition of the core for overlapping coalition
formation games. We now proceed to provide a characterization of the set of outcomes
in the core: essentially, an outcome is in the core if and only if under this outcome the
total payments to each subset of agents match the maximum value that can be achieved
by this subset. Our proof relies on several technical restrictions on the function v that
defines the game. In particular, we require v to be continuous, monotone and bounded
(observe that if a game is monotone and bounded, then v∗(S) <∞ for any S ⊆ N ), as
well as to satisfy another natural restriction defined later. These assumptions allow us
to avoid some pathological situations that may arise in our model at its generality, such
as the supremum v∗(N) being unachievable (e.g., if v is strictly concave in one of its
arguments, it can be the case that no finite coalition structure can achieve v∗(N)).

Specifically, we say that a game (N, v) is U -finite if for any (CS ,x) such that
|CS | > U and x ∈ I(CS ), there exists a (CS ′,y) such that |CS ′| ≤ U , y ∈ I(CS ′),
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and pj(CS ,x) ≤ pj(CS ′,y) for all j = 1, . . . , n (i.e., for any outcome (CS ,x) with
more than U coalitions there exists another outcome (CS ′,y) with at most U coali-
tions that is weakly prefered to (CS ,x) by all agents). When this condition holds, we
can assume that all coalition structures that arise in a game consist of at most U par-
tial coalitions. This is a natural restriction in many practical scenarios, as it might be
difficult for agents to maintain a very complicated collaboration pattern. It holds when,
e.g., there is a bound on the number of partial coalitions each agent can be involved
in. Another natural example is provided by a class of games where for any two partial
coalitions r, r′ such that supp(r) = supp(r′) and rj +r′j ≤ 1 for any j = 1, . . . , n, we
have v(r + r′) ≥ v(r) + v(r′). Note that in such games we can assume that no coali-
tion structure contains two partial coalitions with the same support S, as it is at least as
profitable for the players in S to merge these partial coalitions. (However, notice that
this does not imply superadditivity, nor does it mean that the grand coalition necessarily
emerges, as the criterion above refers only to coalitions with identical support.) Hence,
any such game is 2n-finite.

Remark 1. Note that in all of our results U can also be a function of n (as long as
U(n) < ∞). Alternatively, instead of imposing the condition of U -finiteness on v(·),
we could restrict the set of allowed outcomes (or potential deviations) to coalition struc-
tures with at most U partial coalitions. All of our results hold under this model as well.

We now state and prove the first of our main results.

Theorem 1. Given a game (N, v), where v is monotone, continuous, bounded, and
U -finite for some U ∈ N, an outcome (CS ,x) is in the core of (N, v) iff for all S ⊆ N∑

j∈S

pj(CS ,x) ≥ v∗(S). (1)

Proof: For the “if” direction, suppose that (CS ,x) satisfies
∑

j∈S pj(CS ,x) ≥ v∗(S)
for all S ⊆ N . Assume for the sake of contradiction that (CS ,x) is not in the core,
i.e., there exists a set S, a coalition structure CSS ∈ CSS and an imputation y ∈
I(CSS) such that pj(CSS ,y) > pj(CS ,x) for all j ∈ S. Then we have v(CSS) =∑

j∈S pj(CSS ,y) >
∑

j∈S pj(CS ,x) = v∗(S), a contradiction with the way v∗(S)
was defined.

For the “only if” direction, consider an outcome (CS ,x) that does not satisfy (1);
we will show that (CS ,x) is not in the core. To begin, set p = p(CS ,x), and assume∑

j∈S pj < v∗(S) for some S ⊆ N . To show that (CS ,x) is not in the core, we will
construct a set S′, a coalition structure CSS′ ∈ CSS′ and an imputation y ∈ I(CSS′)
such that pj(CSS′ ,y) > pj for all j ∈ S′. Fix a set S that satisfies

∑
j∈S pj <

v∗(S). Choose ε small enough so that
∑

j∈S pj < v
∗(S)− ε, and let CSε

S = {CSS ∈
CSS | v(CSS) ≥ v∗(S) − ε}. By definition of v∗(S), there is an infinite sequence of
coalition structures CS (t) that satisfies limt→∞ v(CS (t)) = v∗(S), so the set CSε

S is
non-empty. Given a coalition structure CSS ∈ CSS , an imputation y ∈ I(CSS) and a
respective payoff vector q = p(CSS ,y), define the total loss TL(CSS , q) of (CSS , q)
as
∑

j:pj>qj
(pj−qj). Set TLmin = inf{TL(CSS , q) | CSS ∈ CSε

S ,y ∈ I(CSS), q =
p(CSS ,y)}. First, we prove that there exists a coalition structure CS ∈ CSε

S and an
imputation y ∈ I(CSS) that achieve the total loss of TLmin (the proof is omitted).
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Lemma 1. Under the theorem’s conditions, there exists a CSS ∈ CSε
S , an imputation

y ∈ I(CSS) and a payoff vector q = p(CSS ,y) s.t. TL(CSS , q) = TLmin.

Let (CSS ,y) be an outcome that satisfies v(CSS) ≥ v∗(S)−ε, TL(CSS ,p(CSS ,y))
= TLmin, whose existence is guaranteed by Lemma 1. Set q = p(CSS ,y). Let us
now construct a directed graph Γ whose vertices are the agents and there is an edge
from j to i if there exists a coalition in CSS containing both j and i such that under y,
agent j gets a non-zero payoff from that coalition, i.e., for some rk ∈ CSS we have
rkj , r

k
i > 0 and yk

j > 0. Observe that if there is an edge (j, i) in Γ , we can change yk by
increasing the payoff to i by a small enough δ and decreasing the payoff to j by the same
value of δ without violating the constraints, i.e., we have z = (z1, . . . , zt) ∈ I(CSS),
where zl = yl for l �= k and zk = (yk

1 , . . . , y
k
j − δ, . . . , yk

i + δ, . . . , yk
n). Now, color

all vertices of Γ as follows: a vertex j is red if the agent j is underpaid under y, i.e.,
qj < pj , white if j is indifferent, i.e., qj = pj , and green if he is overpaid, i.e., qj > pj .
As
∑

j∈S pj < v∗(S) − ε and
∑

j∈S qj = v(CSS) ≥ v∗(S) − ε, the graph contains
at least one green vertex. As argued above, if there is a path from a green vertex j to a
red vertex i, we can transfer a small amount of payoff from j to i and hence decrease
the total loss, which is a contradiction with our choice of (CSS ,y). Hence, given an
arbitrary green vertex j, the set of all vertices reachable from j in the graph, which we
denote by R(j), can only contain green or white vertices.

We would now like to argue that the agents in R(j) can successfully deviate from
(CS ,x). Indeed, let CS ′ be the coalition structure that consists of the coalitions that
the agents in R(j) form among themselves in CSS . Clearly, the value of CS ′ is equal
to the total value of the coalitions formed by these agents in CSS . Note also that under
(CSS ,y), the agents in R(j) do not get any payoffs from coalitions that involve agents
not in R(j). Indeed, suppose that an i ∈ R(j) gets a non-zero payoff from a coalition
that involves an agent k �∈ R(j). Then in Γ there is an edge from i to k, a contradiction
with how R(j) was constructed. In other words, in CSS , the payoffs that the agents
in R(j) get come only from the coalitions that they form among themselves, and yet
these agents are all green or white, i.e., each of them is doing no worse than what he
was doing under CS , and some of them (in particular, agent j) are doing strictly better.
To finish the proof, let the agents in R(j) distribute the payoffs in the same way as in
(CSS ,y), except that player j transfers a small fraction of his payoffs to each of the
white players in R(j) (this is possible by construction). The last step ensures that each
agent in R(j) is strictly better off than in (CS ,x). This demonstrates that (CS ,x) is
not in the core, as required. �

Remark 2. Note that we did not have to make use of the additional restrictions we
imposed on v to prove the “if” direction of the theorem (these are used in the proof of
Lemma 1). Hence, this implication holds for an arbitraryG.

It is easily verifiable that Theorem 1 holds in the non-overlapping case with coalition
structures as well. The result is trivial to prove in that setting, as each agent’s payoffs
come from just one coalition; in contrast, we had to use more involved combinatorial
arguments for transferring payoffs among agents. We also get the following interesting
result as a corollary:
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Corollary 1. By setting S = N in the statement of Theorem 1, we conclude that any
outcome in the core maximizes the social welfare.

Characterizing the Core Coalition Structures. In Theorem 1, we saw a necessary
and sufficient condition for a tuple (CS ,x) to belong to the core. Now, suppose that
we are only given a structure CS = (r1, . . . , rk) and we want to check whether there
exists some payoff allocation x such that (CS ,x) belongs to the core. Below we char-
acterize the set of coalition structures CS that admit payoff allocations x such that the
corresponding tuple (CS ,x) belongs to the core. Our characterization can be seen as
a generalization of the notion of balancedness in the context of overlapping coalition
formation. In the classic setting, the analogous question is “when does the grand coali-
tion admit a payoff allocation in the core”, answered by Bondareva and Shapley [6,26].
Before we proceed to our result, we define balancedness w.r.t. to a coalition structure:

Definition 7. Fix a coalition structure CS = (r1, . . . , rk), k ∈ N, and let K =
{1, ..., k}. A collection of numbers {λS}S⊆N , {µi}i∈K is called balanced w.r.t. the
given coalition structure CS , if and only if λS ≥ 0 for all S, and

∑
S:j∈S λS + µi =

1 for all i ∈ K, j ∈ supp(ri).

Definition 8. A game is called balanced w.r.t. a coalition structure CS = (r1, ..., rk)
if and only if for every collection {λS}S⊆N , {µi}i∈K , which is balanced w.r.t. CS , it
holds

∑
S λSv

∗(S) +
∑k

i=1 µiv(ri) ≤ v∗(N).

The proof of the following theorem (omitted due to space constraints) is based on LP-
Duality, and relies on the characterization result of Theorem 1; furthermore, the proof
illustrates that the condition of balancedness introduced above arises rather naturally.

Theorem 2. Let (N, v) be an OCF-game, where v is monotone, continuous, bounded,
and U -finite for some U ∈ N and consider a coalition structure CS = (r1, ..., rk), for
some k ∈ N. There exists an imputation x such that (CS ,x) belongs to the core if and
only if the game is balanced w.r.t. CS .

Remark 3. In the traditional superadditive setting, the condition of balancedness is a bit
simpler and more intuitive. In our setting, the characterization leads to a slightly more
complicated expression, essentially due to the fact that the linear program that describes
core allocations for each coalition structure requires a larger set of constraints.

6 Convex OCF Games Have a Non-empty Core

In this section, we first generalize the notion of convexity to OCF-games and then pro-
ceed to show that it provides a sufficient condition for the non-emptiness of the core.

Recall that for classical TU-games convexity means that for R ⊆ N and S ⊂ T ⊆
N \R it holds that v(S ∪R)− v(S) ≤ v(T ∪R)− v(T ). Thus, convexity in the classic
TU-games setting means that it is more useful for a coalitionR to join a larger coalition
than a smaller one. We now apply this intuition to our setting:
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Definition 9. An OCF-game G = (N, v) is convex if for each R ⊆ N and S ⊂ T ⊆
N \ R the following condition holds: for any (CSS ,xS) ∈ F(S), any (CST ,xT ) ∈
F(T ), and any (CSS∪R,xS∪R) ∈ F(S ∪ R) that satisfies pj(CSS∪R,xS∪R) ≥
pj(CSS ,xS) ∀j ∈ S, there exists an outcome (CST∪R,xT∪R) ∈ F(T ∪R) s.t.

pj(CST∪R,xT∪R) ≥ pj(CST ,xT ) ∀j ∈ T , and

pj(CST∪R,xT∪R) ≥ pj(CSS∪R,xS∪R) ∀j ∈ R.

This definition is similar in flavour to that in [29], where a generalization of convexity is
defined in the context of stochastic cooperative games. The intuition behind this defini-
tion is as follows: Consider two fixed agreements, one on S and one on T respectively.
Any time that there is a feasible agreement on S∪R that the members of S do not object
to compared to their own agreement (i.e., all members of S are weakly better off than in
their previous agreement), then there is a feasible agreement on T ∪R such that (i) the
members of T do not object to this agreement, compared to the previous agreement on
T and (ii) the members of R weakly prefer this agreement to the agreement on S ∪R.

We now show that convexity is a sufficient condition for the non-emptiness of the
core in analogy to the classic result on convex TU-games [27]. Here we only give an
outline of the proof.

Theorem 3. If an OCF-game G = (N, v) is convex and v is continuous, bounded,
monotone and U -finite for some U ∈ N, then the core of this game is not empty.

Proof Sketch: To prove the theorem, we explicitly construct an outcome (CS ,x),
and show that it belongs to the core. The construction proceeds in rounds. First let p1
be the maximum payoff that agent 1 can achieve on his own. In round 2, we choose an
agreement (CS2, x2) on {1, 2} that maximizes agent 2’s payoff subject to the constraint
that agent 1 receives at least p1. Then in round 3 we pick an agreement (CS3, x3) that
maximizes the payoff of agent 3 subject to the constraint that the other 2 agents are not
worse off compared to the previous round. We continue in this manner till we reach an
agreement (CSn, xn) in round n. We then prove that (CSn, xn) is in the core by using
induction and exploiting the game’s convexity property. �

In the traditional setting, if a game is represented using oracle access for v(S), there is
a trivial algorithm for computing an element of the core in convex games. Indeed, one
can set the payoff vector to be the vector of the marginal contributions of the agents
for an arbitrary permutation of the set of agents. In our setting, our proof does yield a
procedure for constructing an element of the core, however not a polynomial time one.
Our procedure requires solving a series of optimization questions, which for arbitrary
convex games are NP-hard. In the future, we would like to find classes of convex games
where our proof yields a polynomial time algorithm. In particular, looking at our proof,
this would be true for games in which we can solve in polynomial time the following
problem: Given a set of agents S ⊆ N , a feasible agreement on S, (CS ,x), and an
agent k �∈ S, find a feasible agreement (CS ′,y) on S ∪ {k} that maximizes pk(CS ,y)
subject to the constraints: pj(CS ′,y) ≥ pj(CS ,x).
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7 Conclusions, Extensions, and Future Work

In this paper we introduced a model of cooperative games that allows for overlapping
coalitions and takes into account the need for resource allocation. In doing so, we gen-
eralize the usual models where either the grand coalition is the only desirable outcome
or the outcomes are required to be partitions of the set of agents. Given our model, we
defined and studied a notion of the core which is a generalization of the core in the tra-
ditional models of cooperative game theory. Under some quite general conditions, we
provided a characterization for an outcome—that is, a (coalition structure, imputation)
pair—to belong to the core. We also showed that any outcome in the core maximizes
the social welfare. Further, we introduced balancedness for OCF games, defined bal-
anced OCF games, and showed that a coalition structure CS admits an imputation x
so that (CS ,x) is in the core if and only if the game is balanced. Finally, we extended
the notion of convexity to our setting and showed that convex games have a non-empty
core. This is one of the very first attempts to provide a theoretical treatment of overlap-
ping coalition formation, and, to the best of our knowledge, the first to present a generic
model for overlapping coalition formation and study stability in a thorough manner.

Extensions. In order to not overload notation, we avoided modeling coalitional actions
in our presentation so far. However, in realistic environments coalitions are formed to
execute tasks, which can be represented as coalitional actions. This is easily incorpo-
rated in our model, as follows: A coalition is allowed to select an action from a (usually
finite) action space A. Without loss of generality, we assume that each coalition can
undertake any action in A.3 The value of a coalition is then determined by the resource
contribution levels of its members and the action selected. Therefore, the characteris-
tic function in our setting is then defined on (r, a) pairs, where r = (r1, . . . , rn) is a
vector of resources, and a ∈ A is an action. All of our definitions and results gener-
alize readily to the situation where each coalition has a choice of actions (simply put,
our presentation so far corresponds to a situation where each coalition had exactly one
action available to it).

Another extension we have examined has to do with modeling the available re-
sources. For ease of presentation it was assumed throughout the paper that there ex-
ists only one type of (continuous) resource. Nevertheless, all of our results still hold
if we assume multiple types of resources. Moreover, we have also studied a “discrete”
OCF setting, with agent resources taking values in a finite set (i.e., an agent cannot con-
tribute an arbitrary percentage of his resources to a coalition). With discrete resources,
the number of possible coalition structures is now finite (as a coalition in our setting
is a collection of resources—see Section 4). All of our definitions and theorems carry
through in this setting with minor differences in the arguments used in the proofs.

Finally, we have also investigated alternative notions of deviations and concepts of
the core. Specifically, we have so far assumed that deviators cannot rely on getting
any payoffs from their coalitions with non-deviators: in this sense, the deviators can be
seen as “self-reliant”, and their form of deviation as “malicious” (since when deviating
they pay no consideration to the harm inflicted on their partners). However, one can

3 The situation where this is not the case can be modeled by setting the value of the respective
(coalition, action) pair to 0.
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consider a more “benign” form of deviation, where deviating teams do not break their
obligations to non-deviators (possibly due to restrictions imposed by the multiagent
system architecture), but instead have to rearrange resources already used in coalitions
with other deviating agents. In this case, it is natural to assume that the deviating agents
get to keep their share of the profit from the coalitions with non-deviators. For lack of
space, we refer further discussion of these issues to an extended version of this paper.

Future work. There exist many exciting open questions for future work. In particu-
lar, it would be interesting to investigate the alternative notion of stability proposed
above. We also plan to study the computational complexity of the core. Even in su-
peradditive settings (where the coalition structure is simply the grand coalition N ),
computing an allocation in the core or checking if the core is non-empty are NP-hard
problems [11,31,16,14]. In the absence of superadditivity, there are even stronger lower
bounds on the complexity of the problem [23]. Hence we can only hope to identify
special classes of games where we can have efficient algorithms for computing core
allocations. As noted earlier, an element of the core in convex games can be computed
in the traditional setting simply by taking the vector of the marginal contributions of
the agents for an arbitrary permutation of the set of agents. In our setting, even though
our proof yields a procedure for constructing an element of the core, it requires solv-
ing a series of optimization questions, which for arbitrary convex games are NP-hard. It
would be desirable to find classes of convex games where our proof yields a polynomial
time algorithm.

We are also interested in finding processes that lead to the core in not necessarily con-
vex games; though randomized algorithms such as the ones presented in [17] and [9]
could trivially extend to the overlapping setting, they would be of little practical value
here due to the huge space of potential overlapping configurations. Therefore, we are
interested in finding ways to exploit known game structure to prune the search space
for potential stable configurations. Another subject of future research is extending our
model to allow for infinite coalition structures. Furthermore, it would be definitely in-
teresting to establish links between outcomes in the core and outcomes of bargaining
equilibria in overlapping coalitional bargaining games.

Finally, the incorporation of actions in our model allows for the investigation of ac-
tion stochasticity and, more generally, uncertainty in an OCF setting. For instance, a
coalitional action can be associated with a distribution over possible payoff outcomes
resulting from its execution. This poses challenges to study such models from both
a theoretical and a practical standpoint, since the introduction of uncertainty leads
to several intricacies not readily resolved by the use of “deterministic” concepts and
models, as the work of Suijs et al. [29,30], Blankenburg et al. [5], and Chalkiadakis
et al. [8,9,10] demonstrates. On a related note, enriching our model description so as to
capture type uncertainty [8,9,10] would allow for the ready translation of uncertainty
regarding the types (capabilities) of players to coalitional value uncertainty, while also
capturing the potential stochasticity of actions’ outcomes.
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Abstract. This paper presents an evolutionary bargaining model be-
tween two groups of buyers and sellers. One buyer and one seller are
randomly matched to play the Nash demand game: they choose a best
reply based on information about past bargains coming from other mem-
bers of their group. Information arrival is modeled as a Poisson process,
and the rates of these processes form a weighted communication network.
Over the long run, the stochastically stable division is the asymmetric
Nash bargaining solution (ANB) with weights determined by the struc-
ture of the communication network in each group. The optimal networks
for a group are (quasi)-regular networks without weak links.
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1 Introduction

Anybody who has ever traveled to a developing country has witnessed that
bargaining among members of different groups is very much the norm in everyday
life. In a variety of contexts, ranging from the marketplace to renting a form of
transportation, there are members of a group of sellers constantly negotiating
with members of several groups of buyers, e.g. the tourist and local populations.
While less predominant, bargaining in developed countries is also common in,
for instance, transactions involving illegal activities (e.g. prostitution, drugs) and
wholesale markets.1

Classical bargaining theory provides only a partial model for bargaining in this
context. The seminal contributions by Nash ([2]) and Rubinstein ([3]) consider
a game with two players, and the outcome is fully determined by the character-
istics of these two agents. Specifically, in these and most subsequent models the
outcome is determined by the functional form of each player’s utility. If these
models were naively applied to, say, predict the outcomes of the thousands of ne-
gotiations happening on a typical day in the marketplace then the models would
predict a staggering multiplicity of outcomes, corresponding to the thousands of
possible combinations of utility pairs.

1 See the extended version of this paper ([1]) for references to empirical work on pricing
in illegal and wholesale markets.
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On the other hand, empirical and anecdotal evidence points to a remarkable
level of convergence. Sellers bargaining on the price of the same product in in-
dependent pairwise interactions with different buyers will end up charging the
same price or a limited set of prices even though there is no centralized coordina-
tion device. Over time norms on the price to charge get established and everyone
follows them. This does not mean that only one price will be observed: the norm
might be to charge multiple prices depending on which customer segment, e.g.
tourist or local, a buyer belongs to. What is important to note is that these
norms are at the group level, and therefore their exact form will depend on some
properties of these groups, not just of their individual members.

Moreover, in the contexts studied in this paper the individual agents have
limited knowledge of the process they are embedded in. Classical bargaining
theory assumes players have common knowledge of the utility functions, or of
the distribution of utility functions, and they know the structure of the game
they are playing. On the other hand, in the typical transaction in a marketplace
the buyer will have little or no knowledge of the seller, let alone having any clue
of the functional form of his utility. As Young ([4]) argues, in these situations
bargainers’ expectations are not shaped by some sophisticated reasoning on the
nature of the game and the strategy of the other player, but, more simply,
by previous market transactions they have heard about as they wander in the
marketplace.

This paper presents an evolutionary bargaining model where agents base their
decisions on information about previous plays which circulates within the group
they belong to. The group structure determines the information each agent in
the group has access to, this in turn determines the agent’s play, and, in the
long-term, the establishment of a norm of play that each member of the group
follows.

The first result in theorem 1 shows that the process without “mistakes” always
converges to a convention independently from the initial state, as long as the
network is not complete or close to complete. A convention means that each
buyer always makes the same demand x and each seller always makes the same
demand 1 − x. The condition on the network structure guarantees that the
information available to each player on the history of demands is sufficiently
incomplete to avoid the whole process getting stuck in a cycle.

The second result in theorem 3 shows that the process with “mistakes” con-
verges to a unique stable division which maximizes the asymmetric Nash bar-
gaining solution (ANB) with weights that depend on the network structure.
Specifically, the weights are determined by the player in each group with the
least number and/or weakest communication links. A consequence of this result
is that the optimal architectures for a group are communication networks where
all the players are connected by strong links and have very similar number of
connections.

Due to space constraints all the proofs of the above results are omitted in
this paper, the interested reader is invited to consult th extended version of this
paper ([1]). The extended version contains several further results derived from
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the model presented here. First, it shows how changes in the network structure
affect the shares a group obtains in the stable division. Second, it discusses the
implications of the results for the observed pricing patterns in specific wholesale
and illegal markets. Third, it explores how the predictions of the model change
if the two groups belong to the same communication network, allowing in this
way communication between buyers and sellers.

The main contribution of this paper is to investigate how the internal commu-
nication structure of a group determines the outcome of a bargaining process.
This has implications for the optimal communication structure for a group. More-
over, further analysis of this model carried out in [1] studies the effects of changes
in the communication structure on the solution. The predictions in [1] open up
the possibility of empirical testing to verify whether network structure plays a
significant role in determining the outcome of bargaining processes.

Finally, an overview of the related literature. In the bargaining literature,
the most closely related model is by Young ([4]). In the economics of network
literature there are a few papers which investigate how the structural position
of one agent in a network affects her bargaining power, and here I will discuss
one of the main contributions by Calvó-Armengol ([5]).

Young ([4]) builds an evolutionary bargaining model where individuals from
two populations of bargainers are randomly matched to play the Nash demand
game: they make demands by choosing best replies based on an incomplete
knowledge of precedents. The model in this paper adopts the same bargaining
procedure and the same assumptions on the agents’ knowledge and rationality.
However, the main substantial difference is that [4] exogenously imposes agents’
sample size of past information and does not model the process by which agents
receive the information to play the game. Thus, the system in [4] is simpler to
analyze, but the predictions of the model do not depend on the internal com-
munication structure of a group and his model does not allow the comparative
statics analysis carried out in [1].

Calvó-Armengol ([5]) studies the noncooperative bargaining game by Rubin-
stein ([3]) for the case of n players connected by a graph which constrains the
feasible bargaining pairs. He shows that there is a unique stationary subgame
perfect equilibrium. When the population is homogeneous in time preferences,
ex-post payoffs do not depend on the network structure. However, the commu-
nication structure is important for expected payoffs, and, after removing cost to
delay through disagreement, he derives the players’ bargaining power as a func-
tion of their relative positions in the network. The focus of our paper is different.
Calvó-Armengol ([5]) investigates how the position of one agent in a network
affects her individual payoffs, while the aim of this paper is to understand how
the overall structural properties of the network influence the establishment of a
norm for the whole group.

The rest of the paper is organized as follows. Section 2 presents the model.
Section 3 shows that the process converges to a convention. Section 4 derives
the bargaining solution. Section 5 derives the optimal network structure for a
group. Section 6 concludes and presents further results in [1].



A Network-Based Asymmetric Nash Bargaining Solution 325

2 The Model

This section presents the main elements of the model: the adaptive play bar-
gaining process, the network concepts and terminology used, and the Markov
process which describes the evolution of the system.

Adaptive play bargaining process. Consider two finite, non-empty groups
of individuals B = {1, ..., nB} and S = {1, ..., nS}: the buyers and sellers. The
two groups are separate, i.e. B ∩ S = ∅. In each period t one buyer and one
seller drawn at random meet to divide a pie of size normalized to one. They play
the Nash demand game: b demands a fraction xt and s demands a fraction yt,
if xt + yt ≤ 1 then b and s get their demands, otherwise they get nothing. For
mathematical convenience, assume that the set of possible divisions is discrete
and finite. Let δ = 10−p (p ∈ Z+) be the precision of the demands, and assume
xt, yt ∈ D, where D is the set of all p-place decimal fractions that are feasible
demands. The sequence h = {(x1, y1), ..., (xt, yt)} is the complete global history
up to and including period t. Each agent remembers the last m rounds of the
bargaining game that she has played, where m stands for the memory of the
player.

Agents receive information to play the game as follows. Suppose player b ∈ B
is picked to play the game at t + 1: in the ∆t = 1 time period she receives
information from some of the other buyers in B about past bargaining rounds.
Information arrival is modeled as a Poisson process. Specifically, in the ∆t = 1
time interval, the probability P (sbj(∆t = 1) = k) that b receives a sample
sbj(∆t = 1) of k past bargains from player j is equal to:

P (sbj(∆t = 1) = k) =
e−gbjgk

bj

k!
(1)

where the rate gbj of arrival of information can be interpreted as how often b
receives information from j. By standard properties of Poisson processes, the
probability that b receives a sample sb(∆t = 1) of k past bargains is equal to:

P (sb(∆t = 1) = k) =
∑
j∈B

P (sbj(∆t = 1) = k) =
e−gbgk

b

k!
(2)

where gb =
∑

j∈B gbj , and the size of the sample k is the amount of information
that b has prior to playing the bargaining game. Clearly, the expected amount
of information that b has is equal to gb.

Agents are boundedly rational as they are not aware of the game they are
embedded in and they base their decision exclusively on the information they
receive. Specifically, agents do not have prior knowledge or beliefs about the
utility function of the other side, and they do not know the distribution of
utility functions in the general population. Agent b chooses an optimal reply to
the cumulative probability distribution G(y) of the demands yj made by sellers
in his sample, where G(y) = h

sb(t)
if and only if there are exactly h demands yl

in the sample sb(t) such that yl ≤ y, ∀y ∈ D.
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Agent b has a concave and strictly increasing von Neumann-Morgenstern util-
ity function u(x). Assume that u(x) is defined for all x ∈ [0, 1] and that it
is normalized so that u(0) = 0. Buyer b’s expected payoff is then equal to
Eu(x) ≡ u(x)G(1 − x). Thus, b chooses xt+1 so as to maximize Eu(x), and
if there are several values of x to choose from then each one of them is chosen
with positive probability.

The set-up for seller s is analogous, and the utility function of the sellers will
be denoted by v(y).

Networks. A weighted, undirected network is represented by a symmetric ma-
trix [gij ]n×n, where gij ∈ R+. The entry gij is the rate at which i receives
information about past bargains from j, it indicates the strength of the com-
munication link between i and j. If gij > 0 then agents i and j are connected
and they communicate directly with each other. If gij = 0 then i and j are not
connected in the communication network. Throughout this paper let gii ≡ g,
i.e. an agent can also receive information from her own past experience and this
channel is constant for all players.

The neighborhood of i in g is Li(g) = {j ∈ N |gij > 0}. di ≡ |Li(g)| de-
notes the size of i’s neighborhood, or the degree of i. gi ≡

∑
j∈Li(g) gij is the

weighted degree of i. The complete network is the network gC = {g|gij > 0,
∀i, j ∈ N}. A regular network gd,a is a network gd,a = {g|gij = 0, a; di(g) ≡ d;
∀i, j ∈ N ; a ∈ R+}. Let Z(g) = minZ{|

⋃Z
i=1 Li| = n |∀i, ∃j �= i such that

Li ∩ Lj �= ∅}. In words, Z(g) is the minimum number of nodes in g such that
the union of their (partly overlapping) neighborhoods covers the whole network.
Clearly, Z(gC) = 1.

Markov process. Let S be the state space, whose elements are sequences s =
{v1, ..., vn}, where vi is a vector of size m for each agent i, and n ≡ nB + nS .
If i ∈ B then vi = {yi

k−m, ..., y
i
k}, i.e. the entries of vi are the m last demands

made by sellers in bargaining rounds involving i. Similarly, if i ∈ S then vi =
{xi

k−m, ..., x
i
k}. Let pb(x | s) be agent b’s best-reply distribution, i.e. pb(x | s) > 0

if and only if demanding x is b’s best-reply to a sample received when the system
is in state s. Analogously, ps(y | s) is seller s’s best-reply distribution.

Assume that the process starts at an arbitrary time t0 > n · m, and de-
note the initial state by s0. At each t > t0 one pair of agents (b, s) ∈ B ×
S is drawn at random with probability π(b, s), where π(b, s) > 0, ∀(b, s) ∈
B × S. At time t, consider a state s = {v1, ..., vi, ..., vj , ..., vn}, where vi =
{yi

k−m, ..., y
i
k}, vj = {xj

k−m, ..., x
j
k}. Define s’ to be a successor of s if it has

the form s’ = {v1, ..., v′i, ..., v′j , ..., vn}. where v′i = {yi
k−m+1, ..., y

i
k+1} and v′j =

{xj
k−m+1, ..., x

j
k+1}. The transition probability Pss′ of moving from state s to

state s’ is then equal to:

Pss′ =
∑
b∈B

∑
s∈S

π(b, s)pb(xt+1 | s)ps(yt+1 | s) (3)
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This Markov process will be called an evolutionary bargaining process with local
information sharing.

Mistakes. In the process described so far agents always give a best reply to the
sample they happen to pick. In reality, people make mistakes for a variety of
reasons: human beings are bad at computing probabilities and they might mis-
calculate the expected utility from an offer, they are prone to get “distracted,”
they experiment, or sometimes they are outright irrational. The following is a
more formal definition of a mistake.

Definition 1. Let s = {v1, ..., vi, ..., vj , ..., vn} and let s’ = {v1, ..., v′i, ..., v′j , ...,
vn} be a successor of s, where vi = {yi

k−m, ..., y
i
k}, vj = {xj

k−m, ..., x
j
k}, v′i =

{yi
k−m+1, ..., y

i
k+1} and v′j = {xj

k−m+1, ..., x
j
k+1}. The demand xj

k+1 is a mistake
by i if it is not a best response to any sample i could have received given that the
system is in state s. A mistake yi

k+1 by j is defined similarly.

Another concept that will be useful in the analysis of the perturbed process is
the resistance in moving from one state s to another state s’.

Definition 2. Let s and s’ be two states of the system. The resistance r(s,s’)
is the least number of mistakes required for the system to go from state s to s’.

Note that if s’ is a successor of s then r(s,s’) = 0, 1, 2 as the maximum number of
mistakes in any one-time transition is two, i.e. both the buyer and seller involved
in that bargaining round make a mistake.

Now let ε be the absolute probability that agents in the model make mistakes,
and let λb, λs be the relative probability that buyers and sellers do it respectively.
Thus, ελb and ελs are the probabilities that buyers and sellers make a mistake.
Denote by qb(x | s) the buyer’s conditional probability of choosing x given that
the current state is s and that she is not giving a best-response offer to the sample
picked. Assume λb, λs, ε > 0 and that qb(x | s), qs(y | s) have full support.

This process also yields a stationary Markov chain on S that can be described
by the probability of moving from a state s to a successor state s’, similarly to
equation (3) above. Assume that the process starts at an arbitrary time t0 > n·m,
and denote the initial state by s0. At each t > t0 one pair of agents (b, s) ∈ B×S
is drawn at random with probability π(b, s), where π(b, s) > 0, ∀(b, s) ∈ B × S.
Let s be the state at time t, and let s’ be a successor of s, where s and s’ are
defined above. The transition probability P ε

ss′ of moving from state s to state s’
is then equal to:

P ε
ss′ =

∑
b∈B

∑
s∈S

π(b, s)[(1 − ελb)(1 − ελs)pb(xt+1 | s)ps(yt+1 | s)+

+ελb(1−ελs)qb(xt+1 |s)ps(yt+1 | s)+ελs(1 − ελb)qs(xt+1 | s)pb(yt+1 | s)+
+ ε2λbλsqb(xt+1 | s)qs(yt+1 | s)] (4)

This Markov process will be called a perturbed evolutionary bargaining process
with local information sharing. Note that limε→0 P

ε
ss′ = Pss′ .
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3 Convergence

First, consider the unperturbed process P . The first step in the analysis is to
define an appropriate concept of stability for this system, and to show that in the
long-term the process will reach it. Intuitively, the system will be in a stable state
if, after a certain time t, any buyer (seller) will always make the same demand
x because in any sample she receives of previous sellers’ (buyers’) demands, the
sellers (buyers) have always demanded 1−x. The following definition states this
more formally.

Definition 3. A state s is a convention if any vi ∈ s with i ∈ B is such that
vi = (1 − x, ..., 1 − x), and any vj ∈ s with j ∈ S is such that vj = (x, ..., x),
where x ∈ D, 0 < x < 1. Hereafter, denote this convention by x.

The following lemma shows that convention x is an appropriate definition to
work with because any x is an absorbing state of P .

Lemma 1. Every convention x is an absorbing state of the Markov process P
in (3).

Proof: See [1].

The following theorem shows that if information is sufficiently incomplete then
the process P converges to a convention. The incompleteness of information is
delivered by the network structure: if the network is not complete, or close to
complete, then some players cannot sample the history of the game for rounds
played by individuals that do not belong to their neighborhoods.

Theorem 1. If Z(gB), Z(gS) ≥ 2 then from any initial state the evolutionary
bargaining process converges almost surely to a convention.

Proof: See [1].

Theorem 1 in [6] is a more general version of this statement applicable to any
weakly acyclic n-person game. The goal is to show that from any initial state s
there is a positive probability p independent of t of reaching a convention within
a finite number of steps. The requirement Z(gB) ≥ 2 means that there is no
agent whose neighborhood includes the whole network and there are at least
two agents b′ and b0 such that gb′b0 = 0 and their intersection includes at least
one agent b. The same requirement applies to the sellers’ network, where agents
s and s0 are the equivalent of agents b′ and b0 respectively.

Now, consider the following path which happens with positive probability from
any state s at time t. First, b and s are picked to play the game form consecutive
periods, they draw samples σ and σ′ respectively, they demand best-replies x
and y respectively, and therefore they obtain a run ρ = {(x, y), ..., (x, y)} such
that vb = (y, ..., y) and vs = (x, ..., x). Second, b′ and s′ are picked to play the
game for m consecutive periods, they draw samples from vb and vs each time,
they demand best-replies 1−y and 1−x respectively, and therefore they obtain a
run ρ′ = {(1−y, 1−x), ..., (1−y, 1−x)} such that vb′ = (1−x, ..., 1−x) and vs′ =
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(1− y, ..., 1− y). Third, b0 and s0 are picked to play the game for m consecutive
periods, they draw sample vb and vs′ each time, they demand best-replies 1− y
and y respectively, and therefore they obtain a run ρ′′ = {(1−y, y), ..., (1−y, y)}
such that vb0 = (y, ..., y) and vs0 = (1 − y, ..., 1 − y). Hereafter it is clear that
there is a positive probability of reaching a convention x = (1− y, y).

Second, consider the perturbed process P ε. Given that the distribution qb
and qs have full support, P ε is irreducible. Thus, P ε has a unique stationary
distribution. Moreover, P ε is strongly ergodic, i.e. ∀s ∈ S, µε

s is with probability
one the relative frequency with which state s will be observed in the first t
periods as t → ∞. The stability concept for this kind of perturbed process is a
stochastically stable convention, which was introduced by [7].

Definition 4. A convention s is stochastically stable if limε→0 µ
ε
s > 0. A con-

vention s is strongly stable if limε→0 µ
ε
s = 1.

Intuitively, in the long-run stochastically stable conventions will be observed
much more frequently than unstable conventions when the probability ε of mis-
takes is small. A strongly stable convention will be observed almost all the time.
The technique to compute the stochastically stable conventions is standard and
it will not be explained in detail below, see [8] for an excellent introduction.

Construct a weighted, directed network [rsisj ]z×z, where the nodes are the
states s ∈ S, the links are the resistances rsisj connecting si to sj , and z is the
total number of states in S. Define an x-tree tx ∈ Tx to be a collection of links in
[rsisj ]z×z such that, from every node x’ �= x, there is a unique directed path to x
and there are no cycles. This construction leads to the definition of the concept
of stochastic potential of a convention x.

Definition 5. The stochastic potential γ(x) of a convention x is the least resis-
tance among all tx ∈ Tx. Mathematically:

γ(x) = min
tx∈Tx

∑
(x’,x”)∈Tx

r(x’,x”) (5)

Theorem 4 in [6] explains how to compute the stochastically stables states. The
following is a special case of that result.

Theorem 2. Let µ0 be a stationary distribution of the unperturbed process P .
Then limε→0 µ

ε
s = µ0. Moreover, µ0 > 0, i.e. s is stochastically stable, if and

only if s = x is a convention and γ(x) has minimum stochastic potential among
all conventions.

Proof. See [4].

4 Asymmetric Nash Bargaining Solution

Let us apply the methodology outlined above to find the division which the
process will converge to. However, before proceeding with the analysis, a mean-
field assumption is necessary to make the model more tractable. Given that
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information arrival to a buyer/seller about past bargains is a Poisson process,
there is a small probability that there are significant fluctuations in the total size
of the sample received by the same buyer/seller. The variability of an agents’
information sample over time poses significant challenges to an analytical in-
vestigation of the model, but, luckily, these fluctuations are small and therefore
they can be ignored. Technically, assume that the size of the information sample
of the buyer b is constant and equal to the amount of information b receives in
expectation given the Poisson processes involving b, i.e. sb(t) ≡

∑
j∈B gbj. The

same assumption holds for the seller s. Hereafter, also assume that the individual
memory m ≥ max{gb, gs}, where b ∈ B and s ∈ S.

The first step is to compute the minimum resistance to moving from the con-
vention x to the basin of a different convention x’. This is done in the following
lemma.

Lemma 2. For every x ∈ D0 the minimum resistance to moving from x to a
state in some other basin is �R(x)�, where:

R(x) = min
b∈B

gb

(
1− u(x− δ)

u(x)

)
∧min

s∈S
gs
v(1 − x)
v(1− δ) ∧min

s∈S
gs

(
1− v(1− x− δ)

v(1− x)

)
(6)

Proof: See [1].

The intuition is as follows. First of all, some agents have to make mistakes
in order for the system to move from one convention to a state in the basin
of another convention. The agents who will switch with the least number of
mistakes in their sample are the ones who receive the smallest samples. This
explains the factors minb∈B gb and mins∈S gs in equation (6). Now, consider the
case when some sellers make a mistake. The smallest mistake they can make is
to demand a quantity δ more than the conventional demand 1 − x. If they do
this, buyers will attempt to resist up to the point when the utility from getting
the conventional amount x some of the time, i.e. when sellers do not make a
mistake, is equal to the utility from getting the lower amount x− δ all the time.
This gives the first term in equation (6). The third term is the equivalent of the
first one, but this time the buyers make a mistake and demand δ more than the
conventional amount x.

Another possibility is that some buyers make a mistake, but this time they
demand less than the conventional amount x. The ”worst” mistake, from the
buyers’ point of view, would be to demand the minimum amount δ. If they do
this, sellers will only switch at the point when the utility from getting the higher
amount 1− δ some of the time, i.e. when buyers make a mistake, is higher than
the utility from getting the conventional amount x all the time. This gives the
second term in equation (6). The careful reader will point out that there should
also be a fourth term, i.e. the equivalent of the second one with the roles of
buyers and sellers reversed. This is true, but it is not included in equation (6)
because this term is never strictly smaller than the last term.

The expression for R(x) in (6) is the minimum of three monotone functions:
the first two are strictly decreasing in x, while the last one is strictly increasing
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in x. Thus, R(x) is first strictly increasing and then strictly decreasing as x
increases, so as δ → 0 it achieves its maximum at a unique value on the subset
D.2 Using this fact, the following theorem shows that there is a unique stable
division, which is the division that maximizes the asymmetric Nash bargaining
solution.

Theorem 3. As δ → 0 there exists a unique stable division (x, 1 − x), which
maximizes the following asymmetric Nash bargaining solution:

uβ(x)vσ(1 − x) (7)

where β ≡ minb∈B gb(gB) and σ ≡ mins∈S gs(gS).

Proof: See [1].

The proof of the theorem follows from two lemmas. The first lemma shows that
a division (x, 1− x) is generically stable if and only if x maximizes the function
R(x) in equation (6). The second lemma shows that the maxima of R(x) converge
to the asymmetric Nash bargaining solution in (7) as δ → 0.

The intuition behind the solution is that if the precision δ is sufficiently small
then over time the two groups will settle on a conventional division, which is
the asymmetric Nash bargaining solution. This solution crucially depends on
the communication networks that buyers and sellers use to learn about past
bargaining rounds to determine what to demand once they are picked to play.
More precisely, ceteris paribus (i.e. agents’ risk-aversion in the two groups is
the same), the share a group gets hinges on the agent in the group with the
least number and/or weakest communication links. The reason is that this agent
will be the least informed when it comes to play the game, and therefore she
will be the most susceptible to respond to mistakes from the other side. Over
time, this susceptibility weakens the bargaining position of the whole group. As
in standard bargaining models, the solution also depends on the utilities of the
agents. Ceteris paribus (i.e. the least connected agents in each group have the
same weighted degree), a group with less risk-averse agents will have a stronger
bargaining position because agents who are less risk-averse are more likely to
take chances, and therefore they are more demanding.

5 The Weakness of Weak Ties

Given the solution in theorem 3, a natural question is what is the optimal com-
munication structure for a group of individuals that are engaging in this evo-
lutionary bargaining process with another group. First, let us define a class of
quasi-regular networks, which are ”similar” to a given regular network.

Definition 6. Consider the set G of undirected networks with n nodes and at
most L links. Let gd,a be the regular network with degree d =

⌊2L
n

⌋
, i.e. the largest

2 Technically, R(x) can achieve its maximum at one value x∗ or at two values x∗ and
x∗ + δ. As δ → 0 these two values clearly converge to a unique maximum x∗.
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regular network in G. The network g ∈ G is a quasi-regular network generated
by gd,a if it can be obtained by randomly adding k links of any strength to gd,a,
where k ∈

[
0, L− n

2

)
.

A quasi-regular network is a network that is similar to a regular network in the
sense that the links are distributed evenly among the nodes and there is minimal
degree variation. Note that if L/n ∈ N, i.e. the links can be exactly divided
among the nodes, then the unique quasi-regular network is the generating regular
network. If L/n /∈ N then each node has at least as many links as in the largest
feasible regular network, i.e. the generating regular network, and the remaining
links are randomly assigned. The optimal communication structure for a group
is a quasi-regular network, as the following corollary shows.

Corollary 1. Fix a communication network gS for the sellers. Consider the set
G of all possible communication structures gB among the nB buyers such that
the total number of links is L < nB

2 (nB − 1) and the strength of each link is in
the [s, s] range, where s, s ∈ R. The subset of networks GB ⊂ G that gives the
highest share to buyers are the quasi-regular networks generated by the regular
network gd,s, where d =

⌊
2L
nB

⌋
. The same statement holds reversing the roles of

buyers and sellers.

Proof: See [1].

For illustrative purposes it is easier to give the intuition for the case of L/nB ∈ N.
First, the optimal network must have communication links of maximum strength
because they carry more information about past rounds, decreasing in this way
buyers’ susceptibility to sellers’ mistakes. Second, the regular network is optimal
because this is the unique network where the buyer with the lowest degree has
the highest possible degree given the constraint L. If L/nB /∈ N then the regular
network is still optimal but it is not unique anymore: a quasi-regular network
generated by the regular network by randomly adding a few more links is also as
good. Informally, the (quasi)-regular network is very ”steady”: it has no ”weak
points” that could be more susceptible to sellers’ mistakes.

6 Conclusion and Extensions

This paper has presented an evolutionary bargaining model between two groups
of buyers and sellers to explore the importance of social structure in determining
bargaining outcomes. Here social structure means the communication network
each agent relies on to gather information about past demands in order to play a
best response. Over the long run, the stochastically stable division is the asym-
metric Nash bargaining (ANB) solution with weights determined by the agent
with the least weighted degree in each group. A consequence of the ANB so-
lution is that the optimal networks for a group are (quasi)-regular networks:
there is minimal variability in number of connections and agents are connected
by strong bonds. Thus, close-knit networks with strong links are optimal in this
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setting because they allow maximal sharing of information and they have no
weak points that could increase the susceptibility to the other group’s mistakes.

The extended version of this paper ([1]) contains other important results.
Comparative statics analysis allows the exploration of how changes in the net-
work structure affect the shares a group obtains in the stable division. The
changes are modeled in terms of first and second order stochastic dominance
shifts in the weighted degree distribution. The main result is that a group with
a denser and more homogeneous communication structure will fare better.

Moreover, the extended version also solves the model for the case of buyers
and sellers sharing the same communication network. The outcome of the bar-
gaining process remains the same ANB solution. However, the consequences of
the solution change. First, due to the modified set-up, the optimal networks for
a group have to include all the agents and they are core-periphery networks.
The members of the group that fares better form the core: a (quasi)-regular
network with strong links. The members of the group that fares worse are at
the periphery with few links per agent and no or very few connections amongst
themselves. Second, a more homogeneous network, holding the mean degree con-
stant, narrows down the difference between the two groups. In the limiting case
of a regular network with homogeneous agents the stable division is 50-50.
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References

1. Gallo, E.: Bargaining and Social Structure. Mimeo (2008)
2. Nash, J.F.: The Bargaining Problem. Econometrica 18(2), 155–162 (1950)
3. Rubinstein, A.: Perfect Equilibrium in a Bargaining Model. Econometrica 50(1),

97–109 (1982)
4. Young, P.H.: An Evolutionary Model of Bargaining. Journal of Economic The-

ory 59(1), 145–168 (1993)
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Abstract. No aspect of the massive participation in content creation
that the web enables is more evident than in the countless number of
opinions, news and product reviews that are constantly posted on the
Internet. Given their importance we have analyzed their temporal evo-
lution in a number of scenarios. We have found that while ignorance
of previous views leads to a uniform sampling of the range of opinions
among a community, exposure of previous opinions to potential review-
ers induces a trend following process which leads to the expression of
increasingly extreme views. Moreover, when the expression of an opinion
is costly and previous views are known, a selection bias softens the ex-
treme views, as people exhibit a tendency to speak out differently from
previous opinions. These findings are not only robust but also suggest
simple procedures to extract given types of opinions from the population
at large.

On reflection, it is rather surprising that people contribute opinions and reviews
of topics which have already been extensively covered by others. While posting
views is easy to understand when it involves no effort, like clicking on a button of
a website, it is more puzzling in situations where it is costly, such as composing
a review. If the opportunity to affect the overall opinion or rating diminishes
with the number of published ones, why does anyone bother to incur the cost of
contributing yet another review? From a rational choice theory point of view, if
the utility to be gained does not outweigh the cost, people would refrain from
expressing their views. And yet they do. This is reminiscent of the well analyzed
voter’s paradox [5,12,13], where a rational calculation of their success probability
at determining the outcome of an election would make people stay home rather
than vote, and yet they show up at the polls with high turnout rates (for a
review, see [7]). In contrast to a political election, there is no concept of winning
in online opinion systems. Rather, by contributing her own opinion to an existing
opinion pool, a person affects the average or the distribution of opinions by a
marginal amount that diminishes with the size of that pool.

Since user opinions play such an important role in trust building and the
creation of consensus about many issues, there have been a number of recent
of studies focused on the design, evaluation and utilization of online opinion
systems [1,2,6,8] (for a survey, see [3]). It is surprising that with the exception
of one study [10], little research has been done on the dynamic aspects of online
opinion formation. It remains unclear, for example, whether reviews undergo
any systematic changes as time goes on, or whether the opinions about given
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political or societal views fluctuate a long time before reaching a final consensus.
Thus the need to understand how online opinions are created and evolve in time
in order to draw accurate conclusions from that data.

In this context we analyzed the dynamics of online opinion expression by
analyzing the temporal evolution of a very large set of user views, ranging from
1.8 million online reviews of the 48,000 best selling books at Amazon.com, to
thousands of political resolutions voted on Essembly.com and the many arbitrary
opinions offered for voting on Jyte.com.

To start with, a forum where no historical data is available should exhibit no
polarization of views as they are expressed over time. In order to test this as
calibration for our study, we analyzed the votes of 16,660 resolves posted on the
website Essembly.com from August 2, 2005 to December 12, 2006, among which
14,171 resolves received more than 21 votes. Essembly.com is a website that lets
its users post and vote on political resolves by selecting one of the four choices:
“agree”, “lean agree”, “lean against”, and “against”. A user does not see the
voting results until she submits her own vote. When a user posts a new resolve,
she is required to vote on it. The four voting options, from “agree” to “against”,
are represented by −1,−0.5, 0.5, 1 in our database, respectively. When a user
posts a new resolve, she tends to formulate it in a tone that sounds positive
to her. As a consequence, 96.0% of all first votes are “agree”, while only 2.7%
of all first votes are “against”. To remove this artificial bias, we discarded the
first vote of each resolve and replaced all the remaining votes {Xn} by {−Xn}
if
∑
Xn > 0, where Xn denotes the quantified value of the n’th vote. This way

every vote is “agreed” by the majority.1 This formed our final data set, which
consists of 14,171 resolves, each having more than 20 votes.

We observed no clear trend in the expected value of EXn. For each resolve we
calculated a series of average votes: X̄1, . . . , X̄20, where X̄i is the average vote
of the first i votes. We performed a linear regression of X̄n over n: X̄n ∼ kn+ b.
The slope k reflects the overall trend of X̄i: if k > 0 the votes increase with time,
if k < 0 they decrease. A histogram of the 14,171 slopes is shown in Fig. 1. A
t-test of the null hypothesis “k = 0” yields a p-value 0.064, which is not enough
to reject the null. This confirms the absence of an overall dynamical trend.

To see the effects of other people’s opinions on the overall public opinion
formation we studied Jyte.com, a website that allows its users to make any
claim they wish and let the community vote on it at no cost. The claims are wide
ranging, from “Ocean exploration has more potential to benefit the human race
than space exploration” to “Homeopathy shouldn’t be available on the NHS”.
The web interface is simple and intuitive. Each claim is flanked by a positive
button and a negative button and the numbers of total positive and negative
votes are shown on the face of the buttons. Each user sees the numbers, makes
up her mind, and submits her vote by clicking on one of the two buttons. Then
the numbers get updated instantly.

1 Another way to remove the bias is to randomly flip the sign of all votes for each
resolve. The conclusion would be the same. Notice that the lack of normalization
would lead to an artificially high initial value that would decay over time.

Amazon.com
Essembly.com
Jyte.com
Essembly.com
Essembly.com
Jyte.com
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Fig. 1. The histogram of 14,171 slopes calculated from the Essembly data. It is not
very clear whether most slopes are positive or negative.

We tracked the voting dynamics of all claims made in July 2007, among
which 1,208 claims received no less than 10 votes. For each vote, we recorded
Xn = 1 if the n’th vote is positive, or Xn = 0 if it is negative. The quantity
X̄n = 1

n

∑n
i=1Xi then represents the fraction of positive votes among the first

n votes.
We constructed two data subsets from the 1,208 claims. The first set contains

all the claims with less than say, 3 positive votes, among the first 10 (i.e. X̄10 <
0.3). We call it the “negative” set. The second set contains all the claims with
more than say, 7 positive votes, among the first 10 (i.e. X̄10 > 0.7). We call it
the “positive” set. These two sets contain the claims that are generally regarded
as “very negative” and “very positive”, respectively. The negative set consists
of 405 claims, and the positive set consists of 521 claims. The average X̄n for
the two data sets are shown in Fig. 2(a) and (b). As we can see from the figure,
the negative claims tend to become more negative as the voting goes on, and
the positive claims tend to become more positive.2 This shows that when people
observe previous opinions before they express their own, they tend to follow
the trend. As a result of this trend following, extreme views get reinforced and
become increasingly more extreme.

Our last study focused on the situation where it is costly to express an opinion.
We thus considered the online rating data for a large number of books collected
from Amazon.com. On Amazon, a user observes the average rating of a book when
she visits a book page (usually shown at the top, right under the title). If she
decides to review a book, she is required to write a short paragraph of review in
addition to a simple star rating. The average word count of Amazon reviews is
181.5 words [9]. Thus, the cost of opinion expression is high for Amazon compared
with Essembly and Jyte, and the person will only contribute if the gain from
expressing an opinion is higher than the cost.

In the spirit of the voter’s paradox, which assumes that the voter is more
likely to vote when his vote is more probable to affect the outcome, we speculate

2 This is independent of our choice of the values 3 and 7.
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Fig. 2. The sample average fraction of positive votes EX̄n as a function of the number
of votes n, collected from Jyte.com. (a) Negative claims become more negative as time
goes on. The average fraction decreases by an absolute amount 9% after 10 votes. (b)
Positive claims become more positive as time goes on. The average fraction increases
by an absolute amount 5% after 10 votes.

that in cases like Amazon, people will derive more utility the more they can
influence the overall rating. To be precise, in cases where users’ opinions can
be quantified and aggregated into an average value, the influence of an online
opinion can be measured by how much its expression will change the average
opinion [11]. Suppose that n users have expressed their opinions, X1, . . . , Xn,
on a given topic at a website, with Xi denoting the quantified value of the i’th
opinion. If the (n+ 1)’th person expresses a new opinion Xn+1, it will move the
average rating to

X̄n+1 =
nX̄n +Xn+1

n+ 1
, (1)

and the absolute change in the average rating is given by

|X̄n+1 − X̄n| =
|Xn+1 − X̄n|

n+ 1
. (2)

We thus conjecture that a person is more likely to express her opinion whenever
|Xn+1 − X̄n| is large — an opinion is likely to be expressed if it deviates by a
significant amount from those already stated. Indeed, what is the point of leaving
another 5-star review after one hundred people have already done so? This point
has also been made within the “brag-and-moan” model [4,8] which assumes that
consumers only choose to write reviews when they are very satisfied with the
products they purchased (brag), or very disgruntled (moan). Note however, that
the brag-and-moan model is static and thus predicts that X̄n is constant over
time, in contradiction with the observed dynamical trends.

Our sample consisted of the top 4,000 best-selling titles in each of the following
12 categories, as of July 1, 2007: arts & photography, biographies & memoirs,
history, literature & fiction, mystery & thrillers, reference, religion & spirituality,

Amazon
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Fig. 3. The average rating of 16,454 books on Amazon.com with more than 20 reviews.
EXn is the sample average rating of all the 16,454 n’th ratings. As one can see from
the figure, EXn decreases by 0.4 stars in 20 steps. We did not obtain enough data from
low selling books to show the opposite trend.

sports, travel, nonfiction, science, and entertainment. For each of the 48,000
books, a series of ratings was collected in time order, where each rating is an
integer between 1 and 5 (number of stars). Among the 48,000 books, 16,454
books have no less than 20 ratings, and 11,920 have an average rating above 4.

We first checked the average rating of the 16,454 books as a function of n.
As can be seen from Fig. 3, EXn decreases almost linearly with n, so there
is a clear dynamical trend in the ratings, which corroborates the observation
reported in [10]. Later users indeed tend to write different reviews from those of
earlier users. As opposed to what we observed in Jyte.com, the overall opinion
tends to decrease away from the extreme ones.3

Next we examined whether this dynamical trend is still prominent at the level
of each individual book. Similar to our Essembly study, we performed a linear
regression of X̄n over n: X̄n ∼ kn + b. The histogram of 16,454 slopes (k) are
shown in Fig. 4. As can be seen, most of the slopes are below zero. A t-test of
the alternative hypothesis “k < 0” yields a p-value less than 2.2× 10−16, which
further confirms the declining trend.

Finally we measured directly how much one’s rating deviates from the ob-
served average rating. We plot the expected deviation

Edn = E|Xn − X̄n−1|. (3)

as a function of n in Fig. 5. As can be seen, Edn increases with n. Since the
expected deviation Edn of an i.i.d. sequence normally decreases with n, this
increasing trend is indeed significant. This again supports our conjecture that
those users who disagree from the public opinion will be more willing to express
themselves and thus soften the overall opinion of a given book.

One point to be stressed is that the results do not imply that as time goes on
the average perception of the book changes. Rather, from a large pool of readers
3 In a forthcoming paper we show that conditional expectations of Amazon ratings

(given the average previous ones) follow the same trend.

Jyte.com
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Fig. 4. Histogram of the slopes of average book ratings on Amazon.com. Most of the
slopes are negative, testifying a declining trend in the average ratings.
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Fig. 5. The average deviation of Amazon ratings increases with the number of people

it is only those that want to make a difference with the prevailing opinion that
choose to express themselves. This is seen when plotting the average “helpful
ratio” as a function of star rating in Fig. 6 for users of Amazon. It can be seen
that people find high ratings more helpful than low ratings, implying that the
majority does not agree with this expression bias.

These results, made possible by the fact that the web presents a natural labo-
ratory to study millions of opinions, show that in the process of expressing their
views, people tend to follow different but regular patterns. When no information
of previous views is available, the opinions expressed are drawn from a uniform
distribution within the community. In cases where previous opinions are made
known and it is painless to post a view, one observes either neutral opinions or
a polarized consensus which reflect trend following by the group. In the latter
case, opinions tend to reinforce previous ones and thus become more extreme.
Finally there are many cases where expressing a view is costly, like when writing
a book review. In this case people will tend to do so whenever they perceive
they can offset the current view by presenting a differing one. Since the impact
decreases with the number of posted opinions, the larger the pool, the more
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Fig. 6. (a) The average helpful ratio of five different star ratings. (b) The average review
length of five different star ratings in the number of characters. The data is calculated
for 4,000 bestselling mystery books. By comparing the two figures it is clear that people
find high ratings more helpful not just because they are longer. For instance, 5-star
reviews are on average shorter than 4-star and 3-star reviews but are nevertheless more
helpful.

extreme the difference expressed. As a consequence one sees a softening of the
prevailing view.

Besides explaining the observed data, these results show a cautionary note
on the interpretation of public opinion. This is because a simple change in the
order or frequency of given sets of views can change the ongoing expression in
the community, and thus the perceived collective wisdom that new users will
find when accessing that information.
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Abstract. We present a simple game-theoretic model for the ESP game,
an interactive game devised to label images on the web, and characterize
the equilibrium behavior of the model. We show that a simple change
in the incentive structure can lead to different equilibrium structure and
suggest the possibility of formal incentive design in achieving desirable
system-wide outcomes, complementing existing considerations of robust-
ness against cheating and human factors.

1 Introduction

Showcased by the early success of “Games with a Purpose” [3], human compu-
tation considers the possibility that networks of people can be leveraged to solve
large-scale problems that are hard for computers. Work by von Ahn and oth-
ers has shown the tremendous power that networks of humans possess to solve
problems while playing computer games [4,7,5,6]. The ESP game is an example
of such human computation; it is an interactive system that allows users to be
paired to play games that label images on the web [4]. Users play the ESP game
because it is an enjoyable game to play, with the added side-effect that they are
doing useful work in the process. Subsequent work to the ESP game has included
Peekaboom [7], Phetch [5], and Verbosity [6]. Hsu and colleagues [2,1] developed
a simple game called PhotoSlap for determining content of images and provided
a game-theoretic analysis for PhotoSlap.

While there has been incredible progress in the area of human computation,
there is still much more potential. For “Games with a Purpose”, it seems espe-
cially appropriate to use game theory to better understand how to design incen-
tives in order to achieve system-wide goals. For example, it appears anecdotally
that during play of the ESP game that people coordinate on easy words and that
the game is less effective in labeling less obvious, harder words. Through this
line of work, we ultimately aim to show that proper incentive design along with
appropriate system design is an important paradigm for human computation
and peer production problems.

This paper aims to study behavior in the ESP Game through a game-theoretic
light. We propose a simple model of the game and consider two different models of
payoffs, namely match-early preferences (MEP) and rare-words-first preferences.
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Match-early preferences model the setting in which players wish to complete as
many rounds as possible and receive the same score irrespective of the words
on which they match. The match-early preferences model is meant to reflect
the current method of assigning scores to outcomes in the ESP game. Here
we show that low effort is a Bayesian-Nash equilibrium for all distributions on
word frequencies, with players focusing attention on high-frequency words. Rare-
words-first preferences model the setting in which players wish to match on
infrequent words before frequent words, we suppose because of appropriately
designed incentives, and the speed with which a match is achieved is only a
secondary consideration. We show that under this preference model, there is a
significant difference in the equilibrium structure.

We briefly describe elements of the ESP game before introducing the model
in the next section. In the ESP game, players are randomly paired with another
player in the system for a set of 15 images. Players try to label as many images
of the 15 as they can in the allotted 2.5 minutes. Players receive a fixed number
of points after agreeing on a common word. In the set of 15 images, players get
bonus points after agreeing on five images, ten images, and fifteen images in
the same set. The only words that are used from the input streams are the first
agreed word. An interesting feature of the ESP game, not modeled here, is the
use of Taboo words [4]. Taboo words are words that are displayed next to the
image that players cannot enter for the corresponding image. Taboo words are
words that have been entered sufficiently many times in previous plays of the
image and encourage players to enter different words so that the set of labels
for an image can be extended.1 Modeling the effect of the Taboo Words is an
important direction for future work.

2 An ESP Model with Match-Early Preferences

We model the ESP game as a two-player, two-stage game of imperfect informa-
tion. We focus on modeling one of the 15 rounds, and thus the game associated
with a specific image. We model the ESP game with each player sampling words
from a universe of possible words associated with the picture, to which we asso-
ciate a frequency ordering. Players can vary the effort level that relates to how
likely they are to sample frequent words as opposed to infrequent words. Then
players decide which order to play their sampled words in the game. In the model
of match-early preferences, we instead capture the strategic behavior of having
15 rounds under a time constraint by providing a preference for matching in an
earlier location than a later location.

Let d > 0 denote the dictionary size, representing the number of words that
each player will think of for the image at hand. We model a universe of words
U = {w1, w2, ..., wn}, that represents all possible words to describe the image
and the knowledge that the game designer is trying to learn. Each word has an
1 In addition, von Ahn and Dabbish came up with a number of methods to circumvent

cheating, where possible methods of cheating include players trying to be paired with
themselves and global strategies such as entering “a” for every image [4].



344 S. Jain and D.C. Parkes

L M H

��� ��� ��� ���� �� ��� ��� ��� ���� �� ��� ��� ��� ���� ��

� � �� � � �� � � ��

Fig. 1. The game tree above represents the decision space of one player

associated frequency, where fi denotes the frequency of word wi. We assume that
a player can rank the words sampled by frequency. The frequencies satisfy the
property that

∑n
i=1 fi = 1. We assume that the words in the universe are ordered

according to decreasing frequency, that is f1 ≥ f2 ≥ ... ≥ fn. The frequency of
word i can be considered the frequency that the word would be mentioned if a
population of humans were each asked to state d words related to the image. We
assume that 1 < d < |U |.

Though this game has no communication between players and thus is properly
analyzed as a normal-form game, it is useful to talk about a first stage (choosing
an effort level) and a second stage (choosing a permutation on the dictionary). In
the first stage of the game, players privately choose an effort level: E = {L,M,H}
for low, medium or high. The choice of effort level determines the set of words
in the universe from which a player samples her dictionary. If a player chooses
L in the first stage of the game, the dictionary is sampled from the top nL > 0
words (without replacement). We say that a player that chooses effort level L
has universe UL, where UL is exactly the set of the highest nL frequency words
in U . If a player chooses effort M in the first stage of the game, the dictionary
is sampled from the top nM > nL > 0 words. If a player chooses effort H , the
dictionary is sampled from the top nH = n words (i.e., the entire universe). That
is, word i in U is chosen with probability fi,H = fi.

Given word x ∈ U , fe(x) represents the frequency of word x given the player
has chosen effort level e. In Figure 1, this sample is modeled as a move by nature
and can be considered to be the point at which a player learns her “type”, namely
her dictionary of words. Figure 1 represents the choices of a single player in the
game, though both players are symmetric. Note that nL, nM , nH , and d are
parameters of the model and there is no cost associated with each of the first
level actions. We establish that low effort is an equilibrium under match-early
preferences even without introducing a cost, which would increase with effort
and presumably increase the benefits of low effort. We leave introducing cost
into this model for future work.

In the second stage, once each player privately learns her dictionary based on
the effort level chosen, players choose a permutation on the words. This models
the decision about the order in which a player should enter words. This order on a
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player’s dictionary defines the second-stage action of each player and determines
the outcome of the game. The outcome is defined by the first word that is in
the ordered-list of both players and the location (where the location is defined
to be the maximum value of the two positions where the word occurs in each
ordered-list). In what follows, we refer to D1 as the dictionary for player 1 and
D2 as the dictionary for player 2. The second stage strategy s1 ∈ S1 for player 1
defines a specific order s1(D1) on the words in D1, for every possible dictionary.
Likewise, player 2 has a second-stage strategy s2 ∈ S2 that defines an order
s2(D2) for every dictionary. We restrict our attention to strategies that involve
playing all words in the dictionary since any strategy that does not involve
playing all words is weakly dominated by one that involves playing all words.
We also restrict our attention to consistent strategies, strategies for a player
that do not change the relative ordering of elements depending on the player’s
realized dictionary. In other words, a consistent strategy involves specifying a
total ordering of elements on U and applying that total ordering to the realized
dictionary.

A complete strategy for the ESP game is an ordered pair σi = (ei, si) ∈
E × Si = Σi. This defines the play in both stages for all possible dictionaries.
We focus here on pure strategies.

Definition 1. Suppose player 1 outputs a list of words x1, x2, ..., xd and player 2
outputs a list of words y1, y2, ..., yd. If there exists 1 ≤ i, j ≤ d such that xi = yj,
there was a match and this match occurred in location max(i, j). It is possible
for two sequences to have more than one match, so we concern ourselves with
the first match, that is the pair i, j that minimizes max(i, j) such that xi = yj.

An outcome is an ordered pair o = (w, l) ∈ (U ∪φ)× ({1, ..., d}∪φ) where (φ, φ)
indicates there was no match and the (w, l) pair otherwise indicates that the
first match on word w ∈ U in location l ∈ L where L = {1, 2, . . . , d} ∪ φ. Let O
denote the set of possible outcomes. Since s1(D1) and s2(D2) specify orderings
on given dictionaries, they induce an outcome: the location of the first match.

Let outcome function g(s1(D1), s2(D2)) ∈ O denote this outcome. The loca-
tion (if any) of the first match is denoted by gl(s1(D1), s2(D2)) ∈ L.

Each player i has valuation vi(o) on outcome o, which induces a (weak) to-
tal preference ordering on outcomes. For match-early preferences, we require
(w1, l1) ≡ (w2, l1) ≡ ... ≡ (wn, l1) ' (w1, l2) ≡ (w2, l2) ≡ ... ≡ (wn, l2) ' ... '
(w1, ld) ≡ (w2, ld) ≡ ... ≡ (wn, ld) ' (φ, φ) for all players.

Let Pr(Di|ei) denote the probability of dictionary Di given effort level ei.
Often times we write this as Pr(Di) and leave the effort level implicit.

Definition 2. The probability of first match in li given s1(D1), s2, and dis-
tribution Pr(D2), is p(li, s1(D1), s2) =

∑
D2

Pr(D2)I(gl(s1(D1), s2(D2)) = li).
Similarly, the probability of first match in li on wj is p(wj , li, s1(D1), s2) =∑

D2
Pr(D2)I(g(s1(D1), s2(D2)) = (wj , li)). Often times we will abbreviate

p(li, s1(D1), s2) as p(li) and p(wj , li, s1(D1), s2) as p(wj , li).

Let ui(si(Di), s2−i(D2−i)) = vi(g(s1(D1), s2(D2))) be the utility of player i given
D1, D2. Let ui(si(Di), s2−i) =

∑
D2−i

Pr(D2−i)ui(si(Di), s2−i(D2−i)) be the
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expected (interim) utility of player i given Di with respect to the distribution
on all possible dictionaries of the other player, as induced by her effort level.
Let ui(σi, σ2−i) =

∑
D1

∑
D2

Pr(D1|e1) Pr(D2|e2)ui(si(Di), s2−i(D2−i)) be the
expected (ex ante) utility of player i before dictionaries are sampled, given com-
plete strategies σ = (σ1, σ2).

We analyze the second stage of the game before analyzing the complete game.
For this, consider the game induced by fixing top level effort levels (e1, e2) for
the two players (the second stage game conditioned on effort e1 and e2). In the
second stage, each player knows her own dictionary but not the dictionary of
the other player. We can now define two useful equilibrium concepts:

Definition 3. Strategy profile s∗ = (s∗1, s∗2) is an ex post Nash equilibrium of
the second stage of the ESP game conditioned on effort levels e1 and e2, if for
every D1 and every D2, we have:

ui(s∗i (Di), s∗2−i(D2−i)) ≥ ui(s′i(Di), s∗2−i(D2−i)), ∀s′i �= s∗i , ∀i ∈ {1, 2} (1)

Definition 4. Strategy profile s∗ = (s∗1, s∗2) is a strict Bayesian-Nash equilib-
rium of the second-stage of the ESP game conditioned on effort levels e1 and e2
if for both players i ∈ {1, 2}, for every Di,

ui(s∗i (Di), s∗2−i) > ui(s′i(Di), s∗2−i), (2)

where the probability adopted in interim utility ui for the distribution on the
dictionary of player 2− i is induced by the effort of that player in the first stage.

Definition 5. Strategy profile σ∗ = (σ∗1 , σ
∗
2) ∈ Σ1×Σ2 is a strict Bayesian-Nash

equilibrium of the ESP game if for players i ∈ {1, 2}, ui(σ∗i , σ
∗
2−i) > ui(σ′i, σ

∗
2−i).

Since the effort level chosen by each player is not visible to the other player,
there is no need for a subgame perfect refinement.

3 Effort Level of Players under Match-Early Preferences

In this section, we analyze the equilibrium behavior under match-early prefer-
ences. We show that playing decreasing frequency in conjunction with low effort
is a Bayesian-Nash equilibrium for the ESP game. First we see that playing play-
ing words in order of decreasing frequency is not an ex-post Nash equilibrium
for the second stage of the game.

Lemma 1. Suppose that players are playing the same effort level and there are
three words in the universe, w1, w2, and w3 with associated probabilities f1,e,
f2,e, f3,e, and with f1,e > f2,e > f3,e. The second stage strategy profile s =
(s1, s2), where s1 and s2 are the strategies of playing words in order of decreasing
frequency, is not an ex-post Nash equilibrium.

Since playing words in order of decreasing frequency is not an ex-post Nash
equilibrium, we focus instead on Bayesian-Nash equilibrium. The following
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definition of stochastic dominance will enable equilibrium analysis for any valu-
ation function that satisfies MEP. In Lemmas 2 and 3, we show that this notion
of stochastic dominance is both sufficient and necessary for utility maximization.

Definition 6. Fixing effort levels e1 and e2 and fixing opponent’s second-
stage strategy s2, we say second-stage strategy s1 with match vector
(p(l1, s1(D1), s2), p(l2, s1(D1), s2), ..., p(ld, s1(D1), s2)) stochastically dominates
second-stage strategy s′1 with match vector (p(l1, s′1(D1), s2), p(l2, s′1(D1), s2),
..., p(ld, s′1(D1), s2)) with respect to dictionary D1 if for every 1 ≤ k ≤ d,∑k

a=1 p(la, s1(D1), s2) ≥
∑k

a=1 p(la, s
′
1(D1), s2). We say that the stochastic

dominance property is strict if there exists a k such that 1 ≤ k ≤ d and∑k
a=1 p(la, s1(D1), s2) >

∑k
a=1 p(la, s

′
1(D1), s2).

Lemma 2. If strategy s1 stochastically dominates strategy s′1 with respect to dic-
tionary D1, for fixed opponent strategy s2, then u1(s1(D1), s2) ≥ u1(s′1(D1), s2),
for all valuations consistent with match-early preferences.

Lemma 3. If u1(s1(D1), s2) ≥ u1(s′1(D1), s2) for all valuations that are consis-
tent with match-early preferences, then strategy s1 must stochastically dominate
strategy s′1 with respect to D1, for fixed opponent strategy s2.

Lemmas 2 and 3 can be extended to show strict stochastic dominance implies
strictly greater utility and vice versa, for all valuations consistent with MEP.

Lemma 4. Given player 2 plays her words in order of decreasing frequency, the
probability of first match in location l1 is strictly maximized when player 1 plays
her most frequent word first, for all dictionaries D1 and effort levels e2.

Lemma 5. For 1 ≤ k < d, given player 1 played her k highest frequency words
first and player 2 plays her words in order of decreasing frequency, the probability
of first match in locations l1, ..., lk is strictly maximized when player 1 plays her
k + 1st highest frequency word next, for all dictionaries D1 and effort levels e2.

Lemmas 2, 4, and 5 establish that playing decreasing frequency is a strict best
response to an opponent who plays decreasing frequency.

Theorem 1. The strategy profile consisting of players playing words in order
of decreasing frequency (denoted (↓, ↓)) is a strict Bayesian-Nash equilibrium of
the second stage of the ESP game, conditioned on any choice of effort levels
e1 and e2, for any distribution over U and any valuation function that satisfies
match-early preferences.

To show that playing L at the top-level along with playing decreasing frequency
is a Bayesian-Nash equilibrium, we use the following definition of stochastic
dominance for the top level of the game which fixes the equilibrium strategy for
the bottom-level. The definition uses the following notation for a k-truncation
of dictionary D: D(k) is the set of k highest frequency words in D.
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Definition 7. Fixing player 2’s complete strategy (e2, s2), a complete strategy
(e1, s1) stochastically dominates complete strategy (e′1, s1) for player 1 if:∑
D1,e1

Pr(D1,e1 |e1)
∑

D2,e2

Pr(D2,e2 |e2) · I(gl(s1(D1,e1(k)), s2(D2,e2(k)))= l1, ..., lk) ≥

∑
D1,e′

1

Pr(D1,e′
1
|e′1)
∑

D2,e2

Pr(D2,e2 |e2) · I(gl(s1(D1,e′
1
(k)), s2(D2,e2(k))) = l1, ..., lk) ∀k

where gl(s1(D1,e1(k)), s2(D2,e2(k))) gives the outcome when second-stage strate-
gies s1 and s2 act on D1,e1(k) and D2,e2(k) and I(·) is the indicator function.
The dominance is strict if there exists a k such that the above inequality is strict.

Since Theorem 1 establishes that (↓, ↓) is a strict Bayesian-Nash equilibrium of
the second stage, for all effort levels, we set (s1, s2) = (↓, ↓) and we know that
I(gl(s1(D1,e1(k)), s2(D2,e2(k))) = l1, ..., lk) = I(D1,e1(k)∩D2,e2(k) �= ∅). Similar
to Lemmas 2 and 3, we can show that stochastic dominance in Definition 7 is
sufficient and necessary for utility maximization.

In order to establish stochastic dominance, we construct a randomized map-
ping for each dictionary that can be sampled when playing M to a number of
dictionaries that can be sampled when playing L. Each dictionary in DM is
mapped to a dictionary in DL that is at least as likely to match against the
opponent’s dictionary, averaged over the distribution of all possible dictionaries
for the opponent. This is shown in Lemma 6. In order to complete the proof, it
is necessary to show that under the randomized mapping, no element in DL is
mapped to with greater probability under the randomized mapping than under
the original distribution over DL. This fact is shown in Lemma 7.

The randomized mapping h can be described as follows: Consider a dictionary
D ∈ DM , D = A ∪ B, where A is the set of “low words” and B is the set of
“medium words” (in other words, A = D∩UL and B = D∩ (UM −UL)). Under
our randomized mapping, D is mapped to all dictionaries in DL ∈ DL such that
A ⊂ DL. In other words, D is mapped to dictionary DL ∈ DL with non-zero
probability if and only if A ⊂ DL. If A ⊂ DL, then D is mapped to DL with
the same probability that you could would get DL if you continued to sample
individual words from UM (without replacement) until you got d “low words”.
Note that if D contains only medium words, D is mapped to all dictionaries
in DL with non-zero probability. Likewise, if D contains only low words, D is
mapped to only one dictionary in DL.

Lemma 6. For any D1,M , where D1,M is a dictionary sampled with respect to
the M effort level, for any h that satisfies the property that D1,M is mapped to
a dictionary in DL that contains the set D1,M ∩ UL, any effort level of player 2
and when players play decreasing frequency in the second stage, we have that:∑

D2

Pr(D2) · I(h(D1,M )(k) ∩D2(k) �= ∅) ≥∑
D2

Pr(D2) · I(D1,M (k) ∩D2(k) �= ∅) ∀k and D1,M (3)
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In addition, the inequality is strict for all k > k′ when h(D1,M ) �= D1,M and k′

is the first coordinate where h(D1,M ) and D1,M differ.

Lemma 7 states the distribution obtained from sampling UL directly is the same
as the distribution obtained from sampling a medium dictionary, followed by the
randomized mapping (sampling UM until you get d low words).

Lemma 7. Pr(D1,L|L) =
∑

D1,M
Pr(D1,M |M) · Pr(h(D1,M ) = D1,L)

Lemma 8 uses Lemmas 6 and 7 to show that playing L stochastically dominates
playing M , assuming players play decreasing frequency in the second stage. An
identical argument can be used to show that playing L stochastically dominates
playing H , assuming players play decreasing frequency in the second stage.

Lemma 8. For any effort level e2 and when players play decreasing frequency
in the second stage:∑

D1,L

Pr(D1,L|L)
∑
D2

Pr(D2) · I(D1,L(k) ∩D2(k) �= ∅) >∑
D1,M

Pr(D1,M |M)
∑
D2

Pr(D2) · I(D1,M (k) ∩D2(k) �= ∅) ∀k (4)

Theorem 1 together with Lemma 8 gives us the following result.

Theorem 2. ((L, ↓), (L, ↓)) is a strict Bayesian-Nash equilibrium for the com-
plete game. Additionally, (L, ↓) is a strict best-response to both (M, ↓) and (H, ↓).

4 The Effect of Rare-Words First Preferences

In this section, we consider the effect of modified preferences. We introduce a new
model called rare-words first preferences and show some initial results regarding
how equilibrium behavior is different under this new model.

Definition 8. Under rare-words first preferences, players prefer to match on
rare words, with location as a secondary consideration. Any valuation function
v(o) that satisfies rare-words first preferences satisfies the following total ordering
on outcomes: (wn, l1) ' (wn, l2) ' ... ' (w1, ld−1) ' (w1, ld) ' (φ, φ).

This preference relation allows for a virtually identical definition of stochastic
dominance as Definition 6 which in turn leads to results analogous to Lemmas 2
and 3, namely that stochastic dominance is both sufficient and necessary for
utility maximization.

The following lemma is in stark contrast with the results in section 4, where
we showed that (↓, ↓) is a strict Bayesian-Nash equilibrium in the second stage,
for all distributions over U , all valuation functions that satisfy MEP, and any
pair of effort levels. Lemma 9 shows that we cannot say (↓, ↓) is a Bayesian-
Nash equilibrium for the second stage of the game for any distribution, without
making more assumptions on the valuation function.
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Lemma 9. Consider any distribution over U = {w1, w2, ..., wn} and suppose
that player 2 is playing her words in order of decreasing frequency. For any dic-
tionary of player 1, no consistent strategy of player 1 can stochastically dominate
all other consistent strategies.

Similarly, Lemma 10 shows that when a player is playing increasing frequency,
we need to make more assumptions on the valuation function to discern the
best-response in the space of consistent strategies.

Lemma 10. Consider any distribution over U = {w1, w2, ..., wn} and suppose
that player 2 is playing her words in order of increasing frequency. For any dic-
tionary of player 1, no consistent strategy of player 1 can stochastically dominate
all other consistent strategies.

We leave it as future work to characterize the set of sufficient and necessary con-
ditions for which playing words in order of increasing frequency in conjunction
with high effort for both players is a Bayesian-Nash equilibrium. Understanding
the incentive structure that leads to high effort is important since it is one way
the system designer can extend the set of labels for an image. In addition to
this, future work should identify specific score functions that provide desirable
equilibrium, and also move to analyze the larger context of a system of bilateral
games with a view on understanding methods to induce large-scale desirable
behavior, including such aspects as formalizing the role of Taboo Words and
leveraging the entire sequence of words suggested by a player rather than just
the particular match.
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Abstract. We study the Combinatorial Public Project Problem (CPPP)
in which n agents are assigned a subset of m resources of size k so as
to maximize the social welfare. Combinatorial public projects are an
abstraction of many resource-assignment problems (Internet-related net-
work design, elections, etc.). It is known that if all agents have submodu-
lar valuations then a constant approximation is achievable in polynomial
time. However, submodularity is a strong assumption that does not al-
ways hold in practice. We show that (unlike similar problems such as
combinatorial auctions) even slight relaxations of the submodularity as-
sumption result in non-constant lower bounds for approximation.

1 Introduction

There are various real-world settings in which a set of resources is chosen to
collectively serve an entire community: In elections, for instance, candidates are
chosen to serve a community of voters. States choose which roads to build for
the benefit of their residents. Another interesting example is that of choosing
overlay networks in the Internet [3,2] (for instance, in the context of inter-domain
routing): A node in the network chooses the optimal subset of nodes to route
traffic through, in a manner which is most beneficial to its clients1. Such an
overlay - the subset of chosen nodes through which traffic is routed - is beneficial
to different clients in different degrees. This creates the difficulty of maximizing
the social welfare in this setting (as in the settings above).

The Combinatorial Public Project Problem (CPPP), recently presented and
studied in [18], is an abstraction of such settings. In CPPP there arem resources
and n agents, each with a valuation function defined over all subsets of resources,
and the objective is to choose the k resources which maximize the social welfare
of the agents. It is easy to see that CPPP is NP hard. However, in the case
where each valuation function is submodular CPPP allows for good approxima-
tions [15,18] (within 1− 1

e ).2 A valuation function v is said to be submodular if
for every two subsets of resources S, T we have v(S∪T )+v(S∩T ) ≤ v(S)+v(T ).
1 A formal description of the overlay networks setting is presented in Section 2.
2 This bound is tight, see [8].
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In this paper we study CPPP, focusing on computational and communi-
cation complexity lower bounds which result from relaxations of the above
submodularity property. Indeed, out of the myriads of problems which can be
depicted as combinatorial public projects, in many instances the submodular-
ity constraint does not apply. We illustrate this point in Section 2, where we
show how the difference between submodular and general valuations separates
between two seemingly close Internet-related network design problems (overlay
networks).

Our main result is showing that even small relaxations of the submodular-
ity property in combinatorial public projects result in strong inapproximability
bounds:

Theorem: Obtaining an approximation ratio of m
1
4−ε for CPPP with subad-

ditive valuation functions requires exponential communication in m (for every
constant ε > 0).

A valuation function v is subadditive if for every two subsets of resources S, T
we have that v(S ∪ T ) ≤ v(S) + v(T ). In fact, we prove our lower bound for
a more restricted class of valuations called fractionally-subadditive [8] (intro-
duced in [17] and termed “XOS” there). This lower bound establishes that in
terms of approximability there is a huge gap between the submodular and sub-
additive case. This is in stark contrast to what is known about the related
combinatorial auctions problem, for which a 2-approximation is achievable for
subadditive valuations [8]. We show that our lower bound is nearly tight by
presenting a simple O(m

1
2 ) approximation algorithm for subadditive valuations.

We leave the question of closing the gap between m
1
4 and m

1
2 open. Also, a

big open question is showing that a similar lower bound is achievable in the
computational-complexity model.

In [18] it is shown, for the case of CPPP with submodular valuations, that
while a constant approximation ratio is possible, no such ratio is achievable via
truthful algorithms. The O(m

1
2 ) approximation algorithm for subadditive val-

uations presented in this paper is truthful. Hence, our results show that the
hardness of CPPP with subadditive valuations is due to computational rea-
sons and not to the truthfulness requirement. That is, truthful approximation
algorithms perform just, or nearly, as well as unrestricted algorithms.

Finally, we study the approximability of CPPP with general valuations. We
prove two complementary lower bounds, one in the computational-complexity
model and one in the communication-complexity model:

Theorem: Obtaining an approximation of O(n
1
2−ε) in CPPP with general

valuations, for any ε > 0, is impossible unless P = NP . Obtaining an approxi-
mation of O(n1−ε) is impossible unless P = ZPP .

Theorem: Obtaining an approximation of (1 − ε)n for CPPP with general
valuations requires exponential communication in m (for any ε > 0 and for any
n << 2m).
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2 Model and Motivation

In this section we formally present CPPP and our model. We motivate CPPP

by presenting an Internet-related network design setting which is naturally for-
mulated as a combinatorial public project. We use this example to illustrate the
importance of considering relaxations of submodularity.

2.1 The Model

In CPPP there is a set of n agents N = {1, . . . , n}, a set of m resources
M = {1, . . . ,m}, and a parameter 1 ≤ k ≤ m. Each agent has a valua-
tion function (sometimes simply referred to as a valuation) vi : 2[m] → R≥0.
We make two standard assumptions regarding each valuation function vi: That
vi(∅) = 0 (normalized) and that for all S ⊆ T ⊆ [m] it holds that vi(S) ≤ vi(T )
(non-decreasing). The objective in CPPP is to find a subset of resources S∗

of size k which maximizes the social-welfare. That is, we wish to find S∗ ∈
argmaxS⊆[m],|S|=k

∑
i vi(S).

We require algorithms for CPPP to run in time that is polynomial in the
natural parameters of the problem – n and m. In some cases agents’ valuations
can be concisely represented (encoded in space polynomial in m and n). In these
cases we wish to explore the computational complexity of the problem.

However, in general, the size of the “input” (the valuations) can be exponential
in m, and so we must specify how it can be accessed. We take a “black box”
(concrete complexity) approach (see [5]): Every valuation function is assumed
to be represented by an oracle which can answer a certain type of queries, and
we restrict our algorithms to ask polynomially (in both m and n) many such
queries. We consider two standard types of queries:

– Value queries: A value query to a valuation vi is in the form of a subset
of resources S ⊆ [m]. The answer is simply vi(S). This is a natural type of
query to use when designing algorithms for CPPP.

– General queries: A general query allows any type of questions (even com-
putationally intractable ones), as long as each question is addressed to a
single vi. We only require that the “size” of the query not be too “large”.
This is equivalent to Yao’s communication model [20] in which the differ-
ent parties are computationally omnipotent and we measure the number of
bits they must exchange to compute a given function (see an introduction to
communication complexity in [12]). The immense strength of general queries
is useful for showing impossibility results.

2.2 Overlay Networks

Consider the following Internet-inspired setting [3,2] we call the overlay network
problem: We are given a network graphG = (V,E), where V = S∪M∪D (S,M,D
are disjoint). We shall refer to the nodes in S as source-nodes, to the nodes inM as
potential overlay nodes, and to the nodes in D as destination-nodes. Assume that
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there is some metric functionm that assigns a non-negative real valueme to every
e ∈ E (assume that m’s value for a non-existent edge is∞).

Each node i ∈ S has a valuation function vi that assigns a non-negative
real value to every subset of potential overlays M ′ ⊆ M . Intuitively, for every
M ′ ⊆M , vi(M ′) specifies i’s desire to route throughM ′ to the nodes in D. Each
vi is consistent with the metric m in the following sense: For everyM ′,M ′′ ⊆M ,
vi(M ′) ≥ vi(M ′′) iff the sum of the lengths of the shortest routes from i to all
nodes in D that only go through nodes in M ′ is at most that obtained from
routing only through nodes in M ′′.3

The goal is to choose an overlay network from the potential overlay nodes.
For a given parameter 1 ≤ k ≤ |M |, we want to find a subset of M of size
k that maximizes the social welfare of the source nodes. That is, we wish to
find a set M∗ = argmaxM ′⊆M, |M ′|=k Σi∈Svi(M ′). It is easy to see that the
overlay network problem is a special case of CPPP in which the agents are the
source nodes, the resources are the potential overlays and the agents’ valuations
are induced by the network graph and the metric function 4. We distinguish
between two versions of this problem, which illustrate the big differences between
instances for which submodularity does, and does not, apply:

– The submodular case: Observe that if no two nodes in M are directly
connected via an edge in E then the valuation functions of the source nodes
in the overlay network problem are submodular. This is due to the fact that
they exhibit the decreasing marginal values property that is known to be
equivalent to submodularity: For every node i ∈ S, for everyM ′ ⊆M ′′ ⊆M ,
and for every a ∈M , it holds that vi(M ′ ∪ {a})− vi(M ′) ≥ vi(M ′′ ∪ {a})−
vi(M ′′).

– The non-submodular case: In the more general case, in which nodes in
M can be connected to one another, the valuation functions are no longer
guaranteed to be submodular. For example, think of a network graph G =
(V,E) with four nodes: a single source node i, a single destination node d,
and two potential overlay nodes a, b. Assume that E = {(i, a), (a, b), (b, d)}
and that m assigns a value of 0 to every edge in E. Let vi({a}) = vi({b}) = 0
and vi({a, b}) = 1. Observe that vi is indeed consistent withm, but is neither
submodular nor subadditive.

In this model the difference between general and submodular valuations orig-
inates from whether or not the nodes in M are connected to each other. These
seemingly subtle and insignificant differences lead to violations of submodularity
which motivate our study of CPPP with valuations which are not submodular.

3 Formally, for every node i ∈ S, and for every subset M ′ ⊆ M we define ci(M ′) to
be the sum of the lengths of the shortest paths from i to all nodes in D that only
go through nodes in M ′. That is, if we define (∀i ∈ S, d ∈ D) cid(M ′) to be the
length of the shortest route (given m) that has i as its first node, d as its last node,
and all intermediate nodes in M ′, then ci(M ′) = Σd∈DcidM ′. vi(M ′) ≥ vi(M ′′) iff
ci(M ′) ≤ ci(M ′′).

4 The artificial division of V into S, M , and D is only required for ease of exposition.
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3 Subadditive Valuations

In this section we study CPPP with subadditive valuations. We prove our main
result, which is showing a lower bound of m

1
4 for a class strictly contained

in subadditive valuations. This result shows that relaxations of submodularity
that may seem small at first glance, and are not too costly for other problems
(e.g., combinatorial auctions [7,8]), lead to unreasonable approximation ratios
for CPPP.

We show that this lower bound is nearly tight by presenting a simple
√
m ap-

proximation algorithm. This algorithm also has the advantage of being truthful.
Hence, we show that for CPPP with subadditive valuations the gap between
truthful and unrestricted algorithms in terms of approximation ratio is insignif-
icant (this is in contrast to the submodular case in which the gap is huge [18]).

3.1 Lower Bound for Subadditive Valuations

We prove our result for fractionally-subadditive valuations [8] (defined in [17] and
termed “XOS” there). This result is achieved in the communication complexity
(general queries) model. Thus, we show that even if agents are computationally
unlimited the number of bits they must exchange to obtain a good approximation is
unreasonable. The proof uses a probabilistic construction of a collection of subsets
of resources, which has useful combinatorial properties. These properties are then
exploited in a reduction from a well known problem in communication complexity.

Definition 1. A valuation function v is said to be additive (linear) if for every
S ⊆M v(S) = Σj∈S v({j}).
Informally, a valuation function is fractionally-subadditive if it is the pointwise
maximum over a set of additive (linear) valuations.

Definition 2. A valuation function v is said to be fractionally subadditive if
there is a set of additive (linear) valuations {a1, ..., al} such that for every S ⊆M
v(S) = maxr∈[l] ar(S).

The class of fractionally-subadditive valuation functions is known to be strictly
contained in the class of subadditive valuations and to strictly contain all sub-
modular valuations [17,13].

Theorem 3.1. Obtaining an approximation ratio of m
1
4−ε for fractionally-

subadditive valuation functions requires exponential communication in m (for
every ε > 0).

Proof. Fix a small ε > 0. We prove the theorem for the case n = k =
√
m.

The proof is by reduction from the Set Disjointness problem. In the Set

Disjointness problem, we have n parties. Each party i = 1, 2, ..., n holds a
t-bit string which specifies a subset Ai ⊆ {1, . . . , t}. The parties are required to
distinguish between the two following extreme cases:

1. ∩n
i=1Ai �= ∅

2. for every i �= j it holds that Ai ∩Aj = ∅
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The Set Disjointness problem was studied in [1] where it was shown to
require Ω( t

n4 ) communication complexity. In [16] Nisan shows a lower bound
due to Radhakrishnan and Srinivasan of Ω( t

n ).
For our reduction, we wish to first show the existence of a exponentially large

family of sets of items with a useful combinatorial property:

Definition 3. A collection F of subsets of [m] is said to have the r-intersection
property if, for every S, T ∈ F , |S ∩ T | ≤ r.

Lemma 3.2. There exists collection F of subsets of [m] such that:

– F has the 2mε-intersection property.
– For each S ∈ F it holds that |S| ≥ √m.
– |F | ≥ eαmε

for some constant α > 0.

Proof. We prove the lemma via a probabilistic construction. Each set S ∈ F is
constructed by choosing uniformly at random each element l ∈ [m] to be in S
with probability m

ε−1
2 . Let S and T be two such sets in F . We wish to show

that each such set is “large” and that the intersection between them is “small”,
with very high probability. We will use the Chernoff bound.

Claim. (Chernoff Bound) Let X1, . . . , Xm be a set of m independent random
variables that take values in {0, 1} such that for every l, Pr[Xl = 1] = p. Then,
for any δ is in the range [0, 2e− 1] we have that:

Pr[
m∑

l=1

Xl > (1 + δ)pm] ≤ e
−δ2pm

3 (1)

Pr[
m∑

l=1

Xl < (1− δ)pm] ≤ e
−δ2pm

3 (2)

For every resource l ∈ [m] we define a random variable Xl that is a assigned a
value of 1 if l ∈ S ∩ T and of 0 otherwise. Observe, that the probability that
Xl = 1 is mε−1, and by 1:

Pr[|S ∩ T | > 2mε] = Pr[ΣlXl > 2mε] < e
−mε

3

Similarly, for every S ∈ F , define a random variable Xl that is assigned a
value of 1 if l ∈ S and 0 otherwise, by 2 we have that for any δ ∈ (0, 1):

Pr[|S| < (1− δ)m
1+ε
2 ] = Pr[ΣlXl < (1 − δ)m

1+ε
2 ] < e

−δ2m
1+ε
2

3

We thus have that there is some constant α > 0 such that:

Pr[|S ∩ T | > 2mε or |S| < m 1
2 or |T | < m 1

2 ] < e−2αmε

Since these bounds must hold for any S, T we get that as long as |F |2 ≤ e2αmε

there is such a collection F . Thus, we know there exists a family of sets F =
{S1, . . . , St} where t = eαmε

for some constant α > 0, with the property that
every set is at least of size

√
m and |Si ∩ Sj | ≤ 2mε ∀i �= j ∈ t.
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Now, we show the reduction from the Set Disjointness problem. Let 1, 2, ...,√
m be the parties, and set t = eαmε

. Let Ai be the subset of [t] held by party
i. We construct an instance of CPPP with m resources, n =

√
m agents (cor-

responding to the
√
m parties in the Set Disjointness problem), and set the

number of resources to be chosen to k =
√
m. We identify each element r ∈ [t]

with a set Sr in the family F of subsets of [m] described above. Each agent i
constructs a valuation function vi in the following manner: Let aS denote the
additive valuation that assigns a value of 1 to every resource in S and a value of
0 to every resource j /∈ S. Let vi = max{aSr |r ∈ Ai}.

Observe that if
⋂

iAi �= ∅ then there is a set Sr that has a corresponding
additive valuation in all of the vi’s. Hence, assigning a subset of Sr of size

√
m

to the agents (simulated by the Set Disjointness parties) results in a social
welfare value of m. What happens if for every two i �= j ∈ [t] Si ∩ Sj = ∅? We
shall now show that in this case the optimal social welfare is O(m

3
4+ε). This

would mean that an approximation of O(m
1
4−ε) to the CPPP with fractionally-

subadditive valuations enables the distinction between the two extreme cases in
the Set Disjointness problem. Therefore, we will then be able to conclude
that Ω( t

n ) bits are required to do so (a number exponential in both n and m).
So, we are left with showing that if for every two i �= j ∈ [t] Si ∩ Sj = ∅ then

the optimal social welfare is O(m
3
4+ε). Assume, for the purpose of contradiction,

that there is some set T of size
√
m such that the social welfare derived from T ,

SW (T ), is greater than 2m
3
4+ε. Let ai be an additive valuation function of i for

which vi is maximized (for T ). Observe that SW (T ) = Σi∈[n] ai(T ). Assume,
w.l.o.g., that T = {1, ...,

√
m}. For every resource l ∈ T , let xl be the number

of the ai’s that assign a value of 1 to l. Observe that SW (T ) = Σi∈[n] ai(T ) =
Σl∈T xl. Also observe that Σl∈T xl(xl − 1) = Σi�=j |Si ∩ Sj ∩ T |. Since we know
that the cardinality of the intersection of every two sets cannot exceed 2mε we
now have that:

2m1+ε = 2n2mε ≥
∑
i�=j

|Si ∩ Sj ∩ T | =
∑
l∈T

xl(xl − 1)

Using elementary calculus, it is easy to show that
∑

l∈T x2
l ≥ m

1
4
∑

l∈T xl.
(This is due to the fact that the worst case ratio is achieved when all xl’s are
equal.)

Combining the last two equations gives us that

SW (T ) =
∑
l∈T

xl ≤ 2m
3
4+ε.

A contradiction.

3.2 A Truthful
√

m Approximation Algorithm

We show that the result stated in the above theorem is nearly tight by presenting
a simple truthful algorithm which obtains a min{k,

√
m} approximation ratio

(for any value of k and n) and requires at most n ·m value queries.
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The Algorithm:

– Arbitrarily partition [m] into r = max{m
k ,
√
m} disjoint subsets of equal size

S1, ..., Sr.
– Ask each agent to specify her value for each of the different subsets St.
– Choose the subset St that maximizes the social welfare

∑
i vi(St).

This algorithm, similar to that presented in [5], is a simple maximal-in-range
algorithm [5,6], and so it can be made truthful via VCG payments [19,4,11]. Ob-
serve that the algorithm indeed requires at mostm value queries to be addressed
to each of the n agents. Therefore, all that is left to show is that the algorithm
provides the required approximation-ratio. We show this for subadditive valua-
tions.

Proposition 3.3. If v1, . . . , vn are subadditive then the algorithm provides an
approximation ratio of min{k,

√
m}.

Proof. Let k ≤
√
m. Let O be a set of size k that maximizes the social welfare.

Then, by (iterative use of) subadditivity, for every i ∈ [n], vi(O) ≤
∑

j∈O vi({j}).
Hence,

∑
i∈[n] vi(O) ≤

∑
i∈[n]

∑
j∈O vi({j}) =

∑
j∈[O]

∑
i∈[n] vi({j}). This

implies that there is an element j ∈ [m] such that the social welfare derived
from j is at least 1

|O| = 1
k of the optimal social welfare. This item j appears

in one of the St’s, and so, because the valuations are non-decreasing, the social
welfare derived from that St is also at least 1

k of the optimal social welfare.
Since the algorithm optimizes over all the St’s it is bound to achieve the desired
approximation ratio.

Let k >
√
m. Let O be the set of size k that maximizes the social welfare. Be-

cause the valuations are non-decreasing, Σivi(O) ≤ Σivi([m]). Let S1, . . . , S√m

be some arbitrary partition of [m] into
√
m disjoint subsets of size

√
m. Exploit-

ing subadditivity in a way similar to that shown above implies that for one of
these sets the social welfare is at least a 1√

m
fraction of the social welfare for the

entire set [m]. This concludes the proof of the proposition.

4 Inapproximability of CPPP with General Valuations

In this section we study CPPP with general valuations (but still normalized
and non-decreasing). As the overlay networks example (Section 2), and others
(elections etc.), illustrate, in many cases submodularity, and even subadditivity,
do not apply. We prove strong inapproximability results for CPPP with general
valuations in both the computational- and the communication-complexity mod-
els. In the communication-complexity model our lower bound is tight (a trivial
matching upper bound exists).

Theorem 4.1. Obtaining an approximation of O(n
1
2−ε) to the social welfare in

CPPP with general valuations, for any ε > 0, is impossible unless P = NP .
Obtaining an approximation of O(n1−ε) to the social welfare is impossible unless
P = ZPP .



Inapproximability of Combinatorial Public Projects 359

Proof. We reduce from the Maximal Welfare Tree (MWT) problem studied in
the context of distributed algorithmic mechanism design [10,9,14]. Our reduction
preserves the hardness results for this problem as shown in [14]. In the MWT

problem we are given a graph G = (N,L) with a set of nodes N and links L. A
unique destination node d is given and each node a ∈ N \ {d} has a valuation
function va : Pa → R≥0, where Pa is used to denote the set of all simple
paths from a to the destination d. The objective in MWT is to form a tree
rooted in d which maximizes the social welfare, i.e., choose the tree T ∗ such that
T ∗ ∈ argmaxT∈T d

L

∑
a∈N\{d} va(T ), where T d

L is the set of all possible trees in L
rooted in d. We consider the special case of MWT in which for all a ∈ N \{d} we
have va : Pa → {0, 1}. It is known that for any ε > 0 approximating MWT, even
for this special case, within a factor ofO(n

1
2−ε) is impossible unless P = NP and

approximating within a factor of O(n1−ε) is impossible unless P = ZPP [14].
The reduction from MWT is as follows: Given an instance of MWT such that

the range of all valuation functions is {0, 1}, for each link l ∈ L we associate a
resource l′ in CPPP and each node a ∈ N \ {d} in MWT will correspond to
an agent a′ in CPPP. It remains to define the valuation function of a′. Note
that since our interest is in showing a lower bound, we can adversarially set the
number of chosen items to be k = |N | − 1. Now, let P+

a be the set of paths for
which va = 1. For all E ⊆ L, the valuation function for the corresponding agent
a′ in CPPP is defined by:

va′(E) =
{

1 ∃P ∈ P+
a : P ⊆ E

0 otherwise (3)

Observe that choosing a tree T in MWT with social welfare value SW (T ) = c
corresponds to choosing a set of resources that induces the same social wel-
fare value in CPPP. Conversely, choosing a set of resources T ′ in CPPP s.t.
SW (T ′) = c′ necessarily means that we can trim T ′ to a set of edges T which
forms a routing tree with d as its source, and that we have exactly c′ nodes
which have routes to d in T , and hence SW (T ) = c′ in MWT.

Theorem 4.2. Obtaining an approximation ratio of (1 − ε)n for general val-
uations requires exponential communication in m (for any ε > 0 and for any
n << 2m).

Proof. For CPPP with general valuation functions, n agents, m items and a
parameter 1 ≤ k ≤ m we show a lower bound of Ω(

(
m
k

)
·n−1) again by reducing

from the Set Disjointness problem.
We construct an instance of CPPP with n agents in which no restrictions

(except for being normalized and non-decreasing) apply to the agents’ valuation
functions. Let S1, . . . , St be the (ordered) sets in the range of all possible alloca-
tions of size k. For each party i in Set Disjointness with the setAi ⊆ {1, . . . , t},
we associate an agent i in CPPP with the following valuation function:

vi(Sr) =
{

1 r ∈ Ai

0 otherwise
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Observe that these valuation functions are indeed normalized and non-
decreasing. Let Sl be the set which maximizes the social welfare, i.e., l ∈
argmaxl∈[d] |{Ai| l ∈ Ai}|. To approximate the social welfare within a factor of
(1− ε)n for any ε > 0, one must allocate some set S for which there are at least
two agents i and j such that vi(S) = vj(S) = 1. Due to the above construction
of the agents’ valuation functions this necessarily implies deciding between the
two extreme cases of the Set Disjointness problem. Thus, for d =

(
m
k

)
we get

a lower bound of Θ(
(

m
k

)
· n−1) for CPPP with general valuation functions.

In the communication model a trivial matching upper bound of n exists: Query
each agent i for her most valued set Si of size k, and assign the agents a set T ∈
argmaxivi(Si). It is easy to see that this indeed guarantees an n-approximation.
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Abstract. Since summer 2007, mobile phone users in the European
Union (EU) are protected by a ceiling on the roaming tariff when call-
ing or receiving a call abroad. We analyze the effects of this price reg-
ulative policy, and compare it to alternative implementations of price
regulations. The problem is a three-level mathematical program: The
EU determines the price regulative policy, the telephone operator sets
profit-maximizing prices, and customers choose to accept or decline the
operator’s offer. The first part of this paper contains a polynomial time
algorithm to solve such a three-level program. The crucial idea is to
partition the polyhedron of feasible price regulative parameters into a
polynomial number of smaller polyhedra such that a certain primitive
decision problem can be written as an LP on each of those. Then the
problem can be solved by a combination of enumeration and linear pro-
gramming. In the second part, we analyze more specifically an instance of
this problem, namely the price regulation problem that the EU encoun-
ters. Using customer-data from a large telephone operator, we compare
different price regulative policies with respect to their social welfare. On
the basis of the specific social welfare function, we observe that other
price regulative policies or different ceilings can improve the total social
welfare.

Keywords: Pricing problems, three-level program optimization, social
welfare maximization, EU roaming regulation.

1 Introduction

It is of major importance to the European Union (EU) that European companies,
governments and citizens play an important role at the realization of a world-
economy based on knowledge. The EU tries to stimulate the development and
use of new information and communication technology, and to enlarge the level of
competition of the EU compared to other markets, e.g. United States and Japan.
An important element of the European policy is to assure that ICT-services are
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available and affordable for everyone. This contains for example telephony, fax,
internet and free emergency numbers1. However, especially the prices for making
and receiving calls abroad, referred to as roaming, have been extremely high in
the EU recently. A warning did not lead to a decrease in prices, and therefore
the European Commission uses price regulation to force lower prices and more
transparency in the market [1]. Currently, the EU considers the same instrument
for data roaming, since the situation mirrors the one for voice roaming back in
2007. We analyze both algorithmically and practically the effects of the current
price regulation on the social welfare, and compare it to alternative regulations.

We regard a general model in which a government tries to maximize social
welfare through price regulation. This regulation should bound the producer
(not necessarily a telephone operator) in setting the prices so as to protect the
customers in the market. The producer determines the price of items. An item is
not necessarily a physical product, but can for example also be a minute calling,
internet connection, shipping, etc. We use a model in which there is only one
producer that determines the pricing strategy, under given and known market
competition. Obviously, there exist markets in which multiple producers operate
and need to share a set of customers. However, for this research we make the
simplifying assumption that, under given market regulations, producers reach
an optimal market price, so we identify them with just one single producer.

1.1 Model

Let K = {1, . . . ,m} be the set of distinct item types a given producer wants to
price. Let pk be the price of items of type k ∈ K that needs to be determined by
the producer. Let J = {1, . . . , n} be a set of potential customers. Every customer
j ∈ J has demand djk for item k ∈ K, which is the number of times customer
j wants to purchase item k. For example, if item k represents calling abroad for
one minute, then djk is the number of minutes j wants to call abroad. Or, if k
is the start up of a process, then djk is 1 if j prefers to start the process and
0 otherwise. Every customer j requests a contract from the producer, which is
specified by the total demand vector (dj1, . . . , djm). Once the item prices are
determined, the price of the contract, p(j), is defined by the following affine
function

p(j) = dj0 + dj1p1 + · · ·+ djmpm , j ∈ J . (1)

Note that the price of a contract is personal, due to a potential ‘entrance fee’
dj0, and because it depends on the demand (dj1, . . . , djm) of a single customer.
We assume, e.g. through market research, that we know the customers’ demands
djk for all item types k ∈ K, and valuation bj , for all customers j ∈ J , which
is the maximum amount customer j is willing to pay for her bundle. Therefore,
we are faced with a purely algorithmic problem in contrast to mechanism design
problems where the valuations are private information to the customers.

The pricing regime as defined in (1) is referred to as affine pricing in
the economic literature; it was also discussed by Grigoriev et al. in [11]. It
1 From: http://www.europa-nu.nl
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is probably a more realistic model than the single item pricing model that
was discussed in many papers on algorithmic profit maximizing pricing prob-
lems [2,3,7,8,9,10,12,13,14].

A solution to the problem is a price p(j) for every customer j ∈ J , which
is determined through a vector of item prices p = (p1, . . . , pm) as given in (1).
Every customer decides whether to accept this contract or not. Hereto, she sets
binary variable wj to 1 if she accepts, and 0 otherwise, in order to maximize her
personal objective, denoted by fC

j (p). In this paper, we assume a linear objective
function. For example, think of fC

j (p) = bj − p(j). Let w = (w1, . . . , wn) denote
the strategies of all customers. Customers that accept the contract are referred
to as winners, and the set of winners is defined by W = {j ∈ J : wj = 1}. We
assume that all items are available in unlimited supply, which is true for digital
items for example.

The government protects the customers by means of regulative constraints.
Let R denote the set of constraints imposed by the government. Throughout
this paper, we assume that the number of regulations |R| is constant. Every
constraint r ∈ R is defined by gr(p, αr) ≤ 0, where α = (α1, . . . , α|R|) is a vector
of price regulative parameters determined by the government. For example, a
ceiling on item price pk is implemented by letting gk(p, αk) = pk − αk. In this
paper, function gr(p, αr) is restricted to be a linear function in α. We introduce
a bilevel program in which the producer maximizes his objective fP(p, w) (e.g.
revenue minus production costs) such that price vector p = (p1, . . . , pm) satisfies
the price regulative constraints. Every customer maximizes her objective fC

j (p).
For a reference on bilevel programs, see e.g. [15].

2lp : maxp∈�m
+

fP(p, w)
maxwj∈{0,1} fC

j (p)wj ∀ j ∈ J
s.t. gr(p, αr) ≤ 0 ∀ r ∈ R

In the above mathematical program, price regulative parameters α and con-
straints gr(p, αr) are assumed to be given. This bilevel problem can be solved in
polynomial time for a constant number of distinct itemsm, by a simple enumera-
tive algorithm [11]. In this paper, we propose a three-level program where, on top
of the two levels given by producer and customers, the government maximizes
social welfare by modifying the price regulative parameters α. Also, instead of
simply forbidding the violation of price regulative constraints gr(p, αr) ≤ 0, we
introduce taxes τ = (τ1, . . . , τ|R|). That is, if the producer’s prices violate regu-
lation gr(p, αr) ≤ 0, then he pays a penalty over the additional profit he receives
by this violation. The actual penalty for violating regulation r is denoted by
fTax

r (p, w, α, τ) = gr(p, αr)+ · τr · ḡr(w), where gr(p, αr)+ = max{0, gr(p, αr)} is
the amount of violation, τr is the tax (or penalty), and finally function ḡr(w)
needs to be specified for each type of price regulative constraint r. For example,
if the regulation is a ceiling gk(p, αk) = pk −αk, it sounds reasonable to ask tax
τk for each euro earned by violating the ceiling. Then ḡr(w) would have to be
defined as the total demand of all winners,

∑
j∈J djkwj . Let us denote the total

tax payment for a producer by
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fTax(p, w, α, τ) =
∑
r∈R

fTax

r (p, w, α, τ) =
∑
r∈R

gr(p, αr)+ · τr · ḡr(w) . (2)

The mathematical program (3lp) below shows the general structure of the
three-level program that we consider.

3lp : max
α,τ∈�|R|

+
fG(p, w, α, τ)

maxp∈�m
+

fP(p, w)− fTax(p, w, α, τ)
maxwj∈{0,1} fC

j (p)wj ∀ j ∈ J

If the government’s objective fG(p, w, α, τ) is monotone in the prices then we
show that we can solve this program in polynomial time, given that the number
of items m and the number of regulative constraints |R| are constant.

Note that the lower two levels of 3lp can be seen as the Lagrangian of the
bilevel program 2lp, and a strict price regulation as in the bilevel model (that
is, forbidding to violate the regulative constraints) can still be implemented by
letting τr be arbitrarily large for all r ∈ R (then τ is not strictly a tax, but just
an arbitrary penalty).

It is known that problem 2lp with a non-constant number of items m is hard
to approximate within a semi-logarithmic factor in the number of customers
n [8]. This means, that solving the three-level program 3lp has the same com-
plexity already if the government’s objective is equal to the producer’s objective.
As in [11], in this paper we make the assumption that the number of distinct
item types m is constant. These are reasonable assumptions particularly for the
applications that we aim at, since there the number of item types is very small
(for example, price per minute for a call received, a call placed, and price per
SMS). For a small number of items, the number of regulations is also assumed
to be small.

1.2 Our Results

For a constant number of items m and regulative constraints |R|, we present a
polynomial time algorithm to solve three-level program 3lp, under the restric-
tions that the government’s objective function is monotone in the item prices,
and the price regulative constraints gr(p, αr) are linear in α for all regulations
r ∈ R.

We explicitly define all functions in three-level program 3lp to optimize the
social welfare for the specific problem faced by the European Union in regu-
lating the roaming charges. We present polynomial time algorithms to find the
optimal social welfare for the current EU policy (Theorem 3), optimization of
the tax level only (Theorem 4), and optimization of the regulative parameters
only (Theorem 5). After the theoretical results and description of the algorithms
we perform a practical study in Section 4 to verify practical feasibility of the
approach and to evaluate the result of different scenarios for implementing price
regulations. Here, we use the actual price regulations set by the European Com-
mission and investigate the EU policy in terms of social welfare.
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2 Parameter and Tax Level Optimization

Consider three-level program 3lp, as specified in the introduction. In this sec-
tion, we propose an algorithm to solve this program for which the government’s
objective function is monotone in the prices, and the regulations gr(p, αr), r ∈ R,
are linear in α (note that the function does not have to be linear in p).

Definition 1. The set V of vertices is defined as all price vectors p =
(p1, . . . , pm) defined by m linearly independent constraints out of the n+m con-
straints fC

j (p) = 0, j ∈ J , and pk = 0, k ∈ K.

The government’s objective function fG is monotone in the prices. Therefore,
we straightforwardly derive the following theorem.

Theorem 1. For any given vectors w, α and τ , the optimal price vector p =
(p1, . . . , pm) for the producer can only be at a vertex as defined in Definition 1.

We propose an algorithm that solves problem 3lp by optimizing price regulative
parameters α and the taxes τ simultaneously. Thereto, we partition the polyhe-
dron of the price regulative parameters α into a polynomial number of smaller
polyhedra, and solve a linear programming problem in each of those. These lin-
ear programs are defined in such a way that we can verify if a given price vector
constitutes the producer’s optimum prices. This decision problem is in general
non-linear. The trick here is to define the partition such that this decision prob-
lem becomes linear inside each of the small polyhedra. The optimum solution of
a three-level mathematical program is eventually obtained by enumeration over
all polyhedra and vertices, and evaluating the social welfare in each of them.

Consider the following decision problem.

Problem 1. Are there price regulative vectors α and τ , such that vertex v ∈ V
with price vector p(v) maximizes the objective function fP−fTax for the producer?

The main idea for the solution to Problem 1: Consider some arbitrary vertex
v ∈ V , we would like to write constraints expressing the fact that vertex v
maximizes the objective, namely

fP(p(v), w(v))− fTax(p(v), w(v), α, τ) ≥ fP(p(u), w(u))− fTax(p(u), w(u), α, τ)

for all vertices u ∈ V . By definition, fTax(p(v), w(v), α, τ) is nonlinear in the
price regulative parameters. To linearize fTax we introduce a subdivision of
�|R|

+ into polyhedra Al, l = 1, . . . , L. For a given vertex p(v), v ∈ V and by
linearity of gr(p(v), αr), there is a unique value for αr, say av

r , where the sign
of gr(p(v), αr) changes from ≤ 0 to > 0. Doing this for all vertices v ∈ V and
all regulative constraints r ∈ R, we define a rectangular subdivision in �|R|

+ for
possible α’s by αr = av

r . On each such defined α-rectangle Al, we may now
compare the producer’s objective in vertex v ∈ V to the objective in all other
vertices u ∈ V \v. To do this, we split the penalty function fTax

r , r ∈ R, into two
parts for every vertex v ∈ V and polyhedron Al: x

(v,l)
r incorporates all terms in
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the regulative constraint not multiplied with αr and y(v,l)
r incorporates all terms

multiplied with αr. Therefore,

fTax

r (p(v), w(v), α, τ) = gr(p, αr)+ · τr · ḡr(w) = x(v,l)
r τr + y(v,l)

r αrτr, ∀ r ∈ R.

We can derive a solution to Problem 1 on Al by solving the following mathe-
matical program for every vertex v ∈ V .

fP(p(v), w(v))−
(∑

r∈R

x
(v,l)
r τr + y(v,l)

r αrτr

)
≥

fP(p(u), w(u))−
(∑

r∈R

x
(u,l)
r τr + y(u,l)

r αrτr

)
∀u ∈ V

α̌
(l)
r ≤ αr ≤ α̂(l)

r ∀ r ∈ R
τr ≥ 0 ∀r ∈ R.

This quadratic program can be linearized by simple variable substitution φr =
αrτr for all r ∈ R. Therefore, for every vertex v ∈ V and polyhedron Al, Prob-
lem 1 becomes a linear program (LP1) with variables τr and φr for all r ∈ R.

LP1 :
∑

r∈R

(
x

(v,l)
r − x(u,l)

r

)
τr +

(
y
(v,l)
r − y(u,l)

r

)
φr ≤

fP(p(v), w(v))− fP(p(u), w(u)) ∀u ∈ V
α̌

(l)
r τr ≤ φr ≤ α̂(l)

r τr ∀ r ∈ R
τr ≥ 0 ∀r ∈ R.

On any polyhedron Al this linear program is either infeasible, suggesting that
there are no price regulative parameters in Al that makes v the solution that
maximizes the producer’s objective, or otherwise we obtain corresponding price
regulative parameters in Al. Eventually, a straightforward algorithm enumerat-
ing all vertices v ∈ V , checking feasible solutions for α’s in Al, l = 1, . . . , L, and
picking the one that achieves the maximal social welfare, provides an optimal
solution to the three-level program. Since the number of items m is constant, we
have a polynomial number of vertices. As the number of regulative constraints
|R| is constant, we have only a polynomial number of polyhedra in �|R|

+ . For
every polyhedron and vertex, we solve linear program LP1, deriving the follow-
ing theorem.

Theorem 2. Three-level program 3lp admits a polynomial time algorithm if the
number of items m and the number of regulative constraints |R| are constant.

3 Optimization of European Regulation

In this section, we explicitly define functions fG, fP, fC and fTax to solve the
problem faced by the European Union regarding the regulation on roaming.
First of all, the EU sets ceilings on the prices. That is, R = K, and gk(p, αk) =
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pk − αk for all items k ∈ K. The objective of the producer is to maximize
profit, defined as revenue minus costs. The revenue is the total payment by
all winning customers. As for the costs, let ck be the cost of providing one
unit of k to a customer. The producer’s cost to serve customer j is denoted by
c(j) = dj1c1 + · · · + djmcm. The customers accept a contract if its price does
not exceed the valuation, that is, the objective of customer j ∈ J is defined as
(bj −p(j))wj . If p(j) ≤ bj this function is maximized by setting wj = 1 and thus
accepting the contract, and 0 otherwise.

In the simplest setting, the government regulates the prices by forbidding to
violate the constraint pk ≤ αk for every item k ∈ K. We model this by the
following bilevel program.

maxp∈�m
+

∑
j∈J (p(j)− c(j))wj

maxwj∈{0,1} (bj − p(j))wj

s.t. pk ≤ αk ∀ k ∈ K
To find the prices that will lead to the optimal profit for the producer, we use

the affine pricing algorithm introduced in [11], in which we incorporate the price
regulative constraints.

Theorem 3 ([11]). For given price regulative constraints pk ≤ αk which must
not be violated, profit maximizing prices can be computed in polynomial time,
given that the number of distinct item types m is constant.

As already discussed in the introduction, we study if there are other price regu-
lative strategies that might lead to an increase in social welfare. Thus, let us first
proceed with a definition of the social welfare function we believe to be appropri-
ate for modeling the roaming regulation problem. According to utilitarians such
as Jeremy Bentham and John Stuart Mill, society should aim to maximize the
total utility of individuals, aiming for “the greatest happiness for the greatest
number”. Thus, the government strives to set the price regulative parameters so
as to maximize the social welfare, defined as the sum of utilities. The utility of the
producer is the total revenue minus costs. We assume that the producer is risk-
neutral, and thus the marginal utility is equal for every extra euro earned. On
the contrary, consumers have a concave utility function in general, which means
that they are assumed to be risk-averse. A concave utility function induces that
a gain in wealth conveys a smaller increase to utility than the reduction in utility
imparted by a loss in wealth of equal magnitude, that is, diminishing marginal
utility. Another property of a concave utility function is that a customer with a
low valuation may value one unit of money more than a customer with a high
valuation. In other words, the marginal utility of a euro to a ‘poor’ customer is
likely to exceed the marginal utility of a euro to a ‘rich’ customer [17, Chapter
VII]. Daniel Bernoulli [6] first proposed a utility function that is equal to the
natural logarithm of wealth. A logarithmic function is monotonically increasing
and the marginal utility function is monotonically decreasing, which are the two
basic mathematical properties that consumer utility functions have to satisfy [4].
In the words of Savage [16], “no other function has been suggested as a better
prototype for Everyman’s utility function”. Based on this discussion, we model
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the utility of customer j ∈ J as ln(bj−p(j)+1)wj , where the addition of 1 is solely
to have a positive function. Conclusively, the social welfare, and thus the govern-
ment’s objective function, is defined as

∑
j∈J (ln(bj−p(j)+1)+p(j)−c(j))wj. In

Section 3.1, we furthermore include a tax payment for violating the price regula-
tive constraints, similar as in Section 2. However, this does not change the social
welfare function, as the tax is paid by the producer to the government. Thus, the
producer’s utility is decreased by the same amount as the government’s utility
is increased, also known as transferable utility. This assumption is justified when
the producer and the government have a common currency that is valued equally
by both. Another reason not to include the tax payment in the social welfare is
that it is a punishment to the producer, not to the society as a whole.

3.1 Price Regulation by Tax

In this section, the price regulative constraints pk ≤ αk are not enforced by
law, but their violation is penalized via tax (or penalty) τ1. We define ḡk(w) =∑

j∈J djkwj for all items k ∈ K. The penalty function is defined as

fTax

k (p, w, α, τ) = gk(p, αk)+ · τ1 · ḡk(w) =
∑
j∈J

djk(pk − αk)+τ1wj , ∀ k ∈ K.

Thus, given vector α, the government determines tax level τ1 to maximize social
welfare.

maxτ1≥0 fG =
∑

j∈J (ln(bj − p(j) + 1) + p(j)− c(j))wj

maxp∈�m
+

fP − fTax =
∑

j∈J

(
p(j)− c(j)−

∑
k∈K djk(pk − αk)+τ1

)
wj

maxwj∈{0,1} fC

j wj = (bj − p(j))wj

For any given αk, k ∈ K, consider the arrangement of linear equalities defined
in �m by the valuation constraints p(j) = bj for every customer j ∈ J (that
is, fC

j = 0), nonnegativity constraints pk = 0 and price regulative constraints
pk = αk for every item k ∈ K.

Definition 2. A vertex v ∈ V is defined as a price vector p = (p1, . . . , pm)
that satisfies m linearly independent constraints out of the n + 2m constraints
p(j) = bj, j ∈ J , pk = αk, and pk = 0, k = 1, . . . ,m.

As a direct consequence of Theorem 1, for any given vector α and the given
social welfare function fG, profit maximizing price vectors p = (p1, . . . , pm) can
only be vertices as defined in Definition 2. More specifically, one can easily check
that the necessary Karush-Kuhn-Tucker conditions (see e.g. [5]) do not hold in
any point except the vertices.

Notice that a vertex v ∈ V is most preferable to the producer if the profit
after tax at this vertex, fP(p(v), w(v))− fTax(p(v), w(v), α, τ), is at least as high
as at any other vertex. Let W (v) = {j ∈ J : w(v)

j = 1}. More precisely, for every
vertex u ∈ V \ v, the tax level τ1 must be such that
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∑
j∈W (v) p(v)(j)− c(j)−

∑
k∈K

djk(p(v)
k − αk)+τ1 ≥∑

j∈W (u) p(u)(j)− c(j)−
∑

k∈K djk(p(u)
k − αk)+τ1.

Note that all terms except τ1 in the above inequality are known, as αk is
given and p

(v)
k is defined for all k ∈ K and v ∈ V . Let us denote T (v) =∑

j∈W (v)

∑
k∈K djk(p(v)

k − αk)+. We rewrite the latter inequality and solve the
following feasibility linear program (LP2) below for each vertex v ∈ V .

(T (v) − T (u)) τ1 ≤
∑

j∈W (v)

(
p(v)(j)− c(j)

)
−
∑

j∈W (u)

(
p(u)(j)− c(j)

)
∀u ∈ V \ v

τ1 ≥ 0.

Let V ∗ ⊆ V be the set of vertices for which the above linear program has a
feasible solution. Then, among all vertices in V ∗ we select the vertex v∗ with the
highest social welfare

∑
j∈W (v∗) ln(bj − p(v

∗)(j) + 1) + p(v
∗)(j) − c(j). The tax

level τ1 is obtained as a solution to the linear program for this particular vertex
v∗. So we have proved:

Theorem 4. For given price regulative constraints pk ≤ αk, the tax level τ1
that maximizes the total social welfare, and the corresponding profit maximizing
prices can be computed in polynomial time, given that the number of distinct
item types m is constant.

3.2 Parameter Optimization

So far we assumed given values of the price regulative parameters α1, . . . , αm. In
this section we optimize these parameters under the regulation that the producer
sets the price pk ≤ αk for all k ∈ K. Hereto, we use the following model.

maxα∈�m
+

∑
j∈J (ln(bj − p(j) + 1) + p(j)− c(j))wj

maxp∈�m
+

∑
j∈J

(
p(j)− c(j)−

∑
k∈K djk(pk − αk)+τ1

)
wj

maxwj∈{0,1} (bj − p(j))wj ∀ j ∈ J
s.t. pk ≤ αk ∀ k ∈ K

Since parameters αk, k ∈ K, are not given, let V denote the set of vertices
as defined in Definition 1. For every vertex v ∈ V , let αk = p

(v)
k for all k ∈ K.

Let U = {u ∈ V : pk ≤ αk, ∀ k ∈ K}. Then, vertex u ∈ U is most preferable to
the producer if the profit

∑
j∈W (u) p(u)(j) − c(j) ≥

∑
j∈W (u′) p(u

′)(j) − c(j) for
all u′ ∈ U \u. Among all vertices that are most preferable given set U , we select
the one with the highest social welfare and set the α-parameters accordingly.

Theorem 5. For the regulation that forbids the producer to violate the con-
straints, the parameter vector α that maximizes the total social welfare, and
the corresponding profit maximizing prices can be computed in polynomial time,
given that the number of distinct item types m is constant.
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4 Computational Results

In the summer of 2007, the European Commission decided to implement a EU-
wide ceiling on the international roaming tariffs. The maximum price for calling
from abroad is e 0.5831, for receiving a call abroad is e 0.2856, and the max-
imum price an operator may charge another operator for using the network is
e 0.3570. This latter is the cost of the operator for providing roaming service to
the customers. In summer 2008, these prices are lowered to e 0.5474, e 0.2618
and e 0.3332, respectively. In summer 2009, they will decrease even further to
e 0.5117, e 0.2261 and e 0.3094. The goal of this practical study is to analyze
the effect of properly chosen parameters on social welfare, and the advantage
of using taxes instead of forbidding to violate the price regulation. We use data
from a telephone operator containing the phone usage of customers with a pre-
paid subscription during one month, March 2007, thus this data set comes from
the period before the introduction of the price regulation. The data contains,
for each customer, the number of minutes and times each customer uses the mo-
bile phone for different actions (e.g. calling within the home country or abroad,
sending a text message, etc.). We determine for every customer which operator
in the telephone market offers the cheapest possible total price for her complete
contract. This price determines her valuation bj . For this study, even though the
data contains more information, we focus on optimizing the prices for roaming
only, namely calling and receiving a call abroad. This is to say, we consider a
problem in dimension 2, with prices p1 for calling abroad, and p2 for receiving
a call abroad. We also impose the constraint that the price for receiving a call
should not exceed the price for placing a call (p1 ≥ p2). If customer j ∈ J re-
quests to call dj1 minutes from abroad and receives calls abroad for dj2 minutes,
within a month, the price customer j has to pay is p(j) = d1jp1 + d2jp2.

4.1 Experiments

We apply the model and techniques from Section 3 to a data set containing 1366
customers. Also, we create one random sample out of this data set containing
500 customers. In the application of the first algorithm, we use the current
price regulations imposed by the European Commission as described in the first
paragraph of this section. The costs for calling from abroad (c1) is also retrieved
from the table, and the cost for the operator for a customer to receive a call,
is half of this. We forbid the operator to violate this price regulation by law
(Law); i.e., a penalty τ1 =∞. Second, we keep the price regulative parameters
αk as they are, but now we find a tax level τ1 ≥ 0 which maximizes social
welfare (Tax). Note that there can be a range of feasible tax levels achieving
the maximal social welfare. This effect was also observed in our results. Third,
we compute the optimal social welfare by optimizing over the price regulative
parameters αk (Opt).

Table 1 shows the total social welfare for all instances. A complete overview
of the results is deferred to the full version of this paper. We summarize our
conclusions from these results as follows. Introducing a tax (Tax) instead of
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Table 1. Social welfare obtained using different algorithms with price regulations on
making and receiving calls abroad

Year Law Tax Opt

Complete data set 2007 2834.20 3315.77 3315.77
n = 1366 2008 2797.51 3443.59 3443.59

2009 2809.15 3571.40 3571.40
Sample 2007 878.69 1030.63 1038.66
n = 500 2008 887.15 1054.92 1059.21

2009 895.02 1074.73 1079.76

enforcing the price regulation by law (Law) leads to an increase in the social
welfare. This suggests that a more liberal price regulative policy might have
the potential to improve social welfare. The tax levels that are obtained using
the algorithm are non trivial. In extreme cases (not observed here, though) a
producer might be able to participate in the market where it would not be
profitable to do so if violation of price regulations was forbidden. Not surprisingly,
the social welfare is maximal when the α-parameters are optimized (Opt). In the
sample, the social welfare is strictly larger in the latter case. For the complete
data set, both algorithms yield the same social welfare. Concluding, it seems
that the current EU practice does not yield the optimum, at least not with the
data set and experimental setup that we use here.

5 Conclusion

First, we think it is an interesting result in its own that the given three-level pro-
gram can indeed be solved in polynomial time by making use of linear program-
ming techniques. Even though techniques are comparably simple and crucially
use the fact that the dimensionm is constant, we believe it is not straightforward
to come up with a polynomial time algorithm.

Second, on the more economic side, our computational results suggest that a
more liberal price regulative policy, namely taxation instead of regulation by law
may lead to an increase in social welfare. But of course, this conclusion cannot be
made hard as it depends very much on the choice of the social welfare function.
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Abstract. In load balancing games, there is a set of available servers and
a set of clients; each client wishes to run her job on some server. Clients
are selfish and each of them selects a server that, given an assignment
of the other clients to servers, minimizes the latency she experiences
with no regard to the global optimum. In order to mitigate the effect of
selfishness on the efficiency, we assign taxes to the servers. In this way,
we obtain a new game where each client aims to minimize the sum of
the latency she experiences and the tax she pays. Our objective is to
find taxes so that the worst equilibrium of the new game is as efficient
as possible. We present new results concerning the impact of taxes on
the efficiency of equilibria, with respect to the total latency of all clients
and the maximum latency (makespan).

1 Introduction

Load balancing games are special cases of the well-known congestion games
introduced by Rosenthal [18]. A congestion game Π consists of a set E of
resources, each resource e having a non-negative and non-decreasing latency
function fe defined over non-negative numbers, and a set of n players. Each
player i has a weight (or demand) wi and can select among a set of permissi-
ble strategies Si ⊆ 2E (where each strategy of player i is a set of resources).
In general, players may follow mixed strategies, i.e., use a probability distri-
bution over their permissible strategies. An assignment A = (A1, ..., An) is a
vector of strategies, one (possibly mixed) strategy for each player. We mostly
refer to pure assignments, i.e., assignments where each player selects a single
strategy with probability 1. The cost of a player i at an assignment A is de-
fined as costi(A) =

∑
e∈Ai

fe(ne(A)), where ne(A) is the total weight of play-
ers using resource e in A. The social cost of an assignment can be either the
weighted total cost over all players or the maximum latency (makespan) over all
resources. A pure (resp., mixed) assignment is a pure (resp., mixed) Nash equi-
librium if no player has any incentive to unilaterally deviate to another strategy,
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i.e., costi(A) ≤ costi(A−i, s) for any player i and for any pure (resp., mixed)
strategy s, where (A−i, s) is the assignment obtained if just player i deviates
from Ai to s. In linear congestion games, the latency function of resource e is
of the form fe(x) = αex + βe with non-negative constants αe and βe. We use
the terms weighted and unweighted to distinguish between the cases where the
clients have different or identical weights.

Load balancing games are congestion games where the strategies of players are
singleton sets. In load balancing terminology, we use the terms server and client
instead of the terms resource and player. The set of strategies of a client contains
the servers that are permissible for the client. A load balancing game is called
symmetric when all servers are permissible for any client. Usually, the servers of
load balancing games have linear latency functions; an important special case is
that of related servers where the latency function of server j is of the form fj(x) =
αjx, with αj > 0. Motivated by [8], we use the term graph balancing games to
denote asymmetric load balancing games where each client is unweighted and
has at most two permissible servers, and all servers have identical linear latency
functions.

Since players act selfishly, load balancing games may reach assignments that
do not minimize the social cost. We use the notion of the price of anarchy intro-
duced in [15,17] to quantify the degradation of the overall system performance.
In particular, the price of anarchy of a game Π is the maximum over all pure
(or mixed) Nash equilibria of the ratio of the social cost of a pure (or mixed)
Nash equilibrium over the social cost of the optimal assignment.

A vast amount of the literature (see [20,25] and the references therein) studies
the complexity of computing equilibria of best and worst social cost and provides
bounds on the price of anarchy for various games that can be thought of as special
cases of congestion games such as load balancing games, when the social cost is
defined as the makespan or the weighed total latency. Awerbuch et al. [1] and,
independently, Christodoulou and Koutsoupias [4] prove tight bounds on the
price of anarchy of congestion games with respect to the weighted total latency.
Among other results concerning polynomial latency functions, they show that
the price of anarchy of pure Nash equilibria in unweighted linear congestion
games is 5/2 while for mixed Nash equilibria or pure Nash equilibria of weighted
players it is 2.618. These bounds carry over to load balancing games [2] and
can be improved for interesting special cases [2,16,22]. The price of anarchy of
weighted load balancing games on m related servers is Θ( log m

log log log m ) [7] over
mixed Nash equilibria with respect to the makespan. A better tight bound of
Θ( log m

log log m ) is known for pure Nash equilibria as well as for mixed Nash equilibria
at identical servers [7,14].

In order to downscale the effect of selfishness to performance, we assign taxes
to the servers. Formally, a tax function δ : E × Q+ → Q+ assigns a tax δj(w)
to each client of weight w that wishes to use server j ∈ E. Furthermore, we
assume that clients are not equally sensitive to taxes. In particular, client i has
a tax sensitivity γi > 0. Assuming selfish behavior of the clients, we obtain a
new extended game (Π, δ) where each client now aims to minimize the expected
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latency she experiences plus her disutility due to the taxes she pays at the server
she uses. This disutility equals γiδj(wi) when client i selects server j. Again, an
assignment y is a pure Nash equilibrium for the extended game if no player
has an incentive to unilaterally change her strategy, i.e., costi(y) + γiδs(wi) ≤
costi(y−i, s

∗)+γiδs∗(wi) for any client i that is on server s under the assignment
y, where y−i, s

∗ is the assignment produced when client i moves from s to s∗.
Like in our previous work [3] on the topic and motivated by [6], we consider

both refundable and non-refundable taxes. In the former case, we assume that
the collected taxes can be feasibly returned (directly or indirectly) to the play-
ers (e.g., as a “lump-sum refund”) and therefore the overall system disutility
depends only on the social cost. However, refunding the collected taxes could be
logistically or economically infeasible; the latter case models this scenario. We
will say that a function δ : E×Q+ → Q+ is a ρ-pure-efficient refundable tax for
the load balancing game Π if the social cost for any pure Nash equilibrium of
the extended game is at most ρ times the social cost of the optimal assignment.
Similarly, a function δ : E×Q+ → Q+ is a ρ-pure-efficient non-refundable tax for
the load balancing game Π if the social cost plus the total disutility due to taxes
at any pure Nash equilibrium is at most ρ times the social cost of the optimal
assignment. Similar definitions apply to the case of mixed Nash equilibria.

The problem of computing optimal taxes has received significant attention in
the economics and transportation science literature; the main underlying model
in these studies is that of non-atomic congestion games [21]. These games differ
from the atomic games that we consider in that each player controls an infinitesi-
mal amount of demand, and, therefore, the actions of a single player cannot affect
the overall system performance. The results about taxes in non-atomic conges-
tion games (see for example [5,6,10,13]) do not carry over to the atomic model. In
our previous work [3], we presented (among several negative and positive results
on the influence of taxes, under the assumption that all clients are equally sen-
sitive to taxes) 2-mixed-efficient refundable taxes with respect to the weighted
total latency for linear atomic congestion games and a pure-optimal tax function
for symmetric load balancing games; this latter result was extended by Fotakis
and Spirakis [12] to also hold for network congestion games on series-parallel
graphs. Swamy [23] studied more general (e.g., polynomial) latency functions
for the case of atomic congestion games with splittable demands and presented
taxes that ensure that the optimal assignment is a pure Nash equilibrium.

In this paper we show the following results concerning non-refundable taxes.
For the case of graph balancing games and unweighted clients with different
sensitivities, we present an 1.618-pure-efficient tax function. This is the first
class of asymmetric load balancing games for which an upper bound better than
2 is achieved, while we note that the lower bound of 11/10 presented in [3]
also holds for graph balancing games. Recall that the price of anarchy of these
games can be at least 2.012 [22]. Our tax function exploits the structure of graph
balancing games and also uses the optimal assignment which can be computed
in polynomial time. Then, we consider symmetric load balancing games with
unweighted clients and servers with polynomial latency functions of degree p.
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We prove a negative result that no non-refundable tax function can be better
than (p+1)1+1/p

(p+1)1+1/p−p
-pure-efficient, i.e., O

(
p

ln p

)
-pure-efficient. Note that this lower

bound matches the known upper bound on the price of anarchy of these games
which is a corollary of the relation to symmetric non-atomic congestion games in
[11] and the upper bounds of [19]. Next, we focus on the makespan as the social
cost. For the case of pure Nash equilibria and weighted clients on m related
servers, we present a 2-pure-efficient tax function, greatly improving upon the
Θ( log m

log log m ) bound on the price of anarchy presented in [7]. The tax function
is defined using a particular fractional schedule of clients to servers. We also
present a lower bound that shows that this tax function is best possible. Finally,
for mixed Nash equilibria we observe that the introduction of taxes does not
mitigate significantly the impact of selfishness, since no better than O( log m

log log m )-
mixed-efficient taxes exist, even for games with unweighted clients on identical
servers.

The rest of the paper is structured as follows. We begin by presenting, in
Section 2, our result concerning graph balancing games. We continue in Section 3
with the negative result about non-refundable taxes in symmetric load balancing
games with polynomial latency functions. The results concerning the objective
of minimizing the makespan are presented in Section 4.

2 Efficient Taxes for Graph Balancing Games

In this section, we present 1.618-pure-efficient tax functions for graph balancing
games. This is the first subclass of asymmetric load balancing games which is
proved to have better than 2-pure efficient taxes. The tax function is simple and
exploits the structure of the game. We will assign very small taxes to the servers
so that each server is assigned a different tax. So, although we prove the result
ignoring the total taxes paid by the clients, this quantity can become arbitrarily
small and our result carries over to non-refundable taxes by adding an ε factor
to the efficiency.

Consider a graph balancing game with a set of clients U (with |U| = n) and
let δ̂ be such that 0 < δ̂ ≤ 1/maxi γi, where γi is the tax sensitivity of client i.
First, we compute an optimal assignment and denote by oj the number of clients
using server j in this assignment. This computation can be done in polynomial
time by a natural reduction to a minimum cost flow problem on a single-source
network, similar to the reduction presented in [9] for computing an equilibrium
of symmetric congestion games that minimizes Rosenthal’s potential. Then, we
consider the graph having a node for each server j and an edge between two
different nodes j1 and j2 for each client that has servers j1 and j2 as permissible
servers. For each such edge corresponding to a client i, we define the edge’s
optimal node to be the endpoint corresponding to the server that client i uses
in the optimal assignment. We compute an orientation of the edges so that the
corresponding directed graph is acyclic. Then, either this directed graph or the
one in which all edges have opposite directions have the following property: at
most half of the edges point to their non-optimal node. We select the orientation
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that has this property and assign different taxes from
{

1
n δ̂,

2
n δ̂, ...,

n−1
n δ̂, δ̂

}
to

the nodes/servers so that for any edge directed from j1 to j2, it is δj1 > δj2 .
Now, consider any pure Nash equilibrium of the extended game and let nj

denote the number of clients using server j. For a client i, denote by j1 the server
that client i uses in the pure Nash equilibrium and let j2 be the other permissible
server of client i (j1 = j2 if the client has only one permissible server). Since no
client has an incentive to change her strategy, it is nj1 + γiδj1 ≤ nj2 + 1 + γiδj2 .
This means that nj1 ≤ nj2 + 1 + γi (δj2 − δj1) and nj1 ≤ nj2 + 1 since nj1 and
nj2 are integers and γi (δj2 − δj1) < 1 by the definition of the tax function. This
inequality holds for any client and we conclude that any pure Nash equilibrium
of the extended game is also a pure Nash equilibrium for the original game.

We now show that any pure Nash equilibrium for the extended game is a
1
2 -PNE for the original game, i.e., a pure Nash equilibrium that satisfies the
property ∑

j

n2
j ≤

∑
j

(
njoj +

oj

2

)
. (1)

For each client i, we denote by ji and j′i the servers she uses in the pure Nash
equilibrium and in the optimal assignment, respectively. Denote by S the set of
clients i such that ji = j′i. Denote by F the set of clients i such that ji �= j′i
and δji > δj′

i
. Then, the condition nji + γiδji ≤ nj′

i
+ 1 + γiδj′

i
, implying that

client i has no incentive to use the server she uses in the optimal assignment,
implies that nji ≤ nj′

i
, since nji and nj′

i
are integers and δji > δj′

i
. The condition

nji ≤ nj′
i
+1 holds for any client i not belonging in S and F since the pure Nash

equilibrium for the extended game is also a pure Nash equilibrium for the original
game.

By the definition of the tax function, we have that |U \ (F ∪ S)| ≤ |U|/2 =
1
2

∑
j oj . By considering the equilibrium conditions for all clients, we have∑

j

n2
j =

n∑
i=1

∑
j:ji=j

nj

=
∑
i∈S

∑
j:ji=j

nj +
∑
i∈F

∑
j:ji=j

nj +
∑

i∈U\(F∪S)

∑
j:ji=j

nj

≤
∑
i∈S

∑
j:j′

i=j

nj +
∑
i∈F

∑
j:j′

i=j

nj +
∑

i∈U\(F∪S)

∑
j:j′

i=j

(nj + 1)

=
n∑

i=1

∑
j:j′

i=j

nj + |U \ (F ∪ S)|

≤
∑

j

njoj +
1
2

∑
j

oj

=
∑

j

(
njoj +

oj

2

)
.

This completes the proof of inequality (1).
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In our analysis, we will consider all 1
2 -PNE for the original graph balancing

game, and we will show that their price of anarchy is at most 1+
√

5
2 . We will

need the following technical claim.

Lemma 1. For any non-negative integers x and y,

3−
√

5
4

x2 +
3 +

√
5

4
y2 ≥ xy +

3(
√

5− 1)
4

y − 3
√

5− 5
4

x.

Theorem 1. For any graph balancing game, the tax function described above is
a 1+

√
5

2 ≈ 1.618-pure-efficient tax.

Proof. We will show that the price of anarchy of any 1
2 -PNE of a graph balancing

game is at most 1+
√

5
2 . Again, we denote by nj and oj the number of clients in

server j in the 1
2 -PNE and in the optimal assignment, respectively. By inequality

(1) and since
∑

j nj =
∑

j oj , we have that the social cost is∑
j

n2
j ≤

∑
j

(
njoj +

oj

2

)
=
∑

j

(
njoj +

oj

2

)
+

3
√

5− 5
4

∑
j

oj −
3
√

5− 5
4

∑
j

nj

=
∑

j

(
njoj +

3(
√

5− 1)
4

oj −
3
√

5− 5
4

nj

)

≤
∑

j

(
3−

√
5

4
n2

j +
3 +

√
5

4
o2j

)

=
3−

√
5

4

∑
j

n2
j +

3 +
√

5
4

∑
j

o2j

where the first equality follows since
∑

j nj =
∑

j oj , the second and third equal-
ities are obvious, and the second inequality follows by Lemma 1. We obtain that
the price of anarchy is∑

j n
2
j∑

j o
2
j

≤
3+

√
5

4

1− 3−
√

5
4

=
1 +

√
5

2
. ��

Broadening the class of load balancing games that admit better than 2-pure-
efficient taxes (or even pure-optimal taxes) is an interesting open problem.

3 Non-refundable Taxes in Symmetric Load Balancing

We now proceed to answer in a negative way a question posed in [3] concern-
ing non-refundable taxes in symmetric load balancing games, i.e., whether taxes
can diminish the effect of selfishness. Our following theorem suggests that taxes
do not help in the case of symmetric load balancing with polynomial latency
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functions of degree p, since for any tax function, the price of anarchy of the
extended game in these games is (p+1)1+1/p

(p+1)1+1/p−p
∈ O

(
p

ln p

)
. Clearly, our result also

demonstrates that the known upper bound on the price of anarchy of such games
(without taxes) is tight.

Theorem 2. For any p ≥ 1 and any ε > 0, there exists a symmetric load
balancing game with polynomial latency functions of degree p that does not admit
better than (ρ− ε)-pure-efficient non-refundable taxes where ρ = (p+1)1+1/p

(p+1)1+1/p−p
∈

O
(

p
ln p

)
.

Proof. Let k ≥ 2 be an integer and define λ = 2kp+1−kp−(k−1)p+1

k . We have λ =

kp + kp
((

1− 1
k

)
−
(
1− 1

k

)p+1
)

and, since k ≥ 2 and p ≥ 1, it is kp < λ < 2kp.

Define y∗ = k −
⌊(

λ
p+1

)1/p
⌋
. Since p ≥ 1 and λ < 2kp, it is 1 ≤ y∗ ≤ k.

Consider a game with k clients where each client j has γj = 1, and k+1 servers
0, 1, ..., k. Server 0 has latency function xp while each of the other k servers has
latency function λxp. The assignment in which server 0 has k−y∗ clients, y∗ among
the other servers have exactly one client and any other server is empty has cost

opt = (k − y∗)p+1 + y∗λ.

In the absence of taxes, the assignment where all clients select server 0 is a
pure Nash equilibrium since each of them has a latency of kp and, in case a client
decides to choose another server, she would face latency λ > kp. The cost of this
equilibrium is cost = kp+1 and the price of anarchy is

PoA ≥ cost

opt
=

kp+1

(k − y∗)p+1 + y∗λ
.

Therefore, in order to avoid this assignment as an equilibrium of the extended
game, we have to assign taxes in such a way that at least one client has an
incentive to change her choice. So, without loss of generality, we assume that
there is a tax function δ, for which it holds that δ0(w) = α and δj(w) = 0, for
any 1 ≤ j ≤ k. Note that, for any α ≤ λ − kp, the aforementioned assignment
remains a pure Nash equilibrium of the extended game, since any client at server
0 would have a cost of kp +α ≤ λ. Now, assume that α = λ−kp +ε for any ε > 0.
Then, any client would have a incentive to leave server 0 and move to another
server. Then, assuming that one client moves, the total cost cost′ (latency plus
taxes) of the resulting assignment would be

cost′ = (k − 1)p+1 + α (k − 1) + λ

> (k − 1)p+1 + (λ− kp) (k − 1) + λ

= (k − 1)p+1 + λ (k − 1)− kp (k − 1) + λ

= λk + (k − 1)p+1 − kp+1 + kp

= kp+1

= cost.
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Applying similar reasoning, it is not hard to see that by increasing δ0(w) = α
even more so that more clients have an incentive to leave server 0, the total
cost similarly increases. Therefore, the total cost is minimized by setting α = 0.

Observe that limk→∞
λ
kp = 1 and limk→∞

y∗

k = 1−
(

1
p+1

)1/p

. Hence,

lim
k→∞

kp+1

(k − y∗)p+1 + y∗λ
= lim

k→∞

1
(1− y∗

k )p+1 + y∗λ
kp+1

=
1(

1
p+1

)1+1/p

+ 1−
(

1
p+1

)1/p

=
(p+ 1)1+1/p

(p+ 1)1+1/p − p
= ρ.

Hence, for any ε > 0, by setting k to a sufficiently large value, we obtain that
the price of anarchy becomes at least ρ− ε. ��

4 Minimizing the Makespan

In this section we focus on the makespan as the social cost. We consider the well-
known case where servers are related, i.e., server j has latency function αjx. Our
upper bound uses tax functions that assign to each server a tax of either 0 or
∞. In this setting, there is no difference between refundable and non-refundable
taxes since no client is assigned to a server where it has to pay an infinite tax.
Furthermore, the tax sensitivity of each client does not affect her behavior.

Denote by n the number of clients and bym the number of servers. We assume
that the servers are sorted in non-decreasing order of αi (i.e., αi ≤ αi+1) and
clients are sorted in non-increasing order of their weight (i.e., wi ≥ wi+1). We
define the following procedure that produces fractional schedules of makespan
T ≥

�
i wi�

i 1/αi
. Observe that the quantity

�
i wi�

i 1/αi
is a lower bound on the makespan

of any fractional schedule; the numerator is the total weight of the clients and
the denominator is the “capacity” of all servers.

1. set j = 1, i = 1, and t = 0;
2. while i ≤ n do
3. if T − t ≥ αjwi then
4. put the remaining weight of client i at server j;
5. set t = t+ αjwi and i = i+ 1;
6. else
7. put weight T−t

αj
of client i at server j;

8. set wi = wi − T−t
αj

, j = j + 1, and t = 0;

What the above procedure is doing is to consider each client (according to
their ordering) and put as much of her weight as possible to the server of smallest
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index so that the latency does not exceed T . This will end up with a fractional
schedule in which there exists a server j′ such that the latency of all servers
j ≤ j′ is exactly T , (if j′ < m) the latency of server j′ + 1 is at most T , and the
latency of all servers j > j′ + 1 (if any) is 0. Each client occupies consecutive
servers and, furthermore, at most one client may have non-zero weights in two
specific consecutive servers.

Given a value of T , the schedule produced by the procedure above is called
2-feasible if for any client i and any two consecutive servers j and j + 1, it holds
that αjw

j
i + αj+1w

j+1
i ≤ T , where wj

i denotes the weight of client i assigned
to server j. We start with the value T =

�
i wi�

i 1/αi
and run the procedure. If

the schedule produced is 2-feasible, we stop. Otherwise, we increase T until the
schedule produced by the procedure is 2-feasible. Let T ∗ be the corresponding
value of T (i.e., the minimum value for which the schedule produced is 2-feasible).
Clearly, if T ∗ >

�
i wi�

i 1/αi
, there will be at least one client i and two consecutive

servers j and j + 1 such that αjw
j
i + αj+1w

j+1
i = T ∗.

We now describe the tax function. We partition the clients into groups ac-
cording to their weight, so that two clients i1 and i2 belong to same group when
wi1 = wi2 . We denote by w∗

g the weight corresponding to group g. Let Sg denote
the set of servers that contain non-zero weights of clients belonging to group g
in the fractional schedule of makespan T ∗. If |Sg| = 1, then we set δj(w∗

g) = 0
for the server j ∈ Sg and δj′(w∗

g) = ∞ for any other server j′ /∈ Sg. Otherwise,
when |Sg| > 1, we distinguish between two cases depending on whether the last
server of Sg (i.e., the one with the larger index) contains only clients of group
g or also clients of different groups. In the first case, we set δj(w∗

g) = 0 for any
server j ∈ Sg and δj′(w∗

g) =∞ for any other server j′ /∈ Sg, while in the second
case, we set δj(w∗

g) = 0 for the |Sg| − 1 servers of Sg with smallest index and
δj′(w∗

g) = ∞ for any other server j′. In any case, we denote with ∆g the set of
servers j for which δj(w∗

g) = 0.
We show the following result.

Theorem 3. For any symmetric load balancing game on related servers, the
above tax function is 2-pure-efficient with respect to the makespan.

Proof. Consider the 2-feasible fractional schedule of makespan T ∗ produced as
above. We first show that the optimal assignment has makespan at least T ∗.
This clearly holds if T ∗ =

�
i wi�

i 1/αi
. Otherwise, there will be a client i and two

consecutive servers j and j+1 such that αjw
j
i +αj+1w

j+1
i = T ∗. Then, all clients

with smaller index than i are fractionally scheduled at servers 1, ..., j which have
latency exactly T ∗. In any integral schedule, either all of the clients 1, ..., i will
be scheduled to servers 1, ..., j or some of them will be scheduled at some server
with larger index than j. In the first case, the makespan will be at least T ∗ since
the total weight of clients assigned to servers 1, ..., j does not decrease compared
to the fractional schedule. In the second case, a client of weight at least wi will
be assigned to a server j′ with αj′ ≥ αj+1 ≥ αj . This server will have latency at
least αj′wi ≥ αjw

j
i + αj+1w

j+1
i = T ∗.
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Now, we show that there exists an integral schedule with makespan at most
2T ∗ in which each client in group g selects a server from the set ∆g. The clients
that have non-zero weight in the server of Sg with the smallest index are sched-
uled in this server. Each other client of group g for which the server with largest
index containing a non-zero amount of her weight in the fractional schedule is
j is scheduled at server j − 1. In this way, the total weight of any server j may
increase by at most the weight of clients in server j+1 in the fractional schedule.
Since αj ≤ αj+1, the latency at server j will not exceed 2T ∗.

Observe that the tax function essentially divides the original game into sub-
games in the following sense. In any pure Nash equilibrium, the clients of group
g with |∆g| = 1 are forced to use the server of ∆g. The clients of group g with
|∆g| > 1 play a symmetric game with linear latency functions at server j of
the form αjx + βj . Here, βj denotes the latency at server j due to clients not
belonging to group g which are forced to use server j. Furthermore, by the de-
finition of the tax function, the sets ∆g with size more than 1 are disjoint and,
hence, the corresponding sets of clients do not interfere. It is not hard to see
that any equilibrium in each subgame of clients of group g has the minimum
possible integral makespan, i.e., at most 2T ∗. This completes the proof of the
theorem. ��

The next theorem states that this tax function is best possible. The proof is
omitted; it will appear in the final version.

Theorem 4. For any ε > 0, there exists a load balancing game on m identical
servers that does not admit better than (2− ε)-pure-efficient taxes with respect
to the makespan.

Unfortunately, taxes cannot significantly improve the price of anarchy with re-
spect to the makespan over mixed Nash equilibria. To show this, we use a con-
struction that we have also used in [3] to lower-bound the efficiency of taxes at
mixed Nash equilibria with respect to the total latency. The construction applies
to symmetric load balancing games with identical clients and identical servers
and the proof follows by a standard balls-to-bins argument.

Consider a tax function δ. Without loss of generality, we assume that δj ≤ δj′

for j < j′. Let k be equal to m if 1 +
�m−1

j=1 δj

m−1 > δm, otherwise k is equal to

the largest integer such that
m−1+

�k
j=1 δj

k ≤ δk+1. Let D =
∑k

j=1 δj. Consider
the following assignment y for all clients. Client i uses server j with probability
yij = 1

k + D
k(m−1) −

δj

m−1 if j ≤ k and yij = 0 otherwise. Notice that all clients
have the same probability distribution. It can be verified that y is a mixed Nash
equilibrium of the extended game.

In order to compute the expected makespan, it suffices to observe that it is
the expectation of the maximum number of balls at any bin when m balls are
thrown independently at m bins according to the probability distribution y. It
is well-known (e.g., see [24]) that this expectation is minimized to Θ

(
log m

log log m

)
when y is the uniform distribution. Thus, we obtain the following statement.
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Theorem 5. There exists a symmetric load balancing game on m servers that
does not admit better than Ω

( ln m
ln ln m

)
-mixed-efficient taxes with respect to the

makespan.

Note that this bound matches the price of anarchy of symmetric load balancing
with identical servers [7,14]. The price of anarchy for related servers is slightly
higher [7]. We leave as an open problem whether taxes can improve the price of
anarchy with respect to the makespan in this particular case and, more impor-
tantly, in the more general case of congestion games.
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Abstract. In the Internet, Autonomous Systems (ASes) make contracts
called Service Level Agreements (SLAs) between each other to transit one
another’s traffic. ASes also try to control the routing of traffic to and from
their networks in order to achieve efficient use of their infrastructure and
to attempt to meet some level of quality of service globally. We introduce
a game theoretic model in order to gain understanding of this interplay
between network formation and routing. Player strategies allow them to
make contracts with one another to forward traffic, and to re-route traffic
that is currently routed through them. This model extends earlier work
of [3] that only considered the network formation aspect of the problem.
We study the structure and quality of Nash equilibria and quantify the
prices of anarchy and stability, that is, the relative quality of a centralized
optimal solution versus that of the Nash equilibria.

1 Introduction

The current Internet consists of tens of thousands of sub-networks known as Au-
tonomous Systems (ASes), with each AS under the control of a single adminis-
trative authority. The task of this authority is to balance ensuring connectivity
with the rest of the network against its own particular economic goals for manag-
ing the traffic entering and leaving the AS. These sometimes conflicting goals of
connectivity versus traffic engineering are typically reflected in the local contracts
called Service Level Agreements (SLAs) formed with neighboring ASes, which are
essentially agreements to forward traffic. Without an appropriate SLA, no traffic
would get from one AS to another, and so this system of business relationships is
at the heart of Internet connectivity. The economic goals of an AS are also encoded
into its routing policies, which are expressed in its local configuration of the Bor-
der Gateway Protocol (BGP) where BGP is the interdomain routing protocol in
common use today. The local configuration of BGP determines the traffic into and
out of the AS. These resulting traffic patterns may cause an AS to modify existing
SLAs or create new ones. Thus there is an interplay between the contracts formed
and the traffic patterns resulting from the encoding of the implied policies into
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BGP. The major goal of this paper is to develop an understanding of this inter-
play between network formation and traffic routing in a network where contracts
are formed only between immediate neighbors.

This paper builds on the earlier work of [3] in which a network formation
game called the Local Contract Formation Game (LCFG) was defined. LCFG
ignored the routing aspect of the resulting network, assuming that each traffic
demand could only be sent along a given fixed route. In our paper, we allow
routing choices as part of a player’s strategy in addition to the choice of which
contracts to form. We also incorporate edge (or node) capacity constraints into
our model. While these new features add complexity to the model, they are an
important step towards modeling real world constraints and degrees of freedom
faced by entities in today’s Internet.

Some aspects of LCFG as defined in [3] are retained in our model. For in-
stance, both models have players representing typical Internet entities such as
ASes, enterprise networks, and residential customers. Also, relationships between
neighboring players are designed to capture three major properties of real-world
business relationships seen in the Internet. The first of these properties is that
relationships are strictly locally negotiated [14,15]. That is, players negotiate
contracts only with their neighbors. While these contracts take into account
global issues such as the topology of the rest of the network and traffic demands
throughout the network, they are formed strictly by negotiations between two
neighboring players. Another property is that two possible types of contracts can
be formed: customer-provider or peer-peer [7,10]. Lastly, both models incorpo-
rate penalties such as those found in typical real world SLAs for failure to meet
the conditions of a contract [13]. In particular, these penalties are designed to
penalize a provider that accepts payment from a customer, but fails to satisfy
the transit service for which the customer formed the contract.

Our Results. We focus on understanding the structure and quality of Nash
equilibria, and on quantifying the prices of anarchy and stability1, which compare
the quality of a centrally-defined optimal solution with the quality of the worst
and best Nash equilibrium, respectively. The detailed list of our results can be
found in Section 3.

Related Work. The tradeoff between the benefits to a player (such as an AS)
from routing its demands versus the loss of utility from transiting other traffic,
was explored in several papers (e.g. [9,18,21]). Typically, however, the concentra-
tion has been on short-term routing and pricing schemes, e.g., [12,17,20]. While
short-term pricing and admission models are of significant interest, they rely on
an underlying set of business (longer-term economic) relationships. Moreover,
agreements between entities (ISPs, enterprise or residential customers) tend to
be based on more rigid contracts such as fixed bandwidth, or peak bandwidth
contracts [14,15]. This is largely due to the complexity (and expense) of moni-
toring IP traffic at a packet or flow level.

1 See [19] for a definition of price of anarchy (known there as the coordination ratio),
and [2] for a definition of price of stability.
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Motivated by this, several game theoretical models have addressed the strongly
related notion of network formation. Some of these do not look at contract forma-
tion, but instead assume that edges have intrinsic costs [1,2,5,8]. On the other
hand, contract formation models of networks have been heavily addressed as
well, mostly in the economics literature [16]. This body of work mostly addresses
questions distinct from those studied here. In particular, none of these combine
routing with contract formation, consider customer-provider and peering con-
tracts, or measure the impact of provider penalties. In [6] a very general model
of network formation is considered, and the model of [18] focuses on solutions
where all demands are satisfied, and on “pairwise-stable” equilibria.

2 Local Contract and Routing Formation Game

The Local Contract and Routing Formation Game (LCRFG) is the game we
study in this paper. An instance of LCRFG consists of a directed capacitated
graph G = (V,E) and a set of demands D, both of which we describe below.

We represent the network under consideration as a capacitated directed graph
G = (V,E) where each (directed) edge e ∈ E has a capacity on the amount of
traffic that can be transited along e. Nodes in V are the players of the game,
and represent entities that might wish to establish contracts with one another
to forward their traffic. An edge represents that there is a physical connection
between the nodes (e.g., a fiber connection) and hence the capacity of the edge
represents the actual capacity of this connection. We can also include node ca-
pacities without changing our results. The physical connection between nodes
implies that there is the potential for the nodes on that edge to form a contract
to forward their traffic directly rather than through intermediate nodes.

A demand d represents the desire of a source node s(d) to be able to have a
unit of traffic routed to a destination node t(d). A demand d also includes values
λs(d)(d) and λt(d)(d) that represent the value that the source and destination
nodes respectively place on having the demand traffic successfully routed. We
describe below what it means for a demand to be successfully routed.

For each edge e = (v, u) and a destination node t, u can request some amount,
say c, from v. If v “accepts” this request, then v and u form a contract having
the meaning that v pays u the amount c, and u is obligated to forward a unit
of traffic flow from v to t. The amount c is called the cost of the contract. If v
accepts the request then the contract is said to be an active contract. Let Xe(t)
be the set of all such active contracts for edge e and destination t. The capacity
of an edge e is violated if

∑
t |Xe(t)| is greater than the capacity of e. We use the

notation χe(t) to denote an element of the set Xe(t) and c(χe(t)) to indicate the
cost of the contract χe(t). Then we define c(Xe(t)) =

∑
χe(t)∈Xe(t) c(χe(t)). In

the context of such a contract χe(t), node u is said to be the provider and v is the
customer. We show that our results hold with other types of customer-provider
contracts in Section 3, as well as with the introduction of peering contracts.

One aspect of a node’s strategy in an instance of LCRFG is then to decide
which requests to make for contract payments, and which requests to accept.
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Another aspect of a node’s strategy is to determine how to route demands over
active contracts. We do not limit our model to a single routing protocol, but
instead leave open what exact routing protocol is being used, in order to be
most general. The only assumption we make about routing decisions is that
they satisfy the following constraints.

(R1) The routing does not violate the contracts. That is, if a demand d is routed
from s to t, then the edges e = (u, v) that are included in its path must have
a contract χe(t) between u and v. Moreover, if x demands with destination
t are forwarded from u to v, then there must be at least x contracts in
Xe(t) between u and v (since each contract χe(t) only obligates v to get
a single demand to its destination t).

(R2) If a valid route exists between a source and destination of a demand d,
then demand d is successfully routed. By a valid route, we mean a path of
contracts χe(t(d)) between s(d) and t(d), with the capacity provided by
these contracts still available (not taken up by other demands). We call a
successfully routed demand active.

The basic goal of a player v is to establish contracts with its neighbors so as
to manage the trade-off between getting its demands (i.e., the demands having
v as an endpoint) successfully routed versus allowing the demands of others to
pass through it. The strategy of a player v consists of making (and accepting)
requests for contract payments, and of choosing the routes for demands passing
through v, as long as the routing constraints (R1) and (R2) are satisfied. The
details of player strategies are addressed in Section 2.1. We now describe the
utilities of the players, and the possible equilibria.

Utilities. The utility for a player v will include the payments v makes (or re-
ceives) for contracts and the values of active demands for which v is an endpoint.
The utility will also involve a transit cost for active demands that include v in
their path as well as certain penalties.

Transit Costs: Define t(v) (the cost of transiting) for a node v to be the number
of active demands routed through v.

Penalties: A provider must pay penalties to its customers if it fails to meet
its obligations. There are many penalty systems that we could consider in this
context. Just as with the routing protocol, instead of defining exactly what the
penalty system is, we just give required conditions for it. Our results work for
any penalty system meeting these conditions. Specifically, a penalty system must
be such that:

– If a demand d is active, then no one pays penalties because of it.
– If a demand d that was previously active and routed through node v becomes

inactive, but there is still a valid route from s(d) to v, then v must pay a
penalty to its customer on this valid route.

Notice that the second condition above assumes some notion of time passing.
This assumption is unnecessary, as we can define many static penalty systems
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that obey the above conditions. For example, we can say that all providers
with valid routes from s(d) pay penalties for an inactive demand. Or we could
make a more complicated system and say that inactive demands still have routes
assigned to them, and the last provider in such a route that fails to forward this
demand to the next hop must pay the penalty. In either case, the conditions
above are satisfied, since if a provider decided to prevent a demand from getting
to its destination (without re-routing or changing contracts), it would have to
pay a penalty to its customer for failing in its provider duties. We set the size
of the penalty for failing to form a route for demand d to be λs(d)(d) − 1. For
justification of our penalty system, and the intuition behind our definition of
penalties, see [3].

The Utility Function: Given the endpoint values for active demands, the tran-
siting costs, payments, and the penalties, the utility of node v is:

utility(v) =
∑

d∈Dend(v)

λv(d)−t(v)+
∑

e=(w,v),t

c(Xe(t))−
∑

e=(v,w),t

c(Xe(t))−
∑

d

pv(d)

In other words, a node v gains the value of λv(d) for each active demand
that it originates (this set of demands is denoted by Dend(v)), loses 1 for every
demand it transits, gets payment c(χe(t)) according to the contract it makes
with its neighbor on e (either positive if v is paid or negative if it pays) and loses
pv(d) for penalties (either positive or negative depending on whether it pays or
receives the penalty).

The utility function defined above applies to the case when for each edge e
incident to a node v, the number of active contracts

∑
t |Xe(t)| does not violate

the capacity constraint of e. The second case is when the number of active
contracts

∑
t |Xe(t)| for some e incident to v violates the capacity of e. In this

case, v is assigned a negative utility. It is easy to see that in a Nash equilibrium
no node is involved with contracts that violate capacities, since they could always
do better by doing nothing and receiving zero utility.

2.1 Player Strategies and Nash Equilibria

As mentioned above, a strategy of a player v consists of making (and accepting)
requests for contract payments, and of possibly affecting the routes for demands
passing through v, as long as the routing constraints (R1) and (R2) are satisfied.
Many concrete games can be defined that fit into this framework (see [4] for some
examples). Instead of focusing on only one such game, however, we choose to
leave our framework as general as possible. In fact, our results hold for any game
where a player v only has power over its contracts and over the demand routes
passing through v. As long as player v cannot affect anything else by changing
its strategy, we will show the existence of good Nash equilibria. To carefully
define an equilibrium, we do not need to define precisely the strategies of the
game, but must define the set of possible player deviations, with a solution being
an equilibrium exactly when no player would want to take one of their possible
deviations.
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Given a solution S (i.e., active contracts, their costs, and a routing), a de-
viation for a node v is a solution where v changes its actions while all others
remain as in S. We will see later that the only deviations of interest will not
result in the ability to activate currently inactive demands. Specifically, a node
v can deviate by performing the following actions, possibly both at once.

– Changing the costs of its requests for customer contracts, and changing its
decisions on the acceptance/ non-acceptance of provider contracts.

– Re-routing any of the active demands that pass through v.

This means that v controls all of the contracts it makes, and all of the routes
that pass through it. Just as our other assumptions about the routing protocol,
this is a somewhat general assumption, and many routing protocols obey this
condition. In the most powerful deviation that we allow, a node would be able to
re-route by canceling all routes that pass through it (and thereby freeing their
capacity), and then forming new routes for these demands instead. Our results
will hold for any weaker deviations as well, such as ones where v can only change
some of the routes that pass through it, instead of all of them.

3 Good Equilibria and Price of Stability

Definite Nash Equilibria and Edge-Cutting Deviations. A solution where
all players v set all c(χe(t)) to a number M so large that accepting such a
contract guarantees the accepting node would have negative utility, results in no
active edges, and is a Nash equilibrium (NE) with all nodes having a utility of 0.
Moreover, for every NE there is an equivalent one where the payments demanded
on inactive edges are M . We can also assume that there are no active contracts
without demands being routed on these contracts, as such contracts would have
no reason to exist. Call such a NE definite. Since our primary interest is to
determine how well the players (and society) can do via stable solutions, we may
restrict attention without loss of generality to such definite NEs. In a definite
NE, no new contracts can be formed since all requests for inactive contracts are
too high to be accepted. Thus we can now simply think of deviations as a node
“cutting” some of the active contracts incident to it, as well as re-routing the
demands that pass through it. Moreover, in a definite NE, the capacity of each
active contract is fully saturated, and so new demands cannot be routed without
active ones being re-routed.

Nash equilibria as good as OPT. The social welfare2 of a given set of active
contracts equals the total value of the demands that are active minus the total
transit cost incurred. We now compare the quality of OPT (the solution that
maximizes social welfare) with the quality of Nash equilibria. First, we consider
the case where only the source s(d) of a demand d is rewarded for d becoming
active. All proofs can be found in the full version of this paper [4].

2 Recall that the social welfare of a solution is the sum of the players’ utilities.
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Theorem 1. If λt(d)(d) = 0 for all demands d, then there exists a Nash equi-
librium that is as good as OPT, and so the price of stability is 1.

We now consider the more general version of our model, where both the source
and the destination of a demand may benefit from this demand being success-
fully routed. For this model, we consider the quality of Nash equilibria using two
different objective functions: the social welfare, and the cut-loss objective func-
tion, which is the total transit cost incurred plus the total value of the demands
that are not connected. This objective function is also studied in [3,18]. While
in Theorem 1 we showed that there always exists an equilibrium as good as the
optimal solution, this is no longer true if destinations also benefit from active
demands. In fact, [3] gives examples where for the social welfare objective, all
equilibria may be arbitrarily far away from OPT.

For the cut-loss objective, however, there always exist good Nash equilibria.
In the proof of the following theorem we not only show the existence of such
equilibria, but also how to find them efficiently starting with an approximation
to OPT. For this result, we assume that λs(d)(d) = λt(d)(d) for all d. If this were
not the case, then instead of a factor of 2, we obtain a price of stability that
depends on the ratio between λs(d)(d) and λt(d)(d).

Theorem 2. With respect to the cut-loss objective function, the price of stability
is at most 2 in the case where for each demand d, λs(d)(d) = λt(d)(d).

Creating good equilibria. While for the social welfare objective, all Nash
equilibria may be bad compared to OPT, we can still create good equilibria
using similar methods as in [3]. For example, if we give incentives to certain
nodes, we can form an equilibrium that is as good as the centralized optimal
solution (see [3] for discussion about different types of incentives). For example,
we can do this by increasing the λs(d)(d) for every demand by a factor of 2. As
in Theorem 2, we assume λs(d)(d) = λt(d)(d) for all d. If this were not the case,
then instead of increasing λs(d)(d) by a factor of 2, the results hold if we set
λs(d)(d) to λs(d)(d) + λt(d)(d), which is still a factor of 2 increase in total.

Theorem 3. Let E∗ be the set of active contracts in OPT, and DOPT be the
active demands in OPT. If we increase λs(d)(d) by a factor of 2 for every d,
then E∗ together with DOPT induce a Nash equilibrium (that is, there is an
equilibrium with active contracts E∗ and active demands DOPT ).

Model Variations. All of the above results hold for a variety of extensions to
our model (see [4]). These extensions include more realistic customer-provider
contracts (where the provider is obligated to forward traffic to its customer, not
just from its customer), and the addition of peering contracts. We also show that,
with a slightly more constrained routing protocol, our results apply to contract
systems where the contracts do not specify the destination. In other words, in
this type of contract the provider would be obligated to forward all traffic from
its customer, no matter where this traffic was destined.
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Abstract. In this paper we extend a popular non-cooperative network
creation game (NCG) [11] to allow for disconnected equilibrium net-
works. There are n players, each is a vertex in a graph, and a strategy is
a subset of players to build edges to. For each edge a player must pay a
cost α, and the individual cost for a player represents a trade-off between
edge costs and shortest path lengths to all other players. We extend the
model to a penalized game (PCG), for which we reduce the penalty for a
pair of disconnected players to a finite value β. We prove that the PCG
is not a potential game, but pure Nash equilibria always exist, and pure
strong equilibria exist in many cases. We provide tight conditions under
which disconnected (strong) Nash equilibria can evolve. Components of
these equilibria must be (strong) Nash equilibria of a smaller NCG. But
in contrast to the NCG, for the vast majority of parameter values no
tree is a stable component. Finally, we show that the price of anarchy
is Θ(n), several orders of magnitude larger than in the NCG. Perhaps
surprisingly, the price of anarchy for strong equilibria increases only to
at most 4.

1 Introduction

The study of distributed network creation with selfish agents has attracted much
research interest from various disciplines. A general framework for such an ap-
proach was proposed by Jackson and Wolinsky [14]. In their games there are n
players and each player is a vertex in a graph. A strategy consists of choosing
which incident edges to build. Depending on the network structure there is a pay-
off for each player, and players adjust their strategy to maximize their payoff. A
general finding was that there are games, in which no efficient network is stable
for a concept of pairwise stability, which requires bilateral consent to construct
a connection. The extensions and adjustments to this model are numerous [13].
In particular, several works extended the model to unilateral link creation and
the Nash equilibrium as stability concept [5,9]. A particularly interesting variant
was proposed by Fabrikant et al. [11]. In their network creation game (NCG) the
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Fig. 1. Price of anarchy in the NCG

cost of creating an edge is fixed to a parameter α. Edge creation is unilateral,
and the cost for a player is a trade-off between edge costs and structural network
position measured by shortest path distances to all other players. In [2,8,11] the
inefficiency of Nash equilibria was quantified using the price of anarchy [15], the
ratio of the cost of the worst Nash equilibrium over the cost of a social optimum
state. The presently known results on the price of anarchy are summarized in
Fig. 1. Other equilibrium concepts were also studied, e.g. pairwise stable equi-
libria [7], or strong equilibria [3], as well as extensions to more general edge
costs or different player cost trade-offs [1, 10, 17]. In network analysis [6], the
inverse of the sum of shortest path lengths is one of the most commonly used
measures of centrality known as closeness [12]. A problem with closeness is that
global connectivity is required for the scores to be comparable. This means that
in the NCG for moderate to high edge costs the trade-off is distorted by the
enforcement of connectivity. Thus, it was not surprising that trees proved to be
a prominent equilibrium structure [11].

In this paper, we remedy this problem by replacing the infinite cost of not
being connected by a finite penalty β. This corresponds directly to a variant of
closeness centrality proposed by Botafogo et al. [18], and it was suggested as an
open problem in [11]. For special values of β it is closely related to a measure
called radiality [19]. Our penalized network creation game (PCG) is introduced
in Sect. 2. Since the cost of connected equilibria is the same as in the NCG, we are
interested in existence, structure, and cost of disconnected Nash equilibria. If β is
large, Nash equilibria of the PCG are similar to those of the NCG, in particular,
they are connected. For smaller β, disconnected Nash equilibria evolve, and an
interesting insight gained from Sect. 3 is that the prevalent tree structures of
the NCG are absent whenever β > 2 or α > 1 (see Theorem 3). In addition, we
consider the price of anarchy in Sect. 4. There are parameter values, for which
disconnected Nash equilibria appear but the social optimum is connected, which
could lead to an unbounded price of anarchy. However, we show that the price of
anarchy in the PCG is always bounded by O(n). In addition, Theorem 4 reveals
cases with a tight matching lower bound of Ω(n). This bound is strictly larger
than any bounds for the NCG. In Sect. 5 we consider players that can play
joint coordinated deviations and strong equilibria. Unless α and β are within
a small range, the social optimum is also a strong equilibrium (Theorem 5). In
Theorem 6 we prove that the price of anarchy for strong equilibria is at most
4. This reveals that in the PCG regular Nash equilibria can be several orders of
magnitude more costly than strong equilibria, a question which is still unsolved
for the NCG. Due to spacial constraints proofs are sketched or omitted and will
be given in the full version of the paper.
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2 The Model and Initial Results

The network connection game (NCG) is a tuple (V, α) and can be described
as follows. The set of players V is the set of vertices of a graph. Possible edges
{i, j} ∈ V ×V have cost α. A strategy si of a player i is a subset si ⊂ V \{v} and
indicates, which edges player i chooses to build. In this way a strategy vector s in-
duces a set of edges between the players. Given a strategy vector s the individual
cost for a player i is ci(s) = α|si|+

∑
j �=i dists(i, j), where α > 0 and dists(i, j) is

the length of a shortest-path in the undirected graphGs = (V,Es) induced by the
strategy vector s. Note that Gs is assumed to be undirected, i.e. each edge can be
traversed in any direction, independent of which player pays for it. In the regular
connection game dists(i, j) =∞ if players i and j are in different components of
Gs. In the penalized network creation game (PCG) we are given a penalty value
β > 1, and dists(i, j) = β for players i and j in different components. A pure
Nash equilibrium (NE) is a state s, in which no player can unilaterally decrease
her cost ci by changing her strategy si. We will restrict our attention to pure equi-
libria throughout. The social cost c(s) of a state s is simply c(s) =

∑
i∈V ci(s).

The social optimum state s∗ is a state with minimum social cost. Note that for
the cost of a state it does not matter, which of the two players connected by
an edge chose to pay for it, and hence we will sometimes use the graph Gs for
s. States that play an important role in the analysis of the PCG are the empty
state s∅ = (∅, . . . , ∅), sK corresponding to the complete graph, in which each
edge {i, j} with i �= j is paid by player min{i, j}, and sZ corresponding to a
center-sponsored star, in which one player purchases edges to all other players.

Fig. 2. NCG with k = 4 and 4 <
α < 6 with cycling better response
iteration. Black dots indicate the
player who pays for the edge.

Fabrikant et al. [11] show that there is al-
ways a pure NE in the NCG and mention that
it might be found by iterative improvement
steps. Finding a best-response for a player in
a NCG, however, was shown NP-hard [11],
and this translates to the PCG for sufficiently
large penalty cost. In addition, we show that
better-response dynamics may cycle, hence
the game is no potential game [16]. As the
dynamics involve no disconnectivities, the re-
sult follows directly for the PCG. Neverthe-
less, in the PCG there is always a pure NE.
This serves as a first insight to motivate the
further study of the properties of pure NE in
the PCG.

Theorem 1. Every PCG has a pure Nash equilibrium, but neither NCG nor
PCG are potential games.

Proof. We first disprove the existence of a potential function. For any α > 3
choose an integer k with k < α < 3k

2 . Now construct a strategy combination for
n = 4k players as depicted in Fig. 2. The following steps each represent a strict
improvement for the players: (1) player 4 removes edge e1, (2) player 2 removes
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edge e2, (3) player 4 builds edges e1 and e2. This leads into an isomorphic state,
and allows to construct an infinite improvement path. For the proof of existence
it can be shown that the following states are NE: for α ≥ β − 1 the empty
network s∅, for 1 ≤ α < β − 1 the center-sponsored star sZ , in which all edges
are bought by the center node, and for α < 1 and α < β − 1 the state sK . ��

3 Disconnected Equilibria

In this section we consider existence and structural properties of disconnected
NE in the PCG. First, we clarify the existence of disconnected equilibria.

Theorem 2. For α ≥ β − 1 the empty graph is always a disconnected NE. For
0 < α < β − 1 there is no disconnected NE.

Proof. The first part follows from Theorem 1. For the second part consider a
player v in a disconnected NE s. Let nv be the size of the component of the graph
Gs, in which v is located. Now suppose v changes her strategy by connecting to
all n − nv players in other components. Then the change is α(n − nv) + (n −
nv)−β(n−nv) = (n−nv)(α− (β−1)) < 0. Hence, under these conditions every
player in a disconnected state can decrease her individual cost. ��

The theorem provides a tight characterization using the empty graph. An in-
teresting issue, however, is to explore whether non-empty disconnected NE are
possible, because in many cases the empty graph represents a rather unrealistic
prediction for a stable network. Note that a component of k players in a discon-
nected NE of a PCG with given α and β must be a NE in the corresponding
NCG with α and k players. A prominent structure that has been identified as
NE in the NCG are trees.

Trees. Tree graphs are a structure whose appearance is wide-spread in the
NCG [2, 11]. The following analysis shows that this property is only due to the
requirement that a NE must be connected. The following discussion reveals that
in the PCG these structures can appear only in very special cases.

Lemma 1. For β > 2 every non-singleton player v in a disconnected NE has
at least one incident edge that was created by a different player w �= v.

Proof. Consider a player v in a component C with k players, who pays for all
her dv incident edges. As we have a NE, it is not profitable for v to disconnect
from C, i.e. αdv +

∑
w∈C dist(v, w) ≤ β(k−1). Consider a different player v′ �∈ C

that chooses to connect to all neighbors of v. This must not be profitable, so
αdv +

∑
w∈C dist(v, w) + 2 ≥ βk. Adding the inequalities yields β ≤ 2. ��

Lemma 2. Suppose there is a disconnected NE with a component C of k > 1
vertices. If α > (k − 1)(β − 2) + 1, then for every player v there is an incident
edge paid by a different player w �= v.
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Proof. Suppose there is a player v that pays for all her dv ≥ 1 incident edges. As v
does not want to remove all edges, we have αdv+

∑
w∈C dist(v, w) ≤ β(k−1), and

thus α ≤ 1
dv

(
β(k − 1)−

∑
w∈C dist(v, w)

)
. Every pair of non-neighbor vertices

in C has a distance of at least 2, so
∑

w∈C dist(v, w) ≥ 2(k−1)−dv. Substitution
yields α ≤ (k − 1)(β − 2) + 1 as desired. ��

Theorem 3. For β > 2 or α > 1 no component of a disconnected NE is a tree.

Proof. The first bound is a direct consequence of Lemma 1 and the fact that for
a tree |E| = |V | − 1. Thus, for disconnected NE with tree components β ≤ 2,
and the second bound follows with Lemma 2. ��

Non-empty Equilibria. It can be shown that the appearance of currently
known NE topologies from the NCG as components in disconnected NE of the
PCG is quite limited. The existence of disconnected NE, however, is guaranteed
by the empty network. This raises the question under which conditions on α and
β non-empty disconnected NE can evolve. We first present a positive result.

Lemma 3. For 3 ≤ α ≤ 4 and β ≤ (α + 11)/5 a cycle C5 of 5 vertices can be
a component of a disconnected NE.

In contrast to the restricted interval, for which we can show existence, there is
an unbounded region of parameter values, for which the empty network is the
only disconnected network - in particular if α or β are large compared to n.

Lemma 4. In a non-empty disconnected NE let nl be the minimum size and
diaml the minimum diameter of any non-singleton component. Then (1) α <
12nl lognl, (2) β ≤ 1 + 2 · diaml, (3) β < 1 + 14

√
nl lognl, and (4) if n > 6,

then β < n/2.

Proof. We only prove the first three bounds here. For the first bound consider
α ≥ 12nl lognl and a component with nl players. This component must represent
a NE in a NCG with the same α and nl players, and thus according to [2] must be
a tree. This contradicts Theorem 3 and the bound follows. Now consider a non-
empty disconnected NE s for β > 2, and let C be a non-singleton component.
As C is no tree, it must contain at least one cycle. Let U be a smallest of all
cycles in C, and let v be an arbitrary player that constructed some edge e of
U . Denote by s′ the state that evolves if player v removes edge e. Note that
by this removal no additional pair of players gets disconnected. As s is a NE,
we have α ≤

∑
w∈C(dists′(v, w) − dists(v, w)). As we have chosen U to be of

minimum size, all shortest distances between vertices of U are given by the
paths along the cycle. Thus, there is always a vertex u, for which the distances
in s and s′ are the same. This yields dists′(v, w) ≤ dists′(v, u) + dists′(u,w)
= dists(v, u) + dists(u,w) for all w ∈ C. With nC = |C| we can conclude α ≤
2nC ·diam(C)−

∑
w∈C dists(v, w). On the other hand, no vertex outside C must

be able to profit from a connection to v, hence α+nC +
∑

w∈C dist(v, w) ≥ nCβ.
The last two inequalities deliver the second bound. We know from [11] that
diam(C) ≤

√
4α+ 1. Together with the bounds (1) and (2) shown above this

implies the third bound. ��
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In contrast to these bounds, we have not been able to derive any non-empty
disconnected NE for values of β > 3. This led us to formulate the following
conjecture. Note that our bounds imply that if the conjecture is false, then there
must be non-tree NE in the NCG with a diameter of size ω(1). This seems quite
unlikely, as all non-tree NE found so far have diameter at most 3.

Conjecture 1 (Constant Penalty Conjecture). There is a constant β′ such that
for β > β′ the only disconnected NE is s∅.

4 Price of Anarchy
In this section we consider the price of anarchy in the PCG. We first consider
the social optima of the game. For α ≤ min{2, 2β − 2} the complete graph sK
is the optimum. For α ≤ 2 and α ≥ 2β − 2 the empty graph s∅ is the optimum.
s∅ remains the optimum for α ≥ 2 and α ≥ βn − 2(n − 1). For the remaining
range the star sZ is the optimum. For α < β − 1 we have seen in Theorem 2
that no disconnected NE exists. In addition, it can be shown that in this case a
finite penalty for disconnectivity cannot disrupt any NE of the NCG. Hence, for
this parameter range the price of anarchy is identical to the NCG. In general,
however, the price of anarchy in the PCG can be strictly larger than for the
NCG. Fig. 3 provides an overview of the bounds we obtained. Note that all
these bounds are in O(n) for the respective parameter values. We concentrate
on the case max{2, β − 1} < α < βn− 2(n− 1), in which disconnected NE can
appear and the star is the social optimum.

Theorem 4. For 2β − 2 ≤ α ≤ nβ − 2(n − 1) the price of anarchy is bounded
by Θ

(
nβ
α

)
for α ≥ 12n logn and O

(
5
√

log n logn+ nβ
α+n

)
for α < 12n logn. For

β − 1 ≤ α ≤ 2β − 2 the price of anarchy is Θ(min{β, n}).

Proof. For the proof of the first bound consider α ≥ 12n logn. According to
Lemma 4 in this case every NE is either connected or s∅. For α ≥ 12n logn
all connected NE have a constant price of anarchy [2], while s∅ leads to an
increase and proves our first bound: c(s∅)

c(sZ) = βn
α+2(n−1) ∈ Θ

(
nβ
α

)
. This bound

increases from Θ(1) to Θ(n) if α drops from nβ − 2(n − 1) to 2β − 2. It also
shows that the price of anarchy induced by s∅ is never more than O(n) for
s∗ = sZ and α ≥ β − 1. Another range, for which s∅ is the most expensive
NE, is β − 1 ≤ α ≤ 2β − 2 with β ≥ 7. Then any directly connected pair
induces a cost of α + 2 ≤ 2β. Any indirectly connected pair in a NE induces a
cost 2dists(v, w) ≤ 2

√
4α+ 1 ≤ 2

√
8β − 7 ≤ 2β. Thus, the cost of 2β induced

by s∅ is maximal for every pair of players. c(s∅)/c(sZ) characterizes the price
of anarchy and results in Θ(min{β, n}), which proves the third bound. For the
remaining range with α < 12n logn there might be worse disconnected NE
than s∅. However, components of these NE must be connected NE of smaller
NCGs. We bound the price of anarchy for these NE by the fraction for s∅ plus
the maximum factor of any component NE in the corresponding NCG. With the
bound of 5

√
log n log n ∈ o(nε) on the price of anarchy for the NCG [8] this proves

our second bound O(max{5
√

log n logn,min{n, β}}), which is at most O(n). ��
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Fig. 3. Price of anarchy in the PCG

5 Strong Equilibria

In this section we assume agents are able to jointly deviate to different strategies.
As stability concept we consider the strong equilibrium [4], in which no coalition
C of players can decrease the cost for each of its members by taking a joint
deviation. More formally, if a state s is a strong equilibrium (SE), then for each
coalition of players C and each possible strategy profile s′C for the players in C
it holds that if there is a player i ∈ C with ci(s′C , s−C) < ci(s), then there is
another player j ∈ C with cj(s′C , s−C) ≥ ci(s). The price of anarchy for SE is a
direct adaption of the price for NE and was studied in [3] for the NCG. The next
theorem summarizes structural and existence properties of SE in the PCG. It
shows, in particular, that with the exception of a small range of parameter values
strong equilibria always exist in the PCG. Finally, the main result in this section
is a general constant upper bound on the price of anarchy for SE in the PCG.

Theorem 5. For α < β − 1 the SE of the PCG are exactly the SE of the
corresponding NCG. For α ≥ β − 1 the social optimum in the PCG is a SE for
all parameter values except β < 3, and βn− 2n+2− (β− 1) < α < βn− 2n+2.

Theorem 6. The price of anarchy for SE in the PCG is at most 4.
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Abstract. In this paper, we consider randomized truthful mechanisms
for scheduling tasks to unrelated machines, where each machine is
controlled by a selfish agent. Some previous work on this topic focused on
a special case, scheduling two machines, for which the best approximation
ratio is 1.6737 [5] and the best lower bound is 1.5 [6]. For this case, we
give a unified framework for designing universally truthful mechanisms,
which includes all the known mechanisms, and also a tight analysis
method of their approximation ratios. Based on this, we give an improved
randomized truthful mechanism, whose approximation ratio is 1.5963.
For the general case, when there are m machines, the only known
technique is to obtain a γm

2 -approximation truthful mechanism by
generalizing a γ-approximation truthful mechanism for two machines[6].
There is a barrier of 0.75m for this technique due to the lower bound of
1.5 for two machines. We break this 0.75m barrier by a new designing
technique, rounding a fractional solution. We propose a randomized
truthful-in-expectation mechanism that achieves approximation of m+5

2 ,
for m machines.

For the lower bound side, we focus on an interesting family of
mechanisms, namely task-independent truthful mechanisms. We prove
a lower bound of 11/7 for two machines and a lower bound of m+1

2 for
m machines with respect to this family. They almost match our upper
bounds in both cases.

1 Introduction

Mechanism design, an important area both in Game Theory and Computer
Science, has received extensive study in the past few years. It is usually used
to design a protocol for achieving some global objective, however requiring the
interaction of some selfish agents. To deal with this, the most common solution
concept is “truthfulness”, where the mechanism is designed so that for any
participant agent, reporting his/her private data truthfully to the mechanism
will always maximize his/her own utility, no matter how other agents act. We
also focus on truthful mechanisms in this paper.
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The study of the algorithmic aspect of mechanism design was initiated by
Nisan and Ronen in their seminal paper “Algorithmic Mechanism Design”[8].
Some computational properties such as good approximation ratios and polyno-
mial running time are studied in mechanism design setting. Nisan and Ronen’s
work mainly focused on a fundamental problem in computer science, scheduling
unrelated machines. In a scheduling problem, there are n tasks to be allocated to
m machines, which are controlled by selfish agents. The objective is to allocate
the tasks so that the maximum completion time of these machines ( called
makespan) is minimized. A mechanism for the scheduling problem consists of
two algorithms, the allocation algorithm and the payment algorithm. Our main
interest is on the approximation ratio of the allocation algorithm. Nisan and
Ronen proposed a deterministic truthful mechanism with an approximation ratio
of m. Moreover, they proved a lower bound of 2 for all the deterministic truthful
mechanisms. Randomization is always more powerful, and this is also true for
this scheduling problem. They provided a randomized truthful mechanism with
approximation ratio of 1.75 for two machines. Recently Mu’alem and Schapira
gave a lower bound of 2 − 1/m for randomized truthful mechanisms[6]. They
also generalized the 1.75 approximation mechanism for two machines to a
0.875m-approximation mechanism for m machines. In a previous work[5], we
improved Nisan and Ronen’s result by a 1.67-approximation randomized truthful
mechanism for two machines, together with a 0.837m-approximation mechanism
for m machines using Mu’alem and Schapira’s technique in [6].

A fractional variant of truthful scheduling unrelated machines was first
considered by Christodoulou, Koutsoupias and Kovács in [2]. They gave a
fractional truthful mechanism with approximation ratio of (m+1)/2, and a lower
bound of 2 − 1/m for any fractional truthful mechanisms. They also defined a
family of allocation algorithms named as task-independent algorithm, in which
tasks are allocated independently. For the task-independent truthful fractional
mechanisms, they proved a tight lower bound of (m+ 1)/2.

1.1 Our Results

In this paper, we first propose a unified approach to design truthful mechanisms
for two machines, which contains all the known truthful mechanisms. One main
contribution is that we not only unify all the known mechanisms, but also give
a unified and tight analysis method for their approximation ratios. Based on
this, we are able to give a randomized mechanism for two machines, which is
universally truthful and has an approximate ratio of 1.5963.

A natural question would be how far we can go with this unified approach. We
answer this question by a lower bound of 1.5788 for this approach. Further more,
we also prove a lower bound of 11/7 for all the task independent randomized
mechanisms which are truthful even in a weaker version, i.e., truthful in
expectation. So substantial new techniques are required to significantly improve
our results.
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For the general case, when there are m machines, the only known tech-
nique is to obtain a γm

2 -approximation truthful mechanism by generalizing a
γ-approximation truthful mechanism for two machines[6]. However the lower
bound of 1.5 for scheduling two machines gives a barrier of 0.75m for this
technique. We break this 0.75m barrier by a new designing technique. First, we
adopt a truthful fractional mechanism with ratio (m + 1)/2 by Christodoulou,
Koutsoupias and Kovács [2]. We add into this mechanism an important threshold
so that it satisfies certain “bid condition”, which is essential for us to bound
the loss of approximation ratio during the rounding process. Then we use a
rounding technique in [4] to get a randomized mechanism, which is still truthful
in expectation, and only loses little in approximation ratio. We finally obtain
a randomized mechanism which is truthful in expectation and achieves an
approximation ratio of (m+ 5)/2.

We also give a lower bound of (m+ 1)/2 for all task independent randomized
mechanisms. This result shows that we really need some new techniques to break
this 0.5m barrier.

2 Preliminaries and Notations

In this section we review some definitions and results on mechanism design and
scheduling problem. More details can be found in[8]. In the following, for a
generic matrix a = (aij), we use ai to denote the i-th row of the matrix, and a−i

to denote the matrix obtained from a deleting ai. We also use (v, a−i) to denote
the matrix obtained from a by replacing ai with vector v. We use R+ to denote
the set of nonnegative real numbers.

In a scheduling problem, there are n tasks and m machines, where each
machine i ∈ [m] needs tij units of time to perform task j ∈ [n]. We usually
use the matrix t = (tij) to denote an instance of the scheduling problem. In
this paper, we consider that each machine is controlled by a strategic player. We
assume that player i privately knows ti, and we call the vector ti player i’s type.
After each player i declares his/her type, an allocation algorithm x will decide
an allocation of all the tasks. We assume that all the players are selfish and
want to perform as less tasks as possible, so players may misreport their types.
We use bi ∈ Rn

+ to denote player i’s reported type, and call it player i’s bid.
Obviously bi may not equal to ti if that helps in player i’s interest. To avoid this
lying issue, we introduce the payment algorithm p into a mechanism. Formally,
a mechanism M = (x, p) consists of two parts:

– An allocation algorithm: The allocation algorithm x, given the input of
players’ bid matrix b = (b1, · · · , bm), outputs an allocation denoted by a
matrix x = (xij). xij is 1 if task j is assigned to machine i, and 0 otherwise.
In the fractional scheduling case, xij satisfies 0 ≤ xij ≤ 1 and denotes the
fraction of task j assigned to machine i. Every task must be completely
assigned, hence

∑
j∈[n] xij = 1, ∀i ∈ [m]. Notice that each xij can be viewed

as a function of b.
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– A payment algorithm: The payment algorithm p, given the input of
players’ bid matrix b, outputs a vector p = (p1, · · · , pm), where pi denotes
the money that player i receives from the mechanism. Each pi can also be
viewed as a function of b.

Randomized mechanism is defined to be a distribution of several deterministic
mechanisms. In randomized mechanism, xij is a random variable denoting
whether task j is assigned to machine i. For simplicity, we also use xij to denote
Pr(xij = 1) when the context is clear.

Now we specify the utility of each player. We use the quasi linear utility, which
means the utility ui of player i with type ti over an allocation x and money pi

is defined as:
ui(x, pi|ti) = pi −

∑
j∈[n]

xijtij .

Since x and pi are both functions of bid matrix b, we can also write the
utility as

ui(b|ti) = pi(b)−
∑
j∈[n]

xij(b)tij .

Recall that we want to solve the issue of lying about types, we are interested
in truthful mechanisms. A mechanism M = (x, p) is truthful if for each player i,
reporting his/her true type will maximize his/her own utility. Formally, for any
i, any bids b−i of all other players, we have

ui((ti, b−i)|ti) ≥ ui((bi, b−i)|ti), ∀bi ∈ Rn
+

For randomized mechanism, there are two versions of truthfulness. The
stronger version is universally truthful, which requires the mechanism to be
truthful when fixing all the random bits. The weaker version is truthful in
expectation, which only requires that for each player, reporting his/her true
type will maximize his/her own expected utility.

For a truthful mechanism M , we may assume that all the players will report
their true types, hence b = t. Now, how can we evaluate the performance of
mechanism’s allocation algorithm x? We consider the makespan, which is the
maximum load of all the machines. Given input t, the makespan of mechanism
M is denoted by lM (t), and lM (t) = maxi∈[m]

∑
j∈[n] xijtij . We use lopt(t) to

denote the optimum, and lopt(t) = minx maxi∈[m]
∑

j∈[n] xijtij . A mechanism
M is called c-approximation mechanism if for any instance t, we have lM (t) ≤
c · lopt(t). For randomized mechanism M , we require E[lM (t)] ≤ c · lopt(t), where
the expectation is over the random bits used in the mechanism.

To sum up, we aim at designing (randomized) truthful mechanism with small
approximation ratio. By the way, we also require the algorithms of the mechanism
to be polynomial computable. When designing a mechanism, there are already
several results about the characterization of truthfulness, which may help us
to get rid of the payment issue. We mainly use Archer and Tardos’ monotone
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theorem for one parameter mechanism in [1]. In the one parameter case, each
player i only has a single value as his/her type (i.e. the speed of machine i).
Similar result is obtained in [7] for the auction setting.

Theorem 1. ([7,1]) In a one parameter scheduling mechanism, an allocation
algorithm admits a payment scheme to make the mechanism truthful if and only
if it is monotone decreasing. In this case, the mechanism is truthful if and only
if the payments pi(bi, b−i) are of the form

hi(b−i) + bixi(bi, b−i)−
∫ bi

0
xi(u, b−i) du

where the hi are arbitrary functions, and xi are the allocation functions
(algorithm).

In this paper, we also consider the lower bound of approximation ratio for a
special family of mechanisms, i.e. task independent truthful mechanisms. We
first define task independent mechanisms.

Definition 1. A deterministic mechanism M is task independent, if for any bid
matrices b, b′ such that bij = b′ij for any i ∈ [m], then the allocation of task j
does not change, i.e. xij(b) = xij(b′), ∀i ∈ [m].

For randomized mechanisms, there are also two versions of task independence.
One is weak task independent randomized mechanism, which is a distribution
over several task independent deterministic mechanisms. The other is (strong)
task independent randomized mechanism, which satisfies that not only the
allocation of task j does not change when j’s column of b is not changed, but
also all the random variables xij are independent between different tasks. In this
paper, we consider the stronger version.

The following theorem is a main tool used in proving lower bound.

Theorem 2. (Monotone theorem[8]) In any truthful mechanism, the allocation
algorithm must satisfy the following monotone property: for any two bids b and b′

which differ only on machine i, the corresponding allocation x(b) and x′ = x(b′)
satisfy

m∑
j=1

(xij − x′ij)(bij − b′ij) ≤ 0.

We remark that for randomized mechanism, the monotone property of the
allocation algorithm still holds, which is proved implicitly in [6]. In our paper,
we only use the following corollary for task independent randomized truthful
mechanisms.

Corollary 1. For any task independent randomized truthful mechanism M , any
two bid matrices b, b′ where b′ is obtained from b by only changing bij to b′ij,
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then we have
(
xij(b) − xij(b′)

)
(bij − b′ij) ≤ 0, where xij denotes the probability

of assigning task j to machine i.

3 Scheduling Two Machines

Most of the previous works on this topic are for scheduling two machines. In
this section, we first propose a unified framework for all the known mechanisms.
Based on this framework, we give an improved truthful mechanism. Then we
also explore the limitation of this approach by showing an almost tight lower
bound for all the task-independent truthful mechanisms.

3.1 Unified Randomized Truthful Mechanisms Mf

Let f : R+ ⇀ [0, 1] be a non-decreasing monotone function, satisfying f(0) = 0
and limx→∞ f(x) = 1. Then we have a randomized mechanismMf for scheduling
two machines based on f . Noticing that this kind of function f can be viewed
as a cumulative distribution function for a random variable in R+, we have the
following formal description of the mechanism Mf :

Input: The reported bid matrix b.
Output: A randomized allocation x
and a payment p = (p1, p2).
Allocation and Payment Algorithm:
x1j ← 0, x2j ← 0, j = 1, 2 · · · , n; p1 ← 0; p2 ← 0.
For each task j = 1, 2 · · · , n do

Choose sj ∈ R+ randomly according to function f
such that Pr(sj ≤ u) = f(u).
if b1j ≤ s−1

j b2j ,
x1j ← 1, p1 ← p1 + s−1

j b2j;
else
x2j ← 1, p2 ← p2 + sjb1j.

This unified mechanism Mf is actually a generalization of Nisan and Ronen’s
Biased MinWork Mechanism in a continuous setting. For the truthfulness, we
have the following theorem.

Theorem 3. For any non-decreasing monotone function f : R+ ⇀ [0, 1], where
f(0) = 0 and limx→∞ f(x) = 1, mechanism Mf is universally truthful.

Proof. To prove that the mechanism Mf is universally truthful, we only need
to prove that it is truthful when the random sequence {sj} is fixed. Since the
utility of an agent equals the sum of the utilities obtained from each task and our
mechanism is task-independent, we only need to consider the case of one task.
In this case, say sj is fixed and there is only one task j, the allocation algorithm is
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monotone decreasing and the payment makes the mechanism truthful, according
to the theorem 1(with function h1(b2j) = s−1

j b2j and h2(b1j) = sjb1j).

Now we demonstrate the power of our unified designing approach by showing
that every known mechanism can be viewed as a mechanism Mf with respect to
some function f .

f1(x)=

�
1, x ≥ 1,

0, 0 ≤ x < 1;
f2(x)=

�������
������

1, x ≥ 4
3
,

1
2
,

3
4

≤ x <
4
3
,

0, 0 ≤ x <
3
4
;

f3(x)=

�������������
������������

1, x ≥ α,

r, β ≤ x < α,

1
2
,

1
β

≤ x < β,

1 − r,
1
α

≤ x <
1
β

,

0, 0 ≤ x <
1
α

.

Mf1 is exactly the Min Work Mechanism proposed by Nisan and Ronen
[8]. This is indeed a deterministic mechanism, whose approximation ratio is
2, and it is the best determinate mechanism. Mf2 is the Biased Min Work
Mechanism also proposed by Nisan and Ronen [8], whose approximation ratio
is 1.75. Then we improved their result by Mf3 in our previous work[5]. By
taking α = 1.4844, β = 1.1854, r = 0.7932 in f3, we have a randomized truthful
mechanism with approximation ratio of 1.6737.

We can see that all the previous functions f are distribution functions of some
discrete random variables. One essential reason is that we can apply a “task
reducing” technique [8,5], then analyze the performance using a case by case
method. However the number of subcases increased dramatically if we consider
a more complicated function f . One of our main contribution in this paper is that
we not only propose the unified framework Mf , but also provide a performance
analysis method.

Theorem 4. For any non-decreasing monotone function f : R+ ⇀ [0, 1], the
approximation ratio of the mechanism Mf is exactly maxα1,α2∈R+ F (α1, α2),
where F : R+ × R+ ⇀ R is defined as following (Here r1 = f(α1) and r2 =
f(1/α2))

F (α1, α2)=(1+α2)r1r2+r1(1−r2)+(1+α1)(1−r1)(1−r2)+max{α1, α2}r2(1−r1).

By this theorem, we can easily estimate the approximation ratio of a given
mechanism Mf . In particular, by choosing f(x) = 1 − 1

2x2.3 , we can compute
that its approximation ratio is 1.5963. The function we used here is only an
illustration of our mechanism Mf . We also believe that there exists a better f ,
though very hard to find. It is also an interesting problem to explore the property
of function f with which Mf can have smaller approximation ratio.

Theorem 5. For f(x) = 1 − 1
2x2.3 , the mechanism Mf for two machines is

universally truthful and can achieve an approximation ratio of 1.5963.
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Before we prove the theorem 4, we first give a lemma, which gives an alternative
description of the allocation in our mechanism Mf . Its proof is direct from the
definition of our mechanism. Since we already proved that our mechanism Mf

is truthful, we can also denote the bid as t in the following.

Lemma 1. For any type matrix t of the two machines, Mf allocates each task
independently and for each task j = 1, 2 · · · , n, if t1j = 0, always allocate it to
machine 1, otherwise allocates it to machine 1 with probability f(t2j/t1j) and to
machine 2 with probability 1− f(t2j/t1j).

Proof of Theorem 4: Fix any instance t = (tij), let lopt be the optimal makespan.
Let O1, O2 be the sets of tasks assigned to machine 1 and machine 2 respectively
in an optimal solution. Then we have

lopt = max{
∑
j∈O1

t1j ,
∑

k∈O2

t2k}.

Now we estimate the expected makespan of our mechanism Mf , denoted by
lf . We use lfi , i = 1, 2, to denote the completion time of machine i, then lf =
max{lf1 , l

f
2}. Let M be a random variable such that M = 1 if lf1 ≥ l

f
2 , and M = 2

otherwise. We also denote Pr (M = 1, x1j = 1) as P 1
j and Pr (M = 2, x2j = 1)

as P 2
j in the following calculation. Then we have:

lf =
∑

j∈[m]

t1jP
1
j + t2jP

2
j

=
∑
j∈O1

t1j

(
P 1

j +
t2j

t1j
P 2

j

)
+
∑

k∈O2

t2k

(
t1k

t2k
P 1

k + P 2
k

)

≤ max
j∈O1

(
P 1

j +
t2j

t1j
P 2

j

)
·
∑
j∈O1

t1j + max
k∈O2

(
t1k

t2k
P 1

k + P 2
k

)
·
∑

k∈O2

t2k

≤ lopt

(
max
j∈O1

(
P 1

j +
t2j

t1j
P 2

j

)
+ max

k∈O2

(
t1k

t2k
P 1

k + P 2
k

))
≤ lopt

(
max
j �=k

(
P 1

j +
t2j

t1j
P 2

j +
t1k

t2k
P 1

k + P 2
k

))
So the approximate ratio is bounded by the term

max
j �=k

(
P 1

j +
t2j

t1j
P 2

j +
t1k

t2k
P 1

k + P 2
k

)
.

Fix any j, k, let α1 = t2j

t1j
, α2 = t1k

t2k
and Pabc = Pr (M = a, xbj = 1, xck = 1),

a, b, c ∈ {0, 1}. Then we can expand P 1
j as P111 + P112, since

Pr (M=1, x1j = 1)=Pr (M=1, x1j = 1, x1k = 1)+Pr (M=1, x1j =1, x2k =1) .
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Let r1 = Pr(x1j = 1), r2 = Pr(x1k = 1), then we have:

P 1
j +

t2j

t1j
P 2

j +
t1k

t2k
P 1

k + P 2
k

= (P111 + P112) + α1(P221 + P222) + α2(P111 + P121) + (P212 + P222)
= (P111+P112+P212)+α2(P111+P121+P221) + (α1 − α2)P221 + (1 + α1)P222

≤ Pr(x1j = 1) + α2Pr(x1k = 1) + (α1 − α2)Pr(M = 2, x2j=1, x1k = 1)
+(1 + α1)Pr(M = 2, x2j = 1, x2k = 1)

≤ Pr(x1j = 1) + α2Pr(x1k = 1) + max{α1 − α2, 0}Pr(x2j = 1, x1k = 1)
+(1 + α1)Pr(x2j = 1, x2k = 1)

= (1 + α2)r1r2 + r1(1− r2)+(1 + α1)(1− r1)(1 − r2)+max{α1, α2}r2(1− r1)
= F (α1, α2)

The first inequality is because Pr(x1j = 1) = P111 + P112 + P211 + P212 and so
on. The second inequality is because Pr(M = 2, x2j=1, x1k = 1) ≤ Pr(x2j =
1, x2k = 1). By lemma 1, r1 = f(α1), r2 = f(1/α2), hence the approximation
ratio is bounded by maxα1,α2∈R+ F (α1, α2).

On the other direction, we use the following instance to show that our analysis
of the approximation ratio is tight. We will use the following tables to illustrated
tasks and their allocation throughout this paper. There are two tasks A and B.
The left table shows the instance t, where t1A = 1, t1B = α2, t2A = α1, t2B = 1.
The right table shows the allocation of this instance using our mechanism Mf :
task A is assigned to machine 1 with probability r1, to machine 2 with probability
1− r1, etc. Here r1 = f(α1) and r2 = f(1/α2).

machine 1 machine 2
task A 1 α1

task B α2 1
→

machine 1 machine 2
task A r1 1− r1
task B r2 1− r2

For this instance, we have lopt ≤ 1 and the expected makespan produced by
Mf is exactly F (α1, α2). So the approximation ratio is at least F (α1, α2). �

3.2 Lower Bound for Task Independent Mechanisms

In this section, we show a lower bound for all task independent truthful
mechanisms. This lower bound for task independent randomized truthful
mechanisms is especially interesting, since a recent work in [3] shows that any
truthful mechanism for two machines is task independent, however in the weaker
version. So any lower bound better than 1.5 in the weaker version would imply
an improvement of the lower bound 1.5 for randomized mechanisms for two
machines case.

Theorem 6. For any task independent truthful mechanism for two machines,
its approximation ratio cannot be less than 11/7(≈ 1.5714).
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Proof. Given any task independent truthful mechanism M , consider the follow-
ing four instances(a is a constant to be specified later, and a > 1). We can assume
that r1 ≥ 1/2, otherwise we relabel the machines in instance 1, and modify the
other three instances respectively.

Instance 1:
machine 1 machine 2

task 1 1 1
task 2 1 2

→
machine 1 machine 2

task 1 r1 1− r1
task 2 r2 1− r2

For this instance, we have lM/lopt = 2r1 + (1 − r1)r2 + 3(1 − r1)(1 − r2) ≥
1 + r1 � A1.

Instance 2:
machine 1 machine 2

task 1 1 1
task 2 1 a

→
machine 1 machine 2

task 1 r1 1− r1
task 2 r3 1− r3

For this instance, we have lM/lopt = 2r1r3 − r1 − ar3 + a+ 1 � A2.

Instance 3:
machine 1 machine 2

task 1 a a2

task 2 1 a
→

machine 1 machine 2
task 1 r4 1− r4
task 2 r3 1− r3

For this instance, we have lM/lopt = (1 + 1
a )r3r4 − r3 − ar4 + a+ 1 � A3.

Instance 4:
machine 1 machine 2

task 1 a a
task 2 2a a

→
machine 1 machine 2

task 1 r5 1− r5
task 2 r6 1− r6

For this instance, we have lM/lopt = 2− r5 + 2r5r6 ≥ 2− r5.
Consider instance 3 and 4, we can change task 2’s values in instance 3 to

2a, a without affecting the allocation of task 1 since M is task independent.
Then we decrease machine 2’s value on task 1 from a2 to a. By corollary 1, we
know the probability that machine 2 gets task 1 should increase. That is to say,
1− r5 ≥ 1− r4. Then we have lM/lopt ≥ 2− r4 � A4.

To sum up, mechanismM ’s approximation ratio is at leastmax{A1, A2, A3, A4}
with the condition r1 ≥ 1/2, a > 1, whereA1 = 1+r1, A2 = 2r1r3−r1−ar3+a+1,
A3 = (1 + 1

a )r3r4 − r3 − ar4 + a+ 1, A4 = 2− r4. Choosing a = 3/2 and using
a case-by-case analysis, we can prove that max{A1, A2, A3, A4} ≥ 11/7 for any
r1, r2, r3, r4 with the assumption r1 ≥ 1/2.

4 Scheduling m Machines

First we give the framework of our mechanism for scheduling m machines,
BOUNDED-SQUARE mechanism. (Here we only give the allocation algorithm.)
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Input: The reported bid matrix b = (bij).
Output: A randomized allocation X = (Xij).
Allocation Algorithm:
(1) For each task j = 1, 2 · · · , n do
let Ij ← {i ∈ [m] : bij ≤ 2 mini∈[m] bij}.
if mini∈[m] bij = 0, we assign task j among the machines in Ij with equal
probabilities;
Otherwise we use the SQUARE allocation algorithm[2] in Ij :
For each machine i = 1, 2 · · · ,m do:

if i ∈ Ij , xij ←
1

(bij )2
�

s∈Ij

1
(bsj)2

, otherwise xij ← 0.

(2) Round (xij) to a randomized integer solution (Xij) such that E[Xij ] =
xij ,∀i, j. We will specify the method of rounding later.

In our BOUNDED-SQUARE mechanism, x = (xij) can be viewed as a
fractional solution of the scheduling problem. It is adapted from the fractional
mechanism SQUARE in [2]. However, we need some “bid condition” in order
to bound the loss of performance due to the rounding process. Here we give
a threshold of 2 mini∈[m] bij in the allocation, so if xij > 0, then bij ≤
2 mini∈[m] bij ≤ 2lopt(b). This idea plays an essential role in our mechanism.

Regarding the truthfulness of our mechanism, the proof is based on the fact
that the modified fractional mechanism is still truthful. The proof is similar as
in [2] and omitted here.

Lemma 2. For any rounding method satisfying E[Xij ] = xij ,∀i, j, there is
a payment algorithm to make BOUNDED-SQUARE mechanism truthful in
expectation.

Now we begin to analysis the approximation ratio of our mechanism. Since our
mechanism is already proved truthful, we can assume that the players will report
their types truthfully, and use t instead of b. Given an instance t, we first show
that this fractional solution approximates lopt(t) within a factor of m+1

2 . The
proof is also omitted.

Lemma 3. Let x = (xij) be the fractional solution obtained in the BOUNDED-
SQUARE mechanism, we have maxi∈[m]

∑
j∈[n] xijtij ≤ m+1

2 lopt(t).

For the rounding method, we use the algorithm proposed by Kumar et al. [4].

Lemma 4. (Kumar et al. [4]) Given a fractional assignment x and a processing
time matrix t, there exists a randomized rounding procedure that yields a random
integer assignment X such that,

1. for any i, j, E[Xij ] = xij .
2. for any i,

∑
j Xijtij <

∑
j xijtij + maxj:xij∈(0,1) tij with probability 1.

In our mechanism, we already know that maxj:xij∈(0,1) tij ≤ 2lopt(t) due to the
bid condition. So putting everything together(lemma 2, lemma 3, lemma 4), we
have the following theorem.
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Theorem 7. The BOUNDED-SQUARE mechanism is truthful in expectation
and has an approximation ratio of m+5

2 .
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Abstract. We study the design of optimal mechanisms in a setting
where job-agents compete for being processed by a service provider that
can handle one job at a time. Each job has a processing time and incurs
a waiting cost. Jobs need to be compensated for waiting. We consider
two models, one where only the waiting costs of jobs are private informa-
tion (1-d), and another where both waiting costs and processing times
are private (2-d). An optimal mechanism minimizes the total expected
expenses to compensate all jobs, while it has to be Bayes-Nash incen-
tive compatible. We derive closed formulae for the optimal mechanism
in the 1-d case and show that it is efficient for symmetric jobs. For non-
symmetric jobs, we show that efficient mechanisms perform arbitrarily
bad. For the 2-d case, we prove that the optimal mechanism in general
does not even satisfy IIA, the ‘independent of irrelevant alternatives’ con-
dition. We also show that the optimal mechanism is not even efficient
for symmetric agents in the 2-d case.

1 Introduction

The design of optimal auctions is recognized as an intriguing issue in auction
theory; first studied by Myerson (1981) for single item auctions. In that setting,
the goal is to maximize the seller’s revenue. We study the design of optimal
auctions (or more precisely, mechanisms) in a setting where job-agents compete
for being processed by a service provider that can only handle one job at a time.

Our results. We consider two cases. In the one-dimensional (1-d) case, jobs’
processing times are public information and a job’s weight is only known to the
job itself. Publicly known probability distributions over a finite set of possible
weights represent common beliefs about the weights. In the two-dimensional
(2-d) case, both weights and processing times are private information of the
jobs. In both cases we aim at finding Bayes-Nash incentive compatible mecha-
nisms that minimize the expected expenses of the service provider. Given jobs’

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 414–425, 2008.
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reports about their private information, a mechanism determines both an order
in which jobs are served, and for each job a payment that the job receives. The
payment can be seen as a compensation for waiting. By a graph theoretic inter-
pretation of the incentive compatibility constraints - as used e.g. by Rochet [12]
and Malakhov and Vohra [7] - we are able to derive optimal mechanisms. For
the one-dimensional case, we obtain closed formulae for modified job weights,
and show that serving the jobs in the order of non-increasing ratios of mod-
ified weights over service times is optimal for the service provider, as long as
a certain regularity condition is fulfilled. It turns out that the optimal mecha-
nism is not necessarily efficient, i.e., in general it does not maximize total utility.
But it does so if e.g. all jobs are symmetric. For non-symmetric jobs, we show
by example that the objective can be arbitrarily far from optimal if we insist
on efficiency. We also compare our optimal mechanism to the generalized VCG
mechanism and see that expected payments differ even for the case of symmetric
jobs. For the two-dimensional case, our main result is that the optimal mecha-
nism generally does not satisfy a property called IIA, ‘independent of irrelevant
alternatives’. That implies that the optimal mechanism cannot be expressed in
terms of modified weights along the lines of the 1-d case. In fact, any kind of
priority based list scheduling algorithm where the priorities of a job depend only
on the characteristics of that job itself cannot in general be an optimal mecha-
nism. We conclude that optimal mechanism design for the two-dimensional case
is substantially more involved than two-dimensional mechanism design for auc-
tion settings, as studied in [7]. We also show that even for symmetric jobs, in
the 2-d case the optimal mechanism is not efficient.

Related Work. Myerson [11] studies optimal mechanisms for single item auc-
tions and continuous 1-dimensional type spaces. Here, optimal auctions are mod-
ified Vickrey auctions, i.e. modified efficient auctions. When regarding the seller
as additional agent who bids zero in the original auction, his modified bid might
become non-zero in the optimal auctions yielding a reservation price. For a com-
parison between Myerson’s and our results, see Section 3. In [4], the authors
give an introduction to optimal mechanism design with 1-dimensional continuous
types under dominant strategy incentive compatibility. Both Myerson’s and our
optimal allocation rules turn out to be dominant strategy implementable as well,
while they yield optimal mechanisms in the larger class of Bayes-Nash incentive
compatible mechanisms. Malakhov and Vohra [7] regard optimal mechanisms
for an auction setting with discrete 2-dimensional type spaces. The derived op-
timal mechanisms again employ the efficient allocation rule with modified bids.
We show that their approach must fail in our setting. For details, we refer to
Section 4. Armstrong [1] studies a multi-object auction model where valuations
are additive and drawn from a binary distribution (i.e. high or low). He gives
optimal auctions under specific conditions that reduce the type graph. From this
paper it becomes evident that optimal mechanism design with multi-dimensional
discrete types is difficult. For our model, we formalize this difficulty by showing
that traditional approaches inevitably yield IIA-mechanisms and therefore must
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fail. Other scheduling models have been looked at from a different angle in the
economic literature. See, e.g., [8] for efficient and budget-balanced mechanism
design in a 1-dimensional model and [9] for mechanisms that prevent merging
and splitting of jobs.

2 Optimal Mechanisms for the 1-Dimensional Setting

Setting & Preliminaries. Consider a single machine which can handle one job
at a time. Let J = {1, . . . , n} denote the set of non-preemptive jobs. We regard
jobs as selfish agents that act strategically. Each job j has a processing time pj

and a weight wj . While pj is publicly known, the actual wj is private information
to job j. We refer to the private information of a job as its type. Jobs share
common beliefs about other jobs’ types in terms of probability distributions. We
assume discrete distribution of weights, that is, agent j’s weight wj follows a
probability distribution over the discrete set Wj = {w1

j , . . . , w
mj

j } ⊂ R, where
w1

j ≤ · · · ≤ w
mj

j . Let ϕj be the probability distribution of wj , that is, ϕj(wi
j)

denotes the probability associated with wi
j for i = 1, . . . ,mj . Let Φj(wi

j) =∑i
k=1 ϕj(wk

j ) be the cumulative probability up to wi
j . Both ϕj and Φj are public

information. We assume that jobs’ weights are independently distributed. Let
us denote by W = Πj∈JWj the set of all type profiles. For any job j, let W−j =
Πk �=jWk. Let ϕ be the joint probability distribution of w = (w1, . . . , wn). Then
ϕ(w) = Πn

j=1ϕj(w
ij

j ) for w = (wi1
1 , . . . , w

in
n ) ∈ W . Let w−j and ϕ−j be defined

analogously. For wi
j ∈ Wj and w−j ∈ W−j , we denote by (wi

j , w−j) the type
profile where job j has type wi

j and the types of all other jobs are w−j .
A direct revelation mechanisms consists of an allocation rule f and a payment

scheme π. Jobs have to report their weights and they might report untruthfully if
it suits them. Depending on those reports, the allocation rule selects a schedule,
i.e. an order in which jobs are processed on the machine. The payment scheme
assigns a payment that is made to jobs in order to reimburse them for their
waiting cost. The payments can be seen as a reimbursement for waiting.

Let S = {σ |σ is a permutation of (1, . . . , n)} denote the set of all feasi-
ble schedules. Then the allocation rule is a mapping f : W → S. For any
schedule σ ∈ S, let σj be the position of job j in the ordering of jobs in σ.
Then, by Sj(σ) =

∑
σk<σj

pk, we denote the start time or waiting time of
job j in σ. If job j has waiting time Sj and actual weight wi

j , it encounters
a valuation of −wi

jSj . If j additionally receives payment πj , his total utility is
πj −wi

jSj , i.e., we assume quasi-linear utilities. Let us denote by ESj(f, wi
j) :=∑

w−j∈W−j
Sj(f(wi

j , w−j))ϕ−j(w−j) the expected waiting time of job j if it
reports weight wi

j and allocation rule f is applied. Denote by Eπj(wi
j) :=∑

w−j∈W−j
πj(wi

j , w−j)ϕ−j(w−j) the expected payment to j. We assume that
jobs aim at maximizing their expected utility.

Definition 1. A mechanism (f, π) is Bayes-Nash incentive compatible if for
every agent j and every two types wi

j,w
k
j ∈Wj
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Eπj(wi
j)− wi

jESj(f, wi
j) ≥ Eπj(wk

j )− wi
jESj(f, wk

j ) (1)

under the assumption that all agents apart from j report truthfully. If for allo-
cation rule f there exists a payment scheme π such that (f, π) is Bayes-Nash
incentive compatible, then f is called Bayes-Nash implementable. The payment
scheme π is referred to as an incentive compatible payment scheme.

In order to account for individual rationality, we need to guarantee non-negative
utilities for all agents that report their true weight. To that end, we add a
dummy weight wmj+1

j to the type space Wj for every agent j. We assume
ESj(f, w

mj+1
j ) = 0 and Eπj(w

mj+1
j ) = 0 for all j ∈ J . Furthermore, we

impose the incentive constraints Eπj(wi
j) − wi

jESj(f, wi
j) ≥ Eπj(w

mj+1
j ) −

wi
jESj(f, w

mj+1
j ) implying that Eπj(wi

j)−wi
jESj(f, wi

j) ≥ 0 for any Bayes-Nash
incentive compatible mechanism (f, π). Therefore, the dummy weights together
with the mentioned assumptions guarantee that individual rationality is satisfied
along with the incentive constraints. The dummy weight can be interpreted as
an option for any job not to take part in the mechanism.

Definition 2. An allocation rule f satisfies monotonicity w.r.t. weights or short
monotonicity if for every agent j ∈ J , wi

j < wk
j implies that ESj(f, wi

j) ≥
ESj(f, wk

j ).

Theorem 1. An allocation rule f is Bayes-Nash incentive compatible if and
only if it satisfies monotonicity w.r.t. weights.

The proof is standard and therefore omitted. We refer, e.g., to [10] for details.

The Type Graph. A useful tool for deriving optimal mechanisms is the type
graph. It has been used earlier, e.g. in [6,7,10]1. The type graph2 Tf is defined
for a fixed agent j. Tf has node set Wj and contains an arc from any node wi

j

to any other node wk
j of length

�ik = wi
j [ESj(f, wk

j )− ESj(f, wi
j)].

Here, �ik represents the gain in expected valuation for agent j by truthfully
reporting type wi

j instead of lying type wk
j . The incentive constraints for a Bayes-

Nash incentive compatible mechanism (f, π) and job j can be read as

Eπj(wk
j ) ≤ Eπj(wi

j) + wi
j [ESj(f, wk

j )− ESj(f, wi
j)] = Eπj(wi

j) + �ik.

That is, the expected payments Eπj(·) constitute a node potential in Tf . A
standard result in graph theory says that these node potentials exist if and only
if there is no negative cycle in the graph. That is, Bayes-Nash implementability of
an allocation rule f is equivalent to the fact that the type graph Tf for any agent

1 The exact definitions of the type graph might differ in the papers depending on the
underlying model.

2 We suppress the dependence on agent j in the notation and simply write Tf .
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j has no negative cycle. We then say that the Tf ’s satisfy the non-negative cycle
property. Monotonicity is equivalent to the fact that there is no negative cycle
of length two in Tf . We call this property the non-negative two-cycle property.
It follows from

�ik + �ki = wi
j [ESj(f, wk

j )− ESj(f, wi
j)] + wk

j [ESj(f, wi
j)− ESj(f, wk

j )]

= (wi
j − wk

j )[ESj(f, wk
j )− ESj(f, wi

j)].

The last term is non-negative for all jobs j and any two types wi
j and wk

j iff
monotonicity holds.

Optimal Mechanisms. It is well known that scheduling in order of non-
increasing weight over processing time ratios minimizes the sum of weighted
start times

∑n
j=1 wjSj(f(w)) for any type profile w ∈ W , and therefore maxi-

mizes the total valuation of all agents. This allocation rule is known as Smith’s
rule [13]. The optimal mechanism that we derive deploys a slightly different
allocation rule, namely Smith’s rule with respect to certain modified weights.

Our goal is to set up a mechanism that is Bayes-Nash incentive compatible
and among all such mechanisms minimizes the expected total payment that has
be made to the jobs. Given any Bayes-Nash incentive compatible mechanism
(f, π), one can obviously substitute the payment scheme by its expected payment
scheme yielding (f,Eπ(·)) without loosing Bayes-Nash incentive compatibility.
Moreover, the expected total payment to the agents remains unchanged under
the substitution. Therefore, we restrict focus to mechanisms in which agents
always receive a payment that is equal to the expected payment given the agent’s
report and which is independent of the specific report of the other agents and of
the actual allocation.

Note that, unlike e.g. in [11], in the discrete setting considered here rev-
enue equivalence does not hold. Therefore, there are possibly multiple payment
schemes that make an allocation rule incentive compatible. Let f be an allo-
cation rule and let πf (·) be a payment scheme that minimizes expected ex-
penses for the machine among all payment schemes that make f Bayes-Nash
incentive compatible. More specifically, πf

j (wi
j) denotes the payment to agent

j declaring weight wi
j under this optimal payment scheme. Let Pmin(f) =∑

j∈J

∑
wi

j∈Wj
ϕj(wi

j)π
f
j (wi

j) be the minimum expected total expenses for al-
location rule f . The following lemma specifies the optimal payment scheme for
a given allocation rule.

Lemma 1. For a Bayes-Nash implementable allocation rule f , the payment
scheme defined by

πf
j (wmj+1

j )=0, πf
j (wi

j)=
mj∑
k=i

wk
j [ESj(f, wk

j )−ESj(f, wk+1
j )] for i = 1, . . . ,mj

is incentive compatible, individually rational and minimizes the expected total
payment made to agents. The corresponding expected total payment is given by
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Pmin(f) =
∑
j∈J

mj∑
i=1

ϕj(wi
j)w

i
jESj(f, wi

j),

where the modified weights wj are defined as follows

w1
j = w1

j , wi
j = wi

j + (wi
j − wi−1

j )
Φj(wi−1

j )
ϕj(wi

j)
for i = 2, . . . ,mj .

The proof relies on the observation that minimal expected payments can be ex-
pressed as shortest path lengths in the type graph; we refer to the full version [5]
for more details.

Given the minimum payments per allocation rule, we want to specify the
allocation rule f which minimizes Pmin(f) among all Bayes-Nash implementable
allocation rules.

Definition 3. If f ∈ arg min{Pmin(f) | f : W → S, f Bayes-Nash implement-
able }, then we call the mechanism (f, πf ) an optimal mechanism.

We will need the following regularity condition that ensures Bayes-Nash imple-
mentability of the allocation rule in our optimal mechanism.

Definition 4. We say that regularity is satisfied if for every agent j and i =
2, . . . ,mj − 1

wi
j + (wi

j − wi−1
j )

Φj(wi−1
j )

ϕj(wi
j)

≤ wi+1
j + (wi+1

j − wi
j)
Φj(wi

j)

ϕj(wi+1
j )

.

This implies that wi
j < w

k
j whenever wi

j < w
k
j .

Note that regularity is satisfied e.g. if the differences wi
j−wi−1

j are constant and
the distribution has a non-increasing reverse hazard rate.

Theorem 2. Let the modified weights be defined as in Lemma 1. Let f be the
allocation rule that schedules jobs in order of non-increasing ratios wj/pj. If
regularity holds, then (f, πf ) is an optimal mechanism.

Proof. We show that f is Bayes-Nash implementable and minimizes Pmin(f)
among all Bayes-Nash implementable allocation rules. For any allocation rule f ,
it is not hard to see that we can rewrite Pmin(f) as follows, using independence
of weight distributions. Let W ′

j = Wj \ {wmj+1
j } and W ′ = Πj∈JW

′
j .

Pmin(f) =
∑
j∈J

∑
wi

j∈W ′
j

ϕj(wi
j)w

i
jESj(f, wi

j)

=
∑

w∈W ′

ϕ(w)
∑
j∈J

w̄jSj(f(w)).

Thus, Pmin(f) can be minimized by minimizing
∑

j∈J w̄jSj(f(w)) for every
reported type profile w. This is achieved by scheduling in order of non-increasing
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ratios wj/pj. Under Smith’s rule, the expected start time ESj(wj) is clearly non-
increasing in the modified weight wj . The regularity condition ensures that it is
non-increasing in the original weights wj . Therefore, Smith’s rule with respect to
modified weights satisfies monotonicity and is hence Bayes-Nash implementable
by Theorem 1. This completes the proof. ��

It is not hard to see that the optimal allocation rule – Smith’s rule with respect
to modified weights – is even dominant strategy implementable, with the same
total expected payment for the mechanism.

3 Optimality Versus Efficiency

For symmetric agents the optimal and the efficient allocation coincide.

Corollary 1. If agents are symmetric, i.e. W1 = · · · = Wn, ϕ1 = · · · = ϕn and
p1 = · · · = pn and if distributions are such that regularity holds, then the optimal
mechanism is efficient.

If weight distributions differ among agents or if agents have different processing
times, then the optimal mechanism is in general not efficient. In fact, when
restricting to efficient mechanisms, the total expected payment can be arbitrarily
bad in comparison to the optimal one. This is illustrated by the following two
examples; proofs can be found in the full version of this paper [5].

Example 1. Let there be two jobs 1 and 2 with W1 = {M+1} and W2 = {1,M}
for some constant M . Let ϕ2(1) = 1 − 1/M , ϕ2(M) = 1/M and p1 = p2 = 1.
Let Eff be the efficient and Opt be the optimal allocation rule. Then the ratio
Pmin(Eff)/Pmin(Opt) goes to infinity as M goes to infinity.

Remark 1. In the above, the ratio of the expected payments of the efficient versus
the optimal allocation rule is analyzed. It is also easy to see that the expected
ratio of the payments tends to infinity as M approaches infinity.

Example 2. Let there be two jobs 1 and 2 with the same weight distribution
W1 = W2 = {1,M}, ϕj(1) = 1− 1/M , ϕj(M) = 1/M for j = 1, 2. Let p1 = 1/2
and p2 = M/2 + 1. Let Eff be the efficient and Opt be the optimal allocation
rule. Then the ratio Pmin(Eff)/Pmin(Opt) goes to infinity asM goes to infinity.

Remark 2. As in the first example, it is easy to see that the expected ratio of
the payments tends to infinity as M approaches infinity.

Comparison to Myerson’s result. For the single item auction and continuous
type spaces, Myerson [11] has made similar observations: in his setting, the
efficient auction is the Vickrey auction. The optimal auction can be seen as
a modified Vickrey Auction with the seller submitting a bit himself. In our
setting also, the allocation in the optimal mechanism is equivalent to the efficient
allocation rule with respect to modified data. Nevertheless, in [11] the optimal
and the efficient mechanism may differ. For the single item auction this can
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be due to the seller keeping the item (even in the symmetric case) or because a
bidder that has not submitted the highest bid can get the item in the asymmetric
case. In our setting, the optimal and the efficient mechanism can only differ if
agents are asymmetric, see Corollary 1 and Examples 1 and 2.

On the generalized VCG Mechanism. The VCG mechanism is due to Vick-
rey [14], Clarke [2] and Groves [3]. The allocation rule is the efficient one. In
our setting this means scheduling in order of non-increasing ratios wj/pj. The
payment scheme can be shown to be

πV CG
j (w) = pj

∑
k∈J

σk<σj

wk ,

where w is the reported type profile and σ the efficient schedule. As illustrated
by examples 1 and 2, the allocation of the VCG mechanism can differ from the
allocation of the optimal mechanism if agents are not symmetric. Moreover, if
jobs are symmetric, the VCG mechanism still can be non-optimal in terms of
payments. This is illustrated by the following example.

Example 3. There are two symmetric agents with W1 = W2 = {w1, w2}, w1 <
w2, and ϕj(w1) = ϕj(w2) = 1/2 for j = 1, 2. Processing times are equal (w.l.o.g.,
p1 = p2 = 1. Then the expected expenses of the VCG mechanism can be shown
to be strictly higher than those of the optimal mechanism.

4 The 2-Dimensional Setting

Setting and Notation. In contrast to the 1-dimensional setting, both weight
and processing time of a job are now private information of the job. Hence j’s
type is the tuple (wj , pj). We assume public probability distribution informa-
tion, i.e. (wj , pj) ∈ Wj × Pj , where Wj = {w1

j , . . . , w
mj

j } with w1
j ≤ · · · ≤ w

mj

j

and Pj = {p1j , . . . , p
qj

j } with p1j ≤ · · · ≤ p
qj

j . Let ϕj be the probability distribu-
tion of j’s type, that is, ϕj(wi

j , p
k
j ) denotes the probability associated with the

type (wi
j , p

k
j ) for i = 1, . . . ,mj and k = 1, . . . , qj . Both ϕj and Φj are public.

Distributions are independent between agents. Denote by T = Πj∈J (Wj × Pj)
the set of all type profiles. For any job j, let T−j = Πr �=j(Wr × Pr) be the set
of type profiles of all jobs except j. Let ϕ be the joint probability distribution
of (w1, p1, . . . , wn, pn). Then for type profile t = (wi1

1 , p
k1
1 , . . . , w

in
n , p

kn
n ) ∈ T ,

ϕ(t) = Πn
j=1ϕj(w

ij

j , p
kj

j ). Let t−j and ϕ−j be defined analogously. For (wi
j , p

k
j ) ∈

Wj × Pj and t−j ∈ T−j , we denote by ((wi
j , p

k
j ), t−j) the type profile where job

j has type (wi
j , p

k
j ) and the types of the other jobs are represented by t−j . De-

note by ESj(f, wi
j , p

k
j ) :=

∑
t−j∈T−j

Sj(f((wi
j , p

k
j ), t−j))ϕ−j(t−j) the expected

waiting time of job j if he reports type (wi
j , p

k
j ) and allocation rule f is applied.

Denote by Eπj(wi
j , p

k
j ) :=

∑
t−j∈T−j

πj((wi
j , p

k
j ), t−j)ϕ−j(t−j) the expected pay-

ment to j.



422 B. Heydenreich et al.

We assume that an agent can only report a processing time that is not lower
than his true processing time and that a job is processed for his reported process-
ing time. This is a natural assumption, since a job can add unnecessary work
to achieve a longer processing time, but reporting a shorter processing time can
easily be punished by preempting the job after the declared processing time
(before it is actually finished).

Note that by regarding the processing time as private information, we intro-
duce informational externalities: job j has a different valuation for a schedule if
the processing time (and hence the type) of a job scheduled before j changes. In
this regard, our model differs from the auction models studied in [11] and [7].

4.1 Bayes-Nash Implementability and the Type Graph

Definition 5. A mechanism (f, π) is called Bayes-Nash incentive compatible
if for every agent j and every two types (wi1

j , p
k1
j ) and (wi2

j , p
k2
j ) with i1, i2 ∈

{1, . . . ,mj}, k1, k2 ∈ {1, . . . , qj}, k1 ≤ k2,

Eπj(wi1
j , p

k1
j )− wi1

j ESj(f, wi1
j , p

k1
j ) ≥ Eπj(wi2

j , p
k2
j )− wi1

j ESj(f, wi2
j , p

k2
j ) (2)

under the assumption that all agents apart from j report truthfully.

Note that by defining the incentive constraints only for k1 ≤ k2, we account
for the fact that agents can only overstate their processing time, but cannot
understate it.

In order to ensure individual rationality, again add a dummy type tdj to the
type space for every agent j, and let ESj(f, tdj ) = 0 and Eπj(tdj ) = 0 for all
j ∈ J . As in the 1-dimensional case, the dummy types together with the men-
tioned extra incentive constraints guarantee that individual rationality is sat-
isfied along with the incentive constraints. Sometimes, it will be convenient to
write (wmj+1

j , pk
j ) for some k ∈ {1, . . . , qj} instead of tdj .

In the 2-dimensional setting, the type graph Tf of agent j has node setWj×Pj

and contains an arc from any node (wi1
j , p

k1
j ) to every other node (wi2

j , p
k2
j ) with

i ∈ {1, . . . ,mj}, i2 ∈ {1, . . . ,mj + 1}, k ∈ {1, . . . , qj}, k1 ≤ k2 of length

�(i1k1)(i2k2) = wi1
j [ESj(f, wi2

j , p
k2
j )− ESj(f, wi1

j , p
k1
j )].

Note that we have arcs only in direction of increasing processing times, since
agents can only overstate their processing time. Furthermore, every node has an
arc to the dummy type, but there are no outgoing arcs from the dummy type.

Definition 6. An allocation rule f satisfies monotonicity w.r.t. weights if for
every agent j ∈ J and fixed pk

j ∈ Pj, wi1
j < wi2

j implies that ESj(f, wi1
j , p

k
j ) ≥

ESj(f, wi2
j , p

k
j ).

Theorem 3. An allocation rule f is Bayes-Nash incentive compatible in the 2-
dimensional setting if and only if it satisfies monotonicity with respect to weights.
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Proof. The claim reduces to showing that in the type graph of any agent j the
non-negative cycle property is equivalent to the non-negative two-cycle prop-
erty. Since there is an arc from a node representing type (wi1

j , p
k1
j ) to the node

representing type (wi2
j , p

k2
j ) if and only if pk1

j ≤ pk2
j , cycles can only occur be-

tween nodes representing types with equal processing times. Hence, the proof is
analogous to the 1-dimensional case. ��

Similar as in [7], one can show that some arcs in the type graph are not necessary,
since the corresponding incentive constraints are implied by others. The reduced
type graph of agent j contains only arcs that are necessary in that sense. A sketch
of the reduced type graph is given in Figure 1. Expected payments correspond to
node potentials in the reduced type graph. The reduced type graph comes handy
particularly when considering our (counter) examples in the next subsection.

w1
j , p

1
j

w
mj
j , p1

j

w
mj
j , p

qj
j

w1
j , p

qj
j

tdj

Fig. 1. Reduced type graph 2-d case

4.2 On Optimal Mechanisms

We start be quickly reviewing an approach to two-dimensional optimal mecha-
nism design studied in [7]. Here, the authors regard a limited-supply multi-item
auction, were each agent’s type (i, j) is given by a marginal valuation i per item
and a capacity j. Above that capacity, the agent has zero valuation for each
additional item. The goal is revenue maximization. Bayes-Nash implementabil-
ity is equivalent to the expected amount of items allocated to an agent being
monotone in his reported value for i. Malakhov and Vohra [7] use the type graph
approach to derive optimal mechanisms in this 2-d setting. Note, however, that
the approach of [7], and also our approach for the 1-dimensional setting focus on
one agent and its type graph. Hence, in terms of the scheduling model consid-
ered here, any optimal allocation rule derived this way is necessarily a modified
Smith’s rule with modified weights that can be computed from the character-
istics (type report and distribution) of the agent itself. Such an allocation rule
necessarily satisfies the following IIA property.

Definition 7. We say that an allocation rule f is independent of irrelevant
alternatives (IIA) if the relative order of any two jobs j1 and j2 is the same in
the schedules f(t1) and f(t2) for any two type profiles t1, t2 ∈ T that differ only
in the types of agents from J \ {j1, j2}.
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In other words, the relative order of two jobs is independent of all other jobs.
For the 2-d setting, this is not necessarily the case for optimal mechanisms.

Theorem 4. The optimal allocation rule for the 2-dimensional setting does in
general not satisfy IIA.

Proof. The proof uses the following instance with three jobs. Job 1 has type
(1, 1), job 2 has type (2, 2) and job 3 has type space {1.9, 2} × {1, 2}. The
probabilities for job 3’s types are ϕ3(1.9, 1) = 0.8, ϕ3(2, 2) = 0.2 and ϕ3(1.9, 2) =
ϕ3(2, 1) = 0 respectively. We show that the best allocation rule that satisfies IIA
achieves a minimum expected total payment of at least 5.6, whereas there exists
an allocation rule – violating IIA – with an expected total payment of 4.88. The
details are contained in the full version of this paper [5]. ��

Theorem 4 shows that any list scheduling algorithm where the priority of a job
can be computed from the characteristics of the job itself cannot be optimal
in general. Moreover, the type graph approach must fail, since it focusses on
a single agent. Hence, optimal mechanism design for our 2-dimensional setting
is considerably more complicated than for the 1-dimensional setting and for
traditional auction settings as described in [11] and [7].

One explanation for this complication may lie in the fact that the 2-d setting
considered here in fact entails informational externalities, as opposed to the
auction settings in [11] and [7]. On the other hand, the informational externalities
introduced by private processing times are not the only cause for complications
in the 2-dimensional setting: Consider the 1-dimensional setting, where only the
processing times are private, but the weights are public information. It turns
out that all allocation rules are implementable, even when we allow that jobs
understate their processing times. The optimal payment to a job j that reports
processing time pk

j is equal to wjESj(f, pk
j ), and therefore the total payment to

jobs for allocation rule f is equal to Pmin(f) =
∑

j∈J

∑qj

k=1 ϕj(pk
j )wjESj(f, pk

j ).
This is minimized by Smiths rule.

When there are only two agents present, then IIA is trivially satisfied. Recall
that in the 1-dimensional case the optimal mechanism is efficient for symmetric
agents and regular distributions and that the uniform distribution is regular.
This is contrasted by the following theorem.

Theorem 5. Even for two symmetric agents, 2 × 2-type spaces and uniform
probability distributions, the optimal mechanism is not efficient.

Proof. We show that the efficient allocation is for some instances dominated by
the w-rule, which schedules the job with the higher weight first. For details we
refer to the full version of this paper [5]. ��

5 Conclusion

We have seen that the graph theoretic approach is an intuitive tool for optimal
mechanism design, and yields a closed formula for the optimal mechanism in the
1-d discrete case. The same approach works for the continuous case, too.
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Moreover, we have seen that in the two-dimensional case the canonical ap-
proach does not work and that optimal mechanism design seems to be consider-
ably more complicated than in the traditional auction models. We leave it as an
open problem to identify (closed formulae for) optimal mechanisms for the 2-d
case. It is conceivable, however, that closed formulae don’t exist.
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Abstract. A common objective in mechanism design is to choose the outcome
(for example, allocation of resources) that maximizes the sum of the agents’ val-
uations, without introducing incentives for agents to misreport their preferences.
The class of Groves mechanisms achieves this; however, these mechanisms re-
quire the agents to make payments, thereby reducing the agents’ total welfare.

In this paper we introduce a measure for comparing two mechanisms with
respect to the final welfare they generate. This measure induces a partial order
on mechanisms and we study the question of finding minimal elements with re-
spect to this partial order. In particular, we say a non-deficit Groves mechanism is
welfare undominated if there exists no other non-deficit Groves mechanism that
always has a smaller or equal sum of payments. We focus on two domains: (i)
auctions with multiple identical units and unit-demand bidders, and (ii) mecha-
nisms for public project problems. In the first domain we analytically character-
ize all welfare undominated Groves mechanisms that are anonymous and have
linear payment functions, by showing that the family of optimal-in-expectation
linear redistribution mechanisms, which were introduced in [6] and include the
Bailey-Cavallo mechanism [1,2], coincides with the family of welfare undomi-
nated Groves mechanisms that are anonymous and linear in the setting we study.
In the second domain we show that the classic VCG (Clarke) mechanism is wel-
fare undominated for the class of public project problems with equal participation
costs, but is not undominated for a more general class.

1 Introduction

Mechanism design is often employed for coordinating group decision making among
agents. Often, such mechanisms impose taxes that agents have to pay to a central au-
thority. Although maximizing tax revenue is a desirable objective in many settings (for
example, if the mechanism is an auction designed by the seller), it is not desirable in
situations where no entity is profiting from the taxes. Some examples include public
project problems as well as certain resource allocation problems without a seller (e.g.,
the right to use a shared good on a given time slot, or the exchange of take-off slots
among airline companies). In such cases, we would like to have mechanisms that min-
imize the sum of the taxes (or, even better, achieve budget balance, that is, the sum

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 426–437, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of the taxes is zero), while maintaining other desirable properties, such as efficiency,
strategy-proofness and non-deficit (i.e., the mechanism does not need to be funded by
an external source).

The well-known VCG mechanism1 is efficient, strategy-proof and incurs no deficit.
More generally, the family of Groves mechanisms, which includes VCG, is a family
of efficient and strategy-proof mechanisms. Unfortunately though, Groves mechanisms
are not budget balanced. In fact, in sufficiently general settings, it is impossible to have
a mechanism that satisfies efficiency, strategy-proofness, and budget balance [4].

We therefore consider the following problem: within the family of Groves mecha-
nisms, we want to identify non-deficit mechanisms that are optimal with respect to the
sum of the payments, i.e., we cannot lower the mechanism’s payments without violating
efficiency, strategy-proofness or the non-deficit property. Such a mechanism, in a sense,
maximizes the agents’ welfare (among efficient mechanisms2). To make this precise,
we first introduce a measure for comparing two feasible mechanisms (mechanisms that
are efficient, strategy-proof and satisfy the non-deficit property). We say that a feasible
Groves mechanismM welfare dominates another feasible Groves mechanismM ′ if for
every type vector of the agents, the sum of the payments under M is no more than the
sum of the payments underM ′, and this holds with strict inequality for at least one type
vector. This definition induces a partial order on feasible Groves mechanisms and we
wish to identify minimal elements in this partial order. We call such minimal elements
welfare undominated. Other partial orders, as well as other notions of optimality, have
recently been considered in other work on redistribution mechanisms (see Section 1.1).
The notion of optimality that we study here is different from the previously studied ones
at both a conceptual and a technical level, as we illustrate below.

We study the question of finding welfare undominated mechanisms in two domains.
The first is auctions of multiple identical units with unit-demand bidders. In this setting,
it is easy to see that VCG is welfare dominated by other Groves mechanisms, such as the
Bailey-Cavallo mechanism [1,2]. We obtain a complete characterization of linear and
anonymous redistribution mechanisms that are minimal elements in this partial order:
we show that a linear, anonymous Groves mechanism is welfare undominated if and
only if it belongs to the class of Optimal-in-Expectation Linear (OEL) redistribution
mechanisms, which include the Bailey-Cavallo mechanism and were introduced in [6].
The second domain is public project problems, where a set of agents must decide on
financing a project (e.g., building a bridge). Here, we show that in the case where the
agents have identical participation costs, no mechanism welfare dominates the VCG
mechanism. On the other hand, when the participation costs can be different across
agents, there exist mechanisms that welfare dominate VCG. In both domains, our proofs
rely on some general properties we establish for anonymous mechanisms, which may
be of independent interest (see Section 3).

The omitted proofs appear in the full version of the paper.

1 In this paper, “the VCG mechanism” refers to the Clarke mechanism (aka pivotal mechanism),
not to any other Groves mechanism.

2 By sacrificing efficiency, it is sometimes possible to drastically lower the payments, so that
the net effect is an increase in the agents’ welfare [5,3]. However, most of the prior work has
focused on the case where efficiency is a hard constraint, and we will do so in this paper.
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1.1 Related Work

Recently, there has been a series of works on redistribution mechanisms, which are
Groves mechanisms that redistribute some of the VCG payment back to the bidders.
Bailey and Cavallo [1,2] introduced a mechanism that welfare dominates VCG in some
cases, such as single-item auctions, but coincides with VCG in some more general set-
tings. We will refer to this mechanism as the BC mechanism from now on (in fact, Bai-
ley’s mechanism is not always the same as Cavallo’s mechanism, but it is in the settings
in which we study it). A special case of the BC mechanism was independently discov-
ered by Porter et al. [14]. Cavallo also proved that the BC mechanism is optimal among
the family of surplus-anonymous mechanisms; however, this is a quite restrictive class
of mechanisms. Guo and Conitzer [8] solved for a worst-case optimal redistribution
mechanism for multi-unit auctions with nonincreasing marginal values. Moulin [13] in-
dependently derived the same mechanism under a slightly different worst-case optimal-
ity notion (in the more restrictive setting of multi-unit auctions with unit demand only).
These worst-case notions are different notions of optimality than the one we consider
in this paper. Guo and Conitzer [6] also solve for mechanisms that maximize expected
redistribution (in a certain class of mechanisms), when a prior is available. Another
notion of optimality, which is closer to the one studied in this paper, was introduced
in [7], namely the notion of undominated mechanisms. A mechanism is undominated
if there is no other mechanism under which every individual agent pays weakly less
for every type vector, and strictly less in at least one case. This is a weaker concept
than ours, in the sense that for a mechanism that is undominated, there may still exist
mechanisms that welfare dominate it (by increasing the payment from some agents to
decrease the payments from other agents more). In the other direction, if a mechanism
is welfare undominated, then it is also undominated. We believe that the notion we
study in this paper is more appropriate when one is interested in the final welfare of the
agents. Technically, welfare undominance appears much more challenging and seems
to require different techniques.

2 Preliminaries

2.1 Tax-Based Mechanisms

We first briefly review tax-based mechanisms (see, e.g., [10]). Assume that there is a
set of possible outcomes or decisions D, a set {1, . . ., n} of players where n ≥ 2, and
for each player i a set of typesΘi and an (initial) utility function vi : D×Θi → R. Let
Θ := Θ1 × · · · ×Θn.

In a (direct revelation) mechanism, each player reports a type θi and based on this,
the mechanism selects an outcome and a payment to be made by every agent. Hence
a mechanism is given by a pair of functions (f, t), where f is the decision function
and t = (t1, ..., tn) is the tax function that determines the players’ payments, i.e., f :
Θ→D, and t : Θ→Rn.

We assume that the (final) utility function for player i is a function ui : D × Rn ×
Θi → R defined by ui(d, t1, . . ., tn, θi) := vi(d, θi) + ti (that is, utilities are quasilin-
ear). For each vector θ of announced types, if ti(θ) ≥ 0, player i receives ti(θ), and if
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ti(θ) < 0, he pays |ti(θ)|. Thus when the true type of player i is θi and his announced
type is θ′i, his final utility is

ui((f, t)(θ′i, θ−i), θi) = vi(f(θ′i, θ−i), θi) + ti(θ′i, θ−i),

where θ−i are the types announced by the other players.

2.2 Properties of Tax-Based Mechanisms

We say that a tax-based mechanism (f, t) is

• efficient if for all θ ∈ Θ and d′ ∈ D,
∑n

i=1 vi(f(θ), θi) ≥
∑n

i=1 vi(d′, θi),
• budget-balanced if

∑n
i=1 ti(θ) = 0 for all θ ∈ Θ,

• feasible if
∑n

i=1 ti(θ) ≤ 0 for all θ, i.e., the mechanism does not need to be funded
by an external source,

• pay-only if ti(θ) ≤ 0 for all θ and all i ∈ {1, . . ., n},
• strategy-proof if for all θ, i ∈ {1, . . ., n} and θ′i,

ui((f, t)(θi, θ−i), θi) ≥ ui((f, t)(θ′i, θ−i), θi).

Tax-based mechanisms can be compared in terms of the final social welfare they gen-
erate (

∑n
i=1 ui((f, t)(θ), θi)). More precisely, one can define the following two natural

partial orders as a way to compare mechanisms. The first was introduced in [7]. The
second is the concept that we introduce and study in this paper, which we believe is a
more appropriate concept when one is interested in the final social welfare of the agents.

Definition 1. Given two tax-based mechanisms (f, t) and (f ′, t′) we say that (f ′, t′)
dominates (f, t) (due to [7]) if

• for all θ ∈ Θ and all i ∈ {1, . . ., n}, ui((f, t)(θ), θi) ≤ ui((f ′, t′)(θ), θi),
• for some θ ∈ Θ and some i ∈ {1, . . ., n}, ui((f, t)(θ), θi) < ui((f ′, t′)(θ), θi).

Definition 2. Given two tax-based mechanisms (f, t) and (f ′, t′) we say that (f ′, t′)
welfare dominates (f, t) if

• for all θ ∈ Θ,
∑n

i=1 ui((f, t)(θ), θi) ≤
∑n

i=1 ui((f ′, t′)(θ), θi),
• for some θ ∈ Θ,

∑n
i=1 ui((f, t)(θ), θi) <

∑n
i=1 ui((f ′, t′)(θ), θi).

In this paper, we are interested only in Groves mechanisms, so that the decision function
f is always efficient, and (welfare) dominance is strictly due to differences in the tax
function t. Specifically, in this context we have that (f, t′) dominates (f, t) (or simply
t′ dominates t) if and only if

• for all θ ∈ Θ and all i ∈ {1, . . ., n}, ti(θ) ≤ t′i(θ), and
• for some θ ∈ Θ and some i ∈ {1, . . ., n}, ti(θ) < t′i(θ),

and t′ welfare dominates t if

• for all θ ∈ Θ,
∑n

i=1 ti(θ) ≤
∑n

i=1 t
′
i(θ), and

• for some θ ∈ Θ,
∑n

i=1 ti(θ) <
∑n

i=1 t
′
i(θ).
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For two tax-based mechanisms t, t′, it is clear that if t′ dominates t, then it also
welfare dominates t. The reverse implication, however, does not need to hold.3

We now define a transformation on tax-based mechanisms originating from the same
decision function. This transformation was originally defined in [1] and [2] for the spe-
cific case of the VCG mechanism and in [7] for feasible Groves mechanisms. We call it
the BCGC transformation after the authors of these papers.

Consider a tax-based mechanism (f, t). Given θ = (θ1, ..., θn), let T (θ) be the total
amount of taxes, i.e., T (θ) :=

∑n
i=1 ti(θ). For each i ∈ {1, . . ., n} let4

SBCGC
i (θ−i) := max

θ′
i∈Θi

T (θ′i, θ−i).

We then define the tax-based mechanism tBCGC as follows:

tBCGC
i (θ) := ti(θ)−

SBCGC
i (θ−i)

n
.

The following observations generalize some of the results of [1,2,7].

Note 1.

(i) Each tax-based mechanism of the form tBCGC is feasible.
(ii) If t is feasible, then either t and tBCGC coincide or tBCGC dominates t.

2.3 Groves Mechanisms

Each Groves mechanism is a tax-based mechanism (f, t) such that the following hold5:

• f(θ) ∈ arg maxd

∑n
i=1 vi(d, θi), i.e., the chosen outcome maximizes the initial

social welfare.
• ti : Θ→R is defined by ti(θ) := gi(θ) + hi(θ−i),
• gi(θ) :=

∑
j �=i vj(f(θ), θj),

• hi : Θ−i →R is an arbitrary function.

Intuitively, gi(θ) represents the (initial) social welfare from the decision f(θ), when
player i’s (initial) utility is not counted. We now recall the following result (e.g., [10]):

Groves Theorem Every Groves mechanism (f, t), is efficient and strategy-proof.

For several decision problems the only efficient and strategy-proof tax-based mech-
anisms are Groves mechanisms. By a general result of [9] this is the case for both
domains that we consider in this paper and explains our focus on Groves mechanisms.

A feasible Groves mechanism is undominated if there is no other feasible Groves
mechanism that dominates it [7]. A feasible Groves mechanism is welfare undomi-
nated if there is no other feasible Groves mechanism that welfare dominates it. Wel-
fare undominance is a strictly stronger concept than undominance, as is illustrated in
Appendix A.

3 In Appendix A, we provide an example of two tax-based mechanisms that illustrates this.
4 To ensure that the maximum actually exists we assume that each tax function ti is continuous

and each set of types θi is a compact subset of some Rk.
5 Here and below

�
j �=i is a shorthand for the summation over all j ∈ {1, . . ., n}, j �= i.
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A special Groves mechanism—the VCG or Clarke mechanism—is obtained using6

hi(θ−i) := −max
d∈D

∑
j �=i

vj(d, θj).

In this case,
ti(θ) :=

∑
j �=i

vj(f(θ), θj)−max
d∈D

∑
j �=i

vj(d, θj),

which shows that the VCG mechanism is pay-only.
Following [2], let us now consider the mechanism that results from applying the

BCGC transformation to the VCG mechanism. We refer to this as the Bailey-Cavallo
mechanism or simply the BC mechanism. Let θ′ := (θ1, ..., θi−1, θ

′
i, θi+1, ..., θn), so

θ′j = θj for j �= i and the ith player’s type in the type vector θ′ is θ′i. Then

SBCGC
i (θ−i) = max

θ′
i∈Θi

n∑
k=1

⎡⎣∑
j �=k

vj(f(θ′), θ′j)−max
d∈D

∑
j �=k

vj(d, θ′j)

⎤⎦ ,
that is,

SBCGC
i (θ−i) = max

θ′
i∈Θi

⎡⎣(n− 1)
n∑

k=1

vk(f(θ′), θ′k)−
n∑

k=1

max
d∈D

∑
j �=k

vj(d, θ′j)

⎤⎦ . (1)

In many settings, we have that for all θ and for all i, SBCGC
i (θ−i) = 0, and conse-

quently the VCG and BC mechanisms coincide. Whenever they do not, by Note 1(ii)
BC dominates VCG. This is the case for the single-item auction, as it can be seen that
thereSBCGC

i (θ−i) = −[θ−i]2, where [θ−i]2 is the second-highest bid among bids other
than player i’s own bid.

3 Anonymous Groves Mechanisms

Throughout this paper, we will be interested in a special class of Groves mechanisms,
namely, anonymous Groves mechanisms. We provide here some results about this class
that we will utilize in later sections. We call a function f : An → B permutation in-
dependent if for all permutations π of {1, . . ., n}, f = f ◦ π. Following [12] we call a
Groves mechanism (determined by the vector of functions (h1, . . ., hn)) anonymous if

– all type sets Θi are equal,
– all functions hi coincide and each of them is permutation independent.

Hence, an anonymous Groves mechanism is uniquely determined by a single function
h : Θn−1 → R.

6 Here and below, to ensure that the considered maximum exist, we assume that f and each vi

are continuous functions and D and each θi are compact subsets of some Rk.
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In general, the VCG mechanism is not anonymous. But it is anonymous when all the
type sets are equal and all the initial utility functions vi coincide. This is the case in
both of the domains that we consider in this paper.

For any θ ∈ Θ and any permutation π of {1, . . ., n} we define θπ ∈ Θ by letting

θπ
i := θπ−1(i).

Denote by Π(k) the set of all permutations of the set {1, . . ., k}. Given a Groves
mechanism h := (h1, . . ., hn) for which the type set Θi is the same for every player
(and equal to, say, Θ0) we construct now a function h′ : Θn−1

0 →R by putting

h′(x) :=

∑
π∈Π(n−1)

∑n
j=1 hj(xπ)

n!
,

where xπ is defined analogously to θπ .
Note that h′ is permutation independent, so h′ is an anonymous Groves mechanism.
The following lemma shows that some of the properties of h transfer to h′.

Lemma 1. Consider a Groves mechanism h and the corresponding anonymous Groves
mechanism h′. Let G(θ) :=

∑n
j=1 vj(f(θ), θj). Suppose that for all permutations π of

{1, . . ., n},G(θ) = G(θπ). Then:

(i) If h is feasible, so is h′.
(ii) If an anonymous Groves mechanism h0 is welfare dominated by h, then it is welfare

dominated by h′.

The assumption in Lemma 1 of permutation independence of G(·) is satisfied in both
of the domains that we consider in this paper. Basically, Lemma 1 says that if a Groves
mechanism is not welfare undominated, then it must be welfare dominated by an anony-
mous Groves mechanism.

4 Multi-unit Auctions with Unit Demand

In this section, we consider auctions where there are multiple identical units of a single
good and all players have unit demand, i.e., each player wants only one unit. (When
there is only one unit, we have a standard single-item auction.) For this setting, we
obtain an analytical characterization of all welfare undominated Groves mechanisms
that are anonymous and have linear payment functions, by proving that the optimal-
in-expectation linear redistribution mechanisms (OEL mechanisms) [6], which include
the BC mechanism, are the only welfare undominated Groves mechanisms that are
anonymous and linear. We also show that undominance and welfare undominance are
equivalent if we restrict our consideration to Groves mechanisms that are anonymous
and linear in the setting of multi-unit auctions with unit demand.

4.1 Optimal-in-Expectation Linear Redistribution Mechanisms

The optimal-in-expectation linear redistribution mechanisms are special cases of Groves
mechanisms that are anonymous and linear. The OEL mechanisms are defined only for
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multi-unit auctions with unit demand, in which there are m indistinguishable units for
sale, and no bidder is interested in obtaining more than one unit. For player i, her type θi
is her valuation for winning one unit. We assume all bids (announced types) are bounded
below by L and above by U , i.e., Θi = [L,U ]. (L can be 0.)

The tax function t of an anonymous linear Groves mechanism is defined as ti(θ) =
tV CG
i (θ) + r(θ−i) for all i and θ. Here tV CG is (the tax function of) the VCG mecha-

nism, and r is a linear function defined as r(θ−i) = c0 +
n−1∑
j=1

cj [θ−i]j (where [θ−i]j is

the jth highest bid among θ−i). For OEL, the cj’s are chosen according to one of the
following options (indexed by k, k is from 0 to n, and k −m is odd):

k = 0:
ci = (−1)m−i

(
n−i−1
n−m−1

)
/
(
m−1
i−1

)
for i = 1, . . . ,m,

c0 = Um/n− U
∑m

i=1(−1)m−i
(

n−i−1
n−m−1

)
/
(
m−1
i−1

)
, and ci = 0 for other i.

k = 1,2, . . . ,m:
ci = (−1)m−i

(
n−i−1
n−m−1

)
/
(
m−1
i−1

)
for i = k + 1, . . . ,m,

ck = m/n−
∑m

i=k+1(−1)m−i
(

n−i−1
n−m−1

)
/
(
m−1
i−1

)
, and ci = 0 for other i.

k = m + 1,m + 2, . . . ,n− 1:
ci = (−1)m−i−1

(
i−1
m−1

)
/
(
n−m−1
n−i−1

)
for i = m+ 1, . . . , k − 1,

ck = m/n−
∑k−1

i=m+1(−1)m−i−1
(

i−1
m−1

)
/
(
n−m−1
n−i−1

)
, and ci = 0 for other i.

k = n:
ci = (−1)m−i−1

(
i−1
m−1

)
/
(
n−m−1
n−i−1

)
for i = m+ 1, . . . , n− 1,

c0 = Lm/n− L
∑n−1

i=m+1(−1)m−i−1
(

i−1
m−1

)
/
(
n−m−1
n−i−1

)
, and ci = 0 for other i.

For example, when k = m + 1, we have cm+1 = m/n and ci = 0 for all other i.
For this specific OEL mechanism, tOEL

i (θ) = tV CG
i (θ) + m

n [θ−i]m+1. That is, besides
paying the VCG payment, every player receives an amount that is equal to m/n times
the (m + 1)th highest bid from the other players. Actually, this is the BC mechanism
for this setting.

One property of the OEL mechanisms is that the sum of the taxes
∑n

i=1 t
OEL
i (θ) is

always less than or equal to 0 and it equals 0 whenever

• [θ]1 = U , if k = 0.
• [θ]k+1 = [θ]k, if k ∈ {1, . . ., n− 1}.
• [θ]n = L, if k = n.

Using this property, we will prove that the OEL mechanisms are the only welfare
undominated Groves mechanisms that are anonymous and linear.

4.2 Characterization of Welfare Undominated Groves Mechanisms That Are
Anonymous and Linear

We first show that the OEL mechanisms are welfare undominated. (It has previously
been shown that they are undominated [7], but as we pointed out, being welfare un-
dominated is a stronger property.)
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Theorem 1. No feasible Groves mechanism welfare dominates an OEL mechanism.

According to Lemma 1, we only need to prove this for the case of anonymous Groves
mechanisms:

Lemma 2. No feasible anonymous Groves mechanism welfare dominates an OEL
mechanism.

We now show that within the family of anonymous and linear Groves mechanisms,
the OEL mechanisms are the only ones that are welfare undominated. Actually, they
are also the only ones that are undominated, which is a stronger claim since being
undominated is a weaker property.

Theorem 2. If a feasible anonymous linear Groves mechanism is undominated, then it
must be an OEL mechanism.

Hence, we have the following complete characterization in this context:

Corollary 1. A feasible anonymous linear Groves mechanism is (welfare) undominated
if and only if it is an OEL mechanism.

The above corollary also shows that if we consider only Groves mechanisms that are
anonymous and linear in the setting of multi-unit auctions with unit demand, then un-
dominance and welfare undominance are equivalent.7

5 Public Project Problem with Equal Participation Costs

We now study a well known class of decision problems, namely public project
problems—see, e.g., [10,12,11].

Public project problem. Consider (D,Θ1, . . ., Θn, v1, . . ., vn), where

• D = {0, 1} (reflecting whether a project is canceled or takes place),
• for all i ∈ {1, . . ., n}, Θi = [0, c], where c > 0,
• for all i ∈ {1, . . ., n}, vi(d, θi) := d(θi − c

n ),

In this setting a set of n agents needs to decide on financing a project of cost c. In
the case that the project takes place, each agent contributes the same share, c/n, so as
to cover the total cost. Hence the participation costs of all players are the same. When
the players employ a tax-based mechanism to decide on the project, then in addition to
c/n, each player also has to pay or receive the tax, ti(θ), imposed by the mechanism.

By the result of Holmstrom [9], the only efficient and strategy-proof tax-based mech-
anisms in this domain are Groves mechanisms. To determine the efficient outcome for a
given type vector θ, note that

∑n
i=1 vi(d, θi) = d(

∑n
i=1 θi − c). Hence efficiency here

for a mechanism (f, t) means that f(θ) = 1 if
∑n

i=1 θi ≥ c and f(θ) = 0 otherwise,
i.e., the project takes place if and only if the declared total value that the agents have for
the project exceeds its cost. We first observe the following result.

7 Thus, we have also characterized all undominated Groves mechanisms that are anonymous
and linear. There is no corresponding result in [7].
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Note 2. In the public project problem the BC mechanism coincides with VCG.

Proof. It suffices to check that in equation (1) it holds that SBCGC
i (θ−i) = 0 for all i

and all θ−i. By the feasibility of VCG we have SBCGC
i ≤ 0, hence all we need is to

show that there is a value for θ′i that makes the expression in (1) equal to 0. Checking
this is quite simple. If

∑
j �=i θj <

n−1
n c, then we take θ′i := 0 and otherwise θ′i := c. �

We now show that in fact VCG cannot be improved upon. Before stating our result,
we would like to note that one ideally would like to have a mechanism that is budget-
balanced, i.e.,

∑
i ti(θ) = 0 for all θ, so that in total the agents only pay the cost of the

project and no more. However this is not possible and as explained in [10, page 861-
862], for the public project problem no mechanism exists that is efficient, strategy-proof
and budget balanced. Our theorem below considerably strengthens this result, showing
that VCG is optimal with respect to minimizing the total payment of the players.

Theorem 3. In the public project problem there exists no feasible Groves mechanism
that welfare dominates the VCG mechanism.

As in Section 4, we first establish the desired conclusion for anonymous Groves mech-
anisms and then extend it to arbitrary ones by Lemma 1.

Lemma 3. In the public project problem there exists no anonymous feasible Groves
mechanism that welfare dominates the VCG mechanism.

6 Public Project Problem: The General Case

The assumption that we have made so far in the public project problem that each
player’s cost share is the same may not always be realistic. Indeed, it may be argued
that ‘richer’ players (read: larger enterprises) should contribute more. Does it matter if
we modify the formulation of the problem appropriately? The answer is ‘yes’. First, let
us formalize this problem. We assume now that each (initial) utility function is of the
form vi(d, θi) := d(θi − ci), where for all i ∈ {1, . . ., n}, ci > 0 and

∑n
i=1 ci = c.

In this setting, ci is the cost share of the project cost to be financed by player i. We
call the resulting problem the general public project problem. It is taken from [11, page
518]. We first prove the following optimality result concerning the VCG mechanism.

Theorem 4. In the general public project problem there is no pay-only Groves mecha-
nism that dominates the VCG mechanism.

It remains an open problem whether the above result can be extended to the welfare
dominance relation. On the other hand, the above theorem cannot be extended to feasi-
ble Groves mechanisms, as the following result holds.

Theorem 5. For any n ≥ 3, an instance of the general public project problem with n
players exists for which the BC mechanism dominates the VCG mechanism.

By Theorem 4, the BC mechanism in the proof of the above theorem is not pay-only.
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7 Summary

In this paper, we introduced and studied the following relation on feasible Groves mech-
anisms: a feasible Groves mechanism welfare dominates another feasible Groves mech-
anism if the total welfare (with taxes taken into account) under the former is at least as
great as the total welfare under the latter, for any type vector—and the inequality is strict
for at least one type vector. This dominance notion is different from the one proposed
in [7]. We then studied welfare (un)dominance in two domains. The first domain we
considered was that of auctions with multiple identical units and unit demand bidders.
In this domain, we analytically characterized all welfare undominated Groves mecha-
nisms that are anonymous and have linear payment functions. The second domain we
considered is that of public project problems. In this domain, we showed that the VCG
mechanism is welfare undominated if cost shares are equal, but also that this is not nec-
essarily true if cost shares are not necessarily equal (though we showed that the VCG
mechanism remains undominated in the weaker sense of [7] among pay-only mecha-
nisms in this more general setting).
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A Dominance Is Distinct from Welfare Dominance

In this appendix, we give two tax-based mechanisms t and t′ (both feasible, anonymous
Groves mechanisms) such that t′ welfare dominates t, but t′ does not dominate t. Con-
sider a single-item auction with 4 players. We assume that for each player, the set of
allowed bids is the same, namely, integers from 0 to 3. Let tV CG be (the tax function
of) the VCG mechanism. For all θ ∈ {0, 1, 2, 3}4,

∑4
i=1 t

V CG
i (θ) = −[θ]2. This is

because for a single-item auction, the VCG mechanism is the second-price auction. We
define t and t′ as follows: Function t: For all θ, ti(θ) := tV CG

i (θ) + h(θ−i), where
h(θ−i) = r([θ−i]1, [θ−i]2, [θ−i]3), and the function r is given in the table below. (We
recall that [θ−i]j is the jth-highest bid among bids other than i’s own bid.) Function t′:
For all θ, t′i(θ) := tV CG

i (θ) + h′(θ−i), where h′(θ−i) = r′([θ−i]1, [θ−i]2, [θ−i]3), and
the function r′ is given in the table below.

r(0,0,0) 0 r′(0,0,0) 0
r(1,0,0) 0 r′(1,0,0) 0
r(1,1,0) 1/4 r′(1,1,0) 1/4
r(1,1,1) 1/4 r′(1,1,1) 1/4
r(2,0,0) 0 r′(2,0,0) 0
r(2,1,0) 1/12 r′(2,1,0) 7/24
r(2,1,1) 0 r′(2,1,1) 1/6

r(2,2,0) 1/2 r′(2,2,0) 1/2
r(2,2,1) 0 r′(2,2,1) 1/4
r(2,2,2) 1/2 r′(2,2,2) 1/2
r(3,0,0) 0 r′(3,0,0) 0
r(3,1,0) 1/4 r′(3,1,0) 1/4
r(3,1,1) 0 r′(3,1,1) 1/4
r(3,2,0) 2/3 r′(3,2,0) 2/3

r(3,2,1) 1 r′(3,2,1) 19/24
r(3,2,2) 0 r′(3,2,2) 1/6
r(3,3,0) 2/3 r′(3,3,0) 5/6
r(3,3,1) 0 r′(3,3,1) 7/12
r(3,3,2) 1 r′(3,3,2) 5/6
r(3,3,3) 0 r′(3,3,3) 1/2

With the above characterization, t′ welfare dominates t (the total tax under t′ is never
lower, and in some cases it is strictly higher: for example, for the bid vector (3, 2, 2, 2),
the sum of the ri is 1/2, but the sum of the r′i is 1). On the other hand, t′ does not
dominate t: for example, r(3, 3, 2) = 1 > 5/6 = r′(3, 3, 2). In fact, no feasible Groves
mechanism dominates t.
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Abstract. In this paper, we seek to design a Groves mechanism for as-
signing p heterogeneous objects among n competing agents (n > p) with
unit demand, satisfying weak budget balance, individual rationality, and
minimizing the budget imbalance. This calls for designing an appropriate
rebate function. When the objects are identical, this problem has been
solved by Moulin [1] and Guo and Conitzer [2]. However, it remains an
open problem to design such a rebate function when the objects are hetero-
geneous. We propose a mechanism, HETERO and conjecture that HET-
ERO is individually rational and weakly budget balanced. We provide
empirical evidence for our conjecture through experimental simulations.

Keywords: Groves mechanism, Budget imbalance, Redistribution func-
tion, Moulin mechanism, Rebate function.

1 Introduction

Groves mechanisms [3,4,5] are widely used in practice, since they have attrac-
tive game theoretic properties such as dominant strategy incentive compatibility
(DSIC) and allocative efficiency (AE). However, in general, a Groves mechanism
need not be budget balanced. That is, the total transfer of money in the sys-
tem may not be zero. So the system will be left with a surplus or deficit. Using
Clarke’s mechanism [4], we can ensure under fairly weak conditions that there
is no deficit of money, that is the mechanism is weakly budget balanced. In such
a case, the system or the auctioneer will be left with some money.

Often, the surplus money is not really needed in many social settings such
as allocations by the Government among its departments, etc. Since strict bud-
get balance cannot coexist with DSIC and AE (Green-Laffont theorem [6]), we
would like to redistribute the surplus to the participants as far as possible, pre-
serving DSIC and AE. This idea was originally proposed by Laffont [7]. The
total payment made by the mechanism as a redistribution will be referred to the
as the rebate to the agents.

In this paper, we consider the following problem. There are n agents and p
distinct/ heterogeneous objects (n ≥ p > 1). Each agent desires exactly one
object out of these p objects. His valuation for any of the objects is independent
of his valuations for the other objects. Valuations of the different agents are

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 438–445, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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independent. Our goal is to design a mechanism for assignment of the p objects
among the n agents which is allocatively efficient, dominant strategy incentive
compatible, and maximizes the rebate (which is equivalent to minimizing the
budget imbalance). In addition, we would like the mechanism to satisfy feasibility
and individual rationality. Thus, we seek to design a Groves mechanism for
assigning p heterogeneous objects among n agents satisfying:

1. Feasibility (F) or weak budget balance. That is, the total payment to the
agents should be less than or equal to the total received payment.

2. Individual Rationality (IR), which means that each agent’s utility by par-
ticipating in the mechanism should be non-negative.

3. Minimizes budget imbalance.

We call such a mechanism as Groves redistribution mechanism or simply redis-
tribution mechanism.

Due to the Green-Laffont theorem [6], we cannot guarantee 100% redistrib-
ution at all type profiles. So a performance parameter to this function will be
the worst case redistribution. That is, the fraction of the surplus which is guar-
anteed to be redistributed irrespective of the bid profiles. This fraction will be
referred to as efficiency in the rest of the paper (Note: This efficiency is different
from allocative efficiency). The advantage of worst case analysis is that, it does
not require any distributional information on the type sets of the agents. Also,
this function should be deterministic and anonymous. A redistribution function
is said to be anonymous if two agents having the same bids, get the same re-
bate. So, the aim is to design an anonymous, deterministic Groves redistribution
function which maximizes the efficiency and satisfies feasibility and individual
rationality.

Our paper seeks to extend the results of Moulin [1] and Guo and Conitzer
[2] who have independently designed a Groves mechanism in order to redistrib-
ute the surplus when objects are identical (homogeneous objects case). Their
mechanism is deterministic, anonymous, and has maximum efficiency over all
possible Groves redistribution mechanisms. We will refer to their mechanism as
the WCO mechanism or Moulin mechanism.

1.1 Relevant Work

Due to the Green-Laffont impossibility theorem [6], it is impossible to achieve
allocative efficiency, DSIC, and budget balance simultaneously. If we desire to
have DSIC and budget balance properties, we have to compromise on allocative
efficiency. If we are interested in preserving AE and DSIC, we have to settle
down for non-zero a surplus or a non-zero deficit of the money in the system. So,
the goal would be to minimize this budget imbalance in the system. To reduce
budget imbalance, the surplus refund idea was originally proposed by Laffont
[7] and developed by Bailey [8]. Cavallo [9], Moulin [1], Guo and Conitzer [2]
designed a Groves redistribution mechanism for assignments of p homogeneous
objects among n > p agents with unit demand.
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1.2 Contributions and Outline

Our objective in this paper is to design a Groves redistribution mechanism for
assignment of heterogeneous objects with unit demand. To the best of our knowl-
edge, this is the first attempt to design a redistribution mechanism for assign-
ment of heterogeneous objects. In particular, our contributions is as follows: We
propose a deterministic and anonymous rebate function, HETERO for the het-
erogeneous setting. The mechanism HETERO is conjectured to be individually
rational, feasible, and worst case optimal. For some specific values of n and p,
we show that the HETERO satisfies all these properties, when the valuations of
the agents are binary.

The paper is organized as follows. In Section 2, we will review Moulin/WCO
mechanism in brief. We then propose a redistribution mechanism, HETERO, in
Section 3. We will describe some empirical results in Section 4. We will conclude
with directions for future work in Section 5.

1.3 The Model and Notation

The notation used is summarized in Table 1. Note that, if bid profile b is im-
plicit, we will use t, ti, ri, k, and vi to indicate t(b), ti(b), ri(b), k(b), and vi(k(b))
respectively. In this paper, we assume that, the payment made by agent i is of
the form ti(·) − ri(·), where ti(·) is agent i’s payment in the Clarke’s pivotal
mechanism. We refer to

∑
i ti, as the total Clarke’s payment or the surplus in

the system.

Table 1. Notation

n Number of agents
p Number of objects

R+ Set of positive real numbers
bi Bid submitted by agent i, = (bi1, bi2, . . . , bip).
b (b1, b2, . . . , bn), the bid vector
K The set of all allocations of p objects to n agents, each getting

at most one object
k(b) An allocation, k(. ) ∈ K, where the bid profile is b

vi(k(b)) Valuation of the allocation k to the agent i, when b is the bid profile
v v : K → R, the valuation function, v(k(b)) =

�n
i=1 vi(k(b))

ti(b) Payment made by agent i in the Clarke’s pivotal mechanism,
when the bid profile is b

t(b) The Clarke payment, that is, the total payment received
from all the agents, t(b) =

�n
i=1 ti

t−i The Clarke payment received in the absence of the agent i

ri(b) Rebate to agent i when bid profile is b

e The efficiency of the mechanism, = infθ:t �=0

�
ri(θ)

t(θ) ,
where θ is vector of true valuations of the agents for the objects.
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2 Optimal Worst Case Redistribution When Objects Are
Identical

In this case, every agent i has the same value for each object, say vi. Without loss
of generality, we will assume, v1 ≥ v2 ≥ . . . ≥ vn. In Clarke’s pivotal mechanism,
the first p agents will receive the objects and each of these p agents will pay vp+1.
So, the surplus in the system is pvp+1. For this situation, Moulin [1] and Guo
and Conitzer [2] have independently designed a redistribution mechanism.

Guo and Conitzer [2] maximize the worst case fraction of total surplus which
gets redistributed. Their mechanism that is, WCO mechanism, coincides with
Moulin’s feasible and individually rational mechanism. Their redistribution func-
tion is,

rWCO
i = cp+1vp+2 + cp+2vp+3 + . . .+ cn−1vn i = 1, . . . p+ 1
rWCO
i = cp+1vp+1 + . . .+ ci−1vi−1 + civi+1 + . . .+ cn−1vn i = p+ 2, . . . n

(1)
where,

ci =
(−1)i+p−1 (n− p)

(
n− 1
p− 1

)
i

(
n− 1
i

)∑n−1
j=p

(
n− 1
j

)
⎧⎨⎩

n−1∑
j=i

(
n− 1
j

)⎫⎬⎭ ; i = p+ 1, . . . , n− 1 (2)

The efficiency of this mechanism is e∗, where e∗ is given by,

e∗ = 1−

(
n− 1
p

)
∑n−1

j=p

(
n− 1
j

)
This is an optimal mechanism, since there is no other mechanism which can
guarantee more than e∗ fraction redistribution in the worst case.

The following theorem by Guo and Conitzer [2] will be used to design our
mechanism.

Theorem 1. Let, x1 ≥ x2 ≥ . . . xn ≥ 0. Then

a1x1 + a2x2 + . . . anxn ≥ 0 iff
j∑

i=1

ai ≥ 0 ∀j = 1, 2 . . . , n

3 A Redistribution Mechanism for the Heterogeneous
Setting

We should note that the homogeneous objects case is a special case of the hetero-
geneous objects case in which each bidder submits the same bid for all objects.
Thus, we cannot expect any redistribution mechanism to perform better than
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the homogeneous object case. For n ≤ p + 1, the worst case redistribution is
zero for the homogeneous case and so will be for the heterogeneous case. So, we
assume n > p+ 1. We propose a redistribution mechanism. We will be referring
to it as HETERO.

When the objects are identical, the WCO mechanism is given by equation (1).
We give a novel interpretation to it. Consider the scenario in which one agent
is absent from the scene. Then the Clarke’s payment received is either pvp+1 or
pvp+2 depending upon which agent is absent. If we remove two agents, the surplus
is pvp+1 or pvp+2 or pvp+3, depending upon which two agents are removed. Till
(n− p− 1) agents are removed, we get non-zero surplus. If we remove (n− p) or
more agents from the system, there is no need for any mechanism for assignment
of the objects. So, we will consider the cases when we remove k agents, where,
1 ≤ k < n− p.

Now let t−i,k be the average payment received when agent i is removed along
with k other agents that is, a total of (k + 1) agents removed in which i is also
removed. The average is taken over all possible k selections from the remaining
(n−1) agents. We can rewrite the WCO mechanism in terms of t−i, t−i,k. Observe
that, t−i, t−i,k can be defined in heterogeneous settings as well. We propose to
use a rebate function defined as,

rHi = α1t
−i +

k=n−p−1∑
k=2

αkt
−i,k−1 (3)

where αk are the weights given to the surplus generated when a total of k agents
are removed from the system.

The Equivalence of HETERO and WCO when Objects Are Identical
It is desirable that HETERO should match with the WCO mechanism when the
objects are homogeneous. So we need that at all type profiles, rHi in equation (3)
is equal to rWCO

i in equation (1). Since the rebate is a function of the remaining
(n− 1) bids, we can write it as, ri = f(x1, x2, . . . , xn−1) where x1, x2, . . . , xn−1
are bids without the agent i, in decreasing order. Note, in this case, that each
bidder will be submitting a bid bi ∈ R+.

Now, we can write, t−i,k, rHi , and ri in terms of x1, x2, . . . , xn−1, as,

t−i,k−1 =
k−1∑
l=0

(
p+ l
p

)(
n− p− 2− l
k − 1− l

)
(
n− 1
k − 1

) xp+1+l

rHi =
k=n−p−1∑

k=1

αk t
−i,k−1 (4)

rWCO
i =

n−p−1∑
l=0

cp+1+l xp+1+l (5)

where, ci, i = p+ 1, p+ 2, . . . , n− 1 are given by equation (2).
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Consider the type profile (x1 = 1, x2 = 1, . . . , xp+1 = 1, xp+2 = 0, . . . , xn−1 =
0). For HETERO to agree with WCO, the coefficients of xp+1 in equation (4)
and equation (5) should be the same. Now consider the type profile (x1 = 1, x2 =
1, . . . , xp+2 = 1, xp+3 = 0, . . . , xn−1 = 0). As the coefficients of xp+1 in equation
(4) and equation (5) are the same, the coefficients of xp+2 should also be equal
in equation (4) and equation (5).

Thus, the coefficients of xp+1, xp+2, . . . , xn−1 in equation (4) and equation (5)
should agree.

Let L = n− p− 1. Thus, for i = p+ 1, . . . , n− 1,

ci =
n−i−1∑

k=0

αL−k

(
i− 1
p

)(
n− i− 1

k

)
(

n− 1
p+ 1 + k

) (6)

The above system of equations yields, for i = 1, 2, . . . , L,

αi =
(−1)(i+1)(L− i)!p!

(n− i)! χ

L−i∑
j=0

⎧⎨⎩
(
i+ j − 1

j

) n−1∑
l=p+i+j

(
n− 1
l

)⎫⎬⎭ ; i = 1, 2, . . . , L

(7)

where χ is given by, χ =
(n−p)

�
�n− 1
p− 1

�
�

�n−1
j=p

�
�n− 1

j

�
�

As the HETERO mechanism matches with the WCO when objects are iden-
tical, the HETERO mechanism satisfies individual rationality and feasibility in
the homogeneous case. These two properties, however, remain to be shown in
the heterogeneous case.

3.1 Individual Rationality of HETERO

Conjecture 1. The HETERO mechanism is individually rational.

Intuition Behind Individual Rationality of HETERO

We have to show that for each agent i, rHi ≥ 0 at all type profiles. For con-
venience, we will assume i implicitly. So, say, rHi = r and Γ1 = t−i, Γj =
t−i,j−1, j = 2, . . . , L. Now, the rebate is given by the equation, r =

∑
j αjΓj .

We have to show that r ≥ 0. Note that, Γ1 ≥ Γ2 ≥ . . . ≥ ΓL ≥ 0. So, if∑j
i=1 αi ≥ 0 ∀ j = 1 → L, individual rationality would follow from Theorem

1. We observe that, in general, this is not true. The important observation is,
though Γi’s are decreasing positive real numbers, they are related. For example,
we can show that if Γ1 > 0, then Γ2 > 0. Thus, though α’s are alternately
positive and negative, the relation among Γ ’s would not make r to go negative
and it will be within limits in such a fashion that total rebate to the agents will
be less than or equal to total Clarke’s payment. It remains to show individual
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rationality analytically in the general case. However, we are only able to show
in the following cases.

1. Consider the case when p = 2. (i.) If n = 4, α1 = 1
4 . (ii.) If n = 5, α1 =

0.27273, α2 = −0.18182. (iii.) If n = 6, α1 = 0.29487, α2 = −0.25641, α3 =
0.12821.

2. Consider the case when p = 3. (i.) If n = 5, α1 = 1
5 . (ii.) If n = 6, α1 =

0.21875, α2 = −0.15625. (iii.) If n = 7, α1 = 0.23810, α2 = −0.21429, α3 =
0.11905.

By Theorem 1, it follows that for the above cases, the proposed mechanism
satisfies the individual rationality. We provide some empirical evidence for the
conjecture in Section 4.

4 Experimental Analysis and Empirical Evidence

Solving equations (7) is a challenging task. Though the new mechanism is the
extension of the Moulin or the WCO mechanism, yet, we are not able to prove
individual rationality and feasibility of HETERO analytically. We therefore seek
empirical evidence.

4.1 Simulation 1

We consider various combinations of n and p. For each agent, and for each object,
the valuation is generated as a uniform random variable in [0, 100]. We run our
simulation for the following combinations of n and p.

For p = 2, n = 5, 6, . . . , 14, for p = 3, n = 7, 8, . . . , 14 and for p = 4,
n = 9, 10, . . . , 14. For each combination of n and p = 2, we generated randomly
100,000 bid profiles (for p = 3, 4, this number was 20,000) and evaluated our
mechanism. We also kept track of the worst case performance of our mechanism
over these 100,000 bid profiles. Our mechanism was feasible and individually
rational in these 100,000 bid profiles. The efficiency of our mechanism is upper
bounded by that of the WCO mechanism. We observed that the worst case per-
formance over these 100,0000 random bid profiles was the same as that of WCO.
This is a strong indication that our mechanism will perform well in general.

4.2 Simulation 2: Bidders with Binary Valuation

Suppose each bidder has valuation for each object, either 0 or 1. Then there are
2np possible bid profiles. We ran an experiment to evaluate our mechanism with
all possible bid profiles of agents with binary valuations. We considered p = 2 and
n = 5, 6, . . . , 12. We found that the mechanism is feasible, individually rational,
and the worst case performance is the same as that of the WCO mechanism.
Note, as indicated earlier, no mechanism can perform better than the WCO
mechanism in the worst case. And our mechanism performs as well as the WCO.
Thus, though there is no analytical proof with us, for binary valuation settings,
for p = 2 and n = 5, 6, . . . , 12, our mechanism is worst case optimal.
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5 Conclusion

We proposed a mechanism, namely HETERO, for general settings when the
objects are heterogeneous and private values of an agent for these objects are
independent of each other. The mechanism is deterministic, anonymous, and
DSIC. The HETERO mechanism extends the Moulin/WCO mechanism. Though
we have not analytically proved feasibility and individual rationality, we have
sufficient empirical evidence to conjecture that our mechanism is feasible and
individually rational.

We are currently working on the proving individual rationality and feasibility
for the proposed HETERO mechanism. We strongly believe that the new mech-
anism is a worst case optimal. Our immediate goal is to prove this fact or design
a mechanism which is worst case optimal.
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Abstract. We study a bin packing game in which any item to be packed
is handled by a selfish agent. Each agent aims at minimizing his sharing
cost with the other items staying in the same bin, where the social cost
is the number of bins used. We first show that computing a pure Nash
equilibrium can be done in polynomial time. We then prove that the price
of anarchy for the game is in between 1.6416 and 1.6575, improving the
previous bounds.

Keywords: Bin packing, Nash equilibrium, price of anarchy.

1 Introduction

In the one-dimensional bin packing problem, given a list L = (a1, a2, · · · , an) of
items, each with a size s(ai) ∈ (0, 1], we are asked to pack them into a minimum
number of unit-capacity bins such that the sum of items in each bin is at most
one. This bin packing system has only one decision maker who assigns items
into bins without considering the own interest of each item. However, in many
systems users are likely to behave selfishly, namely each user aims to optimize his
own performance without coordination with the other users. Basically, each user
would like to either maximize the resources allocated to him or, alternatively,
minimize his cost [7]. In this paper we consider such a bin packing system where
every item is handled by a selfish player [1]. Equivalently we can regard each
item as a user. Assume that all the bins have the same cost of one. The goal of
each item is to minimize its own cost sharing with the other items in the same
bin. Let c(B) be the content of a bin B, i.e., the sum of the items packed in
bin B. If an item a is in B, its cost is defined as s(a)

c(B) . Since item a wants to
minimize its cost, it will detect another bin B′ such that s(a) + c(B′) ≤ 1 and

s(a)
s(a)+c(B′) <

s(a)
c(B) (i.e. c(B) < s(a)+c(B′)). The former equation ensures that the

resulting packing is feasible after a migrates to the bin B′, while the latter shows
that the cost of item a will decrease after the migration. Thus item a will change
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its bin. A stable state is a feasible packing in which no item is willing and is able
to move alone. However, the social cost that we need to minimize is the number
of bins used, which is corresponding to the standard bin packing problem.

A framework to analyze the class of problems with selfish players is that of
non-cooperative games. In game theory, the Nash equilibrium [15] is a solution
concept of a game involving two or more players, in which each player is assumed
to know the equilibrium strategies of the other players, and no player has any-
thing to gain by changing only his own strategy (i.e., by changing unilaterally).
If each player has chosen a strategy and no player can benefit by changing his or
her strategy while the other players keep theirs unchanged, then the current set
of strategy choices and the corresponding payoffs constitute a Nash equilibrium.
Nash equilibria for pure strategies, where each player chooses to play an action
in a deterministic non-aleatory manner, are briefly referred to as pure Nash equi-
libria. Determining whether Nash equilibria exist, effectively computing them,
and measuring the price of anarchy [13] (i.e., the ratio between the worst Nash
equilibrium and the social optimum, that is the optimal solution that could be
achieved if all players cooperated.) have attracted much research in computer
science.

Previous results. Bin packing is one of the well-studied problems in combi-
natorial optimization. As for the best algorithmic results of theoretical interests
de La Vega and Lueker [5] presented an asymptotic polynomial time approxi-
mation scheme, and Karmarkar and Karp [11] improved to an asymptotic fully
polynomial time approximation scheme. A well-known efficient approximation
algorithm is FFD (First-Fit Deceasing), which works as follows: Sort all items
in non-increasing order of sizes; pick the items one by one and pack them into
the first bin (the leftmost bin) into which they fit (an empty bin is needed in case
that such a bin does not exist). Johnson [10] proved that the asymptotic per-
formance ratio of FFD is 11/9. The tight bound was recently achieved by Dósa
[6]. However, none of the above algorithms always produces a packing which is
a pure Nash equilibrium.

The bin packing system with selfish users was first studied by Bilò [1]. He
proved that this bin packing game always converges to a pure Nash equilibrium
starting from any feasible packing. More precisely if a packing does not achieve
a Nash equilibrium, after a finite number of migrations a stable state could be
reached. He also analyzed the effectiveness of the system by deriving an upper
bound of 5/3 and a lower bound of 8/5 for the price of anarchy.

A relevant problem is the selfish routing game originally introduced in [13].
One model of this game evaluates the link congestion in a network consisting
of two nodes connected by m parallel links. It assumed a collection of n users,
each employing a strategy overm parallel links to control the shipping of its own
assigned traffic. The price of anarchy for this model was analyzed in [14,12,4]. In
[9], Fotakis et al. studied pure Nash equilibria, where each user chooses exactly
one link, and mixed Nash equilibria, where the choices of each user are modeled
by a probability distribution over links. They proved the existence of the pure
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Nash equilibria and presented a polynomial-time algorithm determining a pure
equilibrium. The algorithm has been improved in [8].

Our contribution. In this paper, we give a polynomial time algorithm to deter-
mine a pure Nash equilibrium, showing that computing a pure Nash equilibrium
is an easy problem for the bin packing game. Moreover, we deal with the price of

anarchy of the game. A new lower bound of
∞∑

l=1

1
2l(l−1)/2 ≈ 1.6416 and an upper

bound of (41 +
√

145)/32 ≈ 1.6575 are provided, significantly improving both
bounds in [1].

2 Computing a Nash Equilibrium

Bilò [1] showed that a pure Nash equilibrium can always be obtained after a finite
number of migrations (bounded by an exponential number) starting from any
feasible packing. He further noted that there is always an optimal packing which
is a pure Nash equilibrium, and thus computing a best pure Nash equilibrium
is NP-hard. However it was open if computing a pure Nash equilibrium is hard
or not. In this section we will derive a polynomial time bin packing algorithm
finding a Nash equilibrium, thus solving this problem.

As mentioned before bin packing has been extensively studied and there exist
quite a lot of bin packing algorithms in the literature [3]. Since every bin pack-
ing algorithm aims to find a good global solution, almost none of them always
produces a Nash equilibrium. However there is indeed an exception. It is the
subset sum algorithm which works as follows: for a given list L of items, let
L1 = L and i = 1. If Li is empty, output m = i − 1 and stop; otherwise pack
a bin as full as possible with the items in Li, and let Li+1 be the unpacked
items in Li. Set i = i + 1 and repeat the above packing process. It is easy to
verify that the packing is a pure Nash equilibrium. Unfortunately this approach
employs an optimal algorithm for the subset sum problem. It is not polynomial
unless P = NP . Caprara and Pferschy [2] showed that the worst-case ratio of

the algorithm is in between
∞∑

k=1

1
2k−1 ≈ 1.6067 and 4

3 + ln 4
3 ≈ 1.6210.

In the following we will introduce a new approach to find a pure Nash equilib-
rium in polynomial time. Our main idea is to apply algorithm FFD (First-Fit-
Decreasing) recursively. Basically the approach consists of three steps in each
round. The first step applies the FFD algorithm to the unpacked items. The
second step picks up a subset of smaller items from the bins and put them into
a list for the next round packing. The third step migrates the packed items indi-
vidually to decrease their own cost, until a pure Nash equilibrium is reached for
the packed items. The key issue is to bound both the number of migrations and
the number of rounds polynomially. At any time if an item ai can detect a bin
which can accommodate ai and the cost of ai will decrease after moving to this
bin (while the other items do not change their bins), we say that ai is active and
the bin is cheap. A migration is a single movement of an item from its current
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bin to another bin it fits so that its own cost is reduced, while the other items
stay without any action.

Before we give the full picture of the proposed approach we want to deal with
a crucial case by applying the FFD algorithm to a list of items {a1, a2, . . . , an},
where s(a1) ≥ s(a2) ≥ · · · ≥ s(an). Suppose that FFD takes m bins for packing
the items. If m = 1 it is trivially a best Nash equilibrium. Now assume m ≥ 2.
Sort the bins in non-increasing order of their contents, i.e., c(B1) ≥ c(B2) ≥
· · · ≥ c(Bm). We first deal with a packing in which the following equation holds.

s(an) > 1− c(Bm−1) (1)

Recall that a Nash equilibrium is converged from the FFD packing after a finite
number of migrations [1]. Let k be this number. We claim that the number k can
be polynomially bounded. Let Bi

j be the j-th fullest bin after the i-th migration,
for i = 1, . . . , k and j = 1, . . . ,m.

Lemma 1. If Equation (1) holds, then we have

c(Bj) ≤ c(B1
j ) ≤ · · · ≤ c(Bk

j ), j = 1, . . . ,m− 1, (2)

and
c(Bm) > c(B1

m) > · · · > c(Bk
m). (3)

Proof. Let us consider the first migration. Equation (1) shows that there is no
space in any of the first m − 1 bins for the smallest item an and thus neither
for any items. We can claim that no item in the bin Bm is active and Bm is the
only possible cheap bin. Suppose some item ai migrates to Bm from his bin Bl.
In this case c(Bl) < s(ai) + c(Bm) ≤ 1. Then

s(an) ≤ s(ai) ≤ 1− c(Bm) < 1− (c(Bl)− s(ai))

and
1− (s(ai) + c(Bm)) < 1− c(Bl) < s(an).

Note that no bins other than Bl and Bm change. Therefore Bl becomes the
smallest bin B1

m and Bm becomes larger and falls in the set of {B1
1 , . . . , B

1
m−1}

after the first migration (i.e., after ai has migrated). Clearly

c(Bm) > c(B1
m) = c(Bl)− s(ai).

Now we compare the two number sets {c(B1
1), . . . , c(B1

m−1)} and {c(B1), . . . ,
c(Bm−1)}. They have exactly m − 2 common numbers. The different numbers
are c(Bm)+s(ai) (in the first set) and c(Bl) (in the second set), where the former
is larger. Thus we conclude that c(Bj) ≤ c(B1

j ), j = 1, . . . ,m− 1.
We further note that s(an) > 1 − c(B1

j ) for j = 1, 2, . . . ,m − 1. Hence the
same procedure applies for the next migrations that meet the lemma.

Lemma 2. If Equation (1) holds, then the bin packing game will converge to a
pure Nash equilibrium after at most (m− 1)n migrations.
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Proof. Let ti be the number of migrations for an item ai when the bin packing
game converges to a pure Nash equilibrium. To prove this lemma we only need
to show that the number of migrations for each item is bounded by m− 1, i.e.,
ti ≤ m− 1 for i = 1, 2, . . . , n.

If ti = 1 for all i = 1, 2, . . . , n, we are done since m ≥ 2. Consider any item ai

which moves at least twice. By Lemma 1 when ai migrates, the cheap bin is the
least full bin, i.e., them-th fullest bin. Assume that the cheap bin becomes the rj-
th fullest bin immediately after the j-th migration of item ai. Clearly rj ≤ m−1.
In the following we want to prove that rj+1 > rj for j = 1, 2, . . . , ti − 1.

For simplicity we denote Bc to be the cheap bin (the m-th bin ) immediately
before the j-th migration of item ai, and B to be the bin after the migration, i.e.,
the rj-th fullest bin. Similarly we let B̂c and B̂ be the cheap bin immediately
before the (j+1)-st migration of item ai and the bin afterward, respectively. We
have

c(B̂) = s(ai) + c(B̂c) < s(ai) + c(Bc) = c(B),

since c(B̂c) < c(Bc) by Equation (3) in Lemma 1. Moreover by Equation (2) the
content of the rj-th fullest bin after the (j + 1)-st migration of item ai is not
smaller than c(B), that implies rj+1 > rj .

Note that rj can never be m. It shows that ti ≤ m−1 and the lemma follows.

This lemma tells us that if Equation (1) holds one can find a pure Nash equilib-
rium in polynomial time. It is easy to verify that the following condition implies
Equation (1): In the FFD packing the smallest item an is packed into the last
bin. It implies that an does not fit into the first m−1 bins. It further shows that
an cannot be packed into the first m− 1 fullest bins. Thus Equation (1) holds.

However if an is not packed into the last bin, Lemma 2 does not work. Assume
that aj (j < n) is the smallest item packed into the last bin. Remove all items
aj+1, . . . , an, and put them back into a list L1. One can see that the list L−L1
of items satisfies Equation (1) by regarding aj as an. This observation motivates
us to apply the algorithm FFD recursively. It gives the following algorithm.

Algorithm RFFD (Recursive First Fit Decreasing)

Step 0. Let k0 = 0 and i = 1; Sort ai(i = 1, · · · , n) in decreasing order of their
sizes; Open n vacant bins.

Step 1. Re-index the open bins in decreasing order of their contents, i.e., c(B1)≥
c(B2) ≥ · · · ≥ c(Bn); Pack aki−1+1, · · · , an with the First Fit Algorithm;
Suppose Bpi is the bin with largest index which accommodates some of the
items in {aki−1+1, · · · , an}. Let aki be the smallest item packed in Bpi . If
ki < n, then take aki+1, · · · , an out of B1, · · · , Bpi .

Step 2. Determine and make all migrations until a pure Nash equilibrium is
obtained.

Step 3. If ki = n, then it is a pure Nash equilibrium for all items; Output the
non-empty bins. Else set i = i+ 1, go to Step 1.

Algorithm RFFD recursively uses the bin packing algorithm FFD. In each
round at least one item is packed and thus the number of rounds is at most n.
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Theorem 1. Algorithm RFFD performs O(n3) migrations.

Proof. To prove this theorem we only need to show that at each round i there
are at most (pi − 1)ki ≤ n2 migrations. Let qi = max{pj, j = 1, · · · , i}. Then qi
is the number of no-empty bins immediately after the i-th round. If pi ≥ qi−1,
then at most (pi − 1)ki migrations is made at Step 2 according to Lemma 2.

Now we turn to the much more difficult case that pi < qi−1. In this case the
item aki is not packed into the last nonempty bin at Step 1. However we can
show that the bins Bpi+1, . . . , Bqi−1 remain unchanged (no items in and no items
out) at Step 2 in this round. Hence the migrations happen among the first pi

bins and thus Lemma 2 still applies.
We only deal with the case that pi < qi−1 with the smallest index i, i.e.,

qi−1 = pi−1. The other cases can follow analogously.
Note that aki−1 is the smallest item in B1, . . . , Bpi−1 before the i-th round.

From Lemma 1 we get 1− c(Bl) < s(aki−1), for l = 1, . . . , pi−1−1. Now consider
the first migration in the i-th round (Step 2). We will show that this migration
cannot be made by any item a ∈ {a1, . . . , aki−1}. Denote these items as lazy
items.

Before Step 1 of Round i there is a pure Nash equilibrium that satisfies
the following two properties: (1) There is no enough space at any bin Bj ∈
{B1, . . . , Bpi−1−1} for any lazy item. (2)None of the lazy items packed in any
bin Bj ∈ {B1, . . . , Bpi−1−1} wants to migrate to the bin Bpi−1 . After Step 1, the
content of Bpi−1 remains unchanged while the content of any other bin does not
decrease. It implies that the above two properties still hold for all lazy items.
And thus none of them makes the first migration. An item a ∈ {aki−1 , . . . , aki},
called a new item, migrates, but not to the bin Bpi−1 . It is because any new item
is not larger than any lazy item. Even a lazy item has no interest to move to the
bin Bpi−1 , neither does a new item. So the bin Bpi−1 has not any change after
the first migration. This good point ensures that no lazy items moves in the next
migrations and again Bpi−1 remains unchanged during the Step 2 of Round i.

We see that only new items may migrate. Then the number of migrations in
Step 2 of the i-th round is at most qi−1(ki − ki−1) ≤ n2 by Lemma 2. Recall
that the number of the rounds is no more than n. There are O(n3) migrations.

Finally we estimate the time to determine a migration. In fact we can always
maintain a cheap bin so that it takes O(n) time to check which item is willing
to move into this bin. Therefore the total running time of algorithm RFFD is
O(n4).

Theorem 2. RFFD is a polynomial time algorithm for computing a pure Nash
equilibrium.

3 Bounding the Price of Anarchy

In this section, we prove that the price of anarchy of this game is in between
∞∑
l=1

1

2
l(l−1)

2
≈ 1.6416 and (41 +

√
145)/32 ≈ 1.6575. We first deal with the lower
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bound. Let ε and γ be sufficiently small positive numbers. We classify items into
N types where N is sufficiently large. For k = 1, 2, . . . , N , an item a is of type-k
if 1

2k − γ < s(a) < 1
2k + γ. In addition let mN > 0 be a given integer, and for

k = 1, 2, . . . , N − 1,

mk =
{

2m2 + 1, k = 1
2kmk+1 − 1 k ≥ 2

We are ready to present the list L of items. Let L = L1 ∪ L2 ∪ · · · ∪ LN , where
L1 consists of m1 items of 1/2 + d1ε and for k = 2, . . . , N , Lk is defined as

{ 1
2k
− ekε︸ ︷︷ ︸, 1

2k − bk,1ε, · · · , 1
2k − bk,mk

ε, 1
2k + ck,1ε, · · · , 1

2k + ck,mk
ε,

1
2k

+ dkε︸ ︷︷ ︸}.
mk(2k − 4) mk

The parameters ek, bk,i, ck,i and dk are iteratively specified below. Let d1 = 1,
e1 = b1,1 = · · · = bk,1 = c1,m1 = b1,m1 = 0. For k ≥ 2,

– δk−1 = dk−1 + ck−1,mk−1 − bk−1,mk−1 − (2k−1 − 4)ek−1,
– if k = 2 then ek = 0 else ek = (1/2)

∑k−1
l=1 dl,

– ck,i = bk,i + (2k − 4)ek + δk−1 + 1, i = 1, . . . ,mk

– bk,i+1 = ck,i +
∑k−1

l=1 dl, i = 1, . . . ,mk − 1,
– dk = ck,mk

.

One can have a packing using bins as many as the number of the items of
1/2 + d1ε, which is m1. On the other hand we can construct a packing of Nash
equilibrium using

∑N
k=1mk bins. As N goes to infinity, we conclude

Theorem 3. The price of anarchy for the bin packing game is at least
∞∑
l=1

1

2
l(l−1)

2
≈ 1.6416.

Now we turn to the upper bound. For a list L of items, consider any pure
Nash equilibrium for the bin packing game. Let the bins used be B1, · · · , Bm,
where m ≥ 4 and c(B1) ≥ · · · ≥ c(Bm−1) ≥ c(Bm). Let OPT be the number
of bins used by an optimal packing. It is obvious that c(Bm−1) > 1/2. Let
x = (41 −

√
145)/48 ≈ 0.6033 and z = 0.6. We aim at an (asymptotic) upper

bound of 1/x = (41+
√

145)/32 ≈ 1.6575. By carefully investigating the packing
structure of the Nash equilibrium we can prove the following two lemmas (due
to the page limit we omit the proofs).

Lemma 3. If c(Bm−1) ≥ z, then m < OPT/x+ 3.

Lemma 4. If s(Bm−1) < z, then m < OPT/x+ 3.

Theorem 4. Any pure Nash equilibrium for the bin packing game uses at most
�OPT/x+ 3� bins.

Proof. It follows from Lemmas 3 and 4.
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Abstract. In this paper, we introduce a kind of restricted core stability
for flow games, which is a generalization of the core stability of simple
flow games. We first give a characterization on the restricted core, and
then propose a sufficient and necessary condition on the restricted core
stability for flow games associated with general networks. This condition
yields that testing the restricted core stability can be done in polynomial
time.

Keywords: Flow game, core, stability, maximum flow, minimum cut.

1 Introduction

A cooperative (profit) game Γ = (N, γ) consists of a player set N = {1, 2, · · · , n}
and a characteristic function γ : 2N → R+ with γ(∅) = 0, where γ(S) (S ⊆ N)
represents the profit achieved by the players in S without participation of other
players. Different philosophies on the allocation of the total profit γ(N) result in
different solution concepts, e.g., the core, the Shapley value, the nucleolus and
the stable set.

A vector x = (x1, x2, · · · , xn) is called an imputation of Γ if x(N) = γ(N)
and xi ≥ γ({i}) for each i ∈ N (individual rationality); denote by I(Γ ) the set of
imputations of Γ . The core C(Γ ) of game Γ is defined to be a set of imputations
satisfying subgroup rationality, i.e.,

C(Γ ) = {x ∈ Rn : x(N) = γ(N), and x(S) ≥ γ(S), ∀S ⊆ N} .

In this paper we use the shorthand x(S) =
∑

i∈S xi. The stable set, due to
von Neumann and Morgenstern [13], is a set of imputations F satisfying that
any two imputations in F do not dominate each other and any imputation not
in F can be dominated by some imputation in F . Although the concept of
stability is very useful in the analysis of bargaining situations, it seems difficult
to investigate its properties and computational issues because of the complexity
of its definition [5].

In general, the core and the stable set are different, however, Shapley [10]
proved that for convex games, the core is the unique stable set. This result
� This work is supported by NSFC (No.10571117, 10671108 and 10771200) and NCET.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 454–464, 2008.
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motivated researchers to study the problem: when do the core and the stable set
coincide, that is, when is the core stable? As far as the core stability for concrete
cooperative game models is concerned, only a few results have been obtained,
such as for assignment games [11] and minimum coloring games [2].

The network flow is one of the most widely studied optimization problems and
has numerous applications, see [1]. Flow games were first introduced by Kalai
and Zemel [7,8], which arose from the profit allocation problem related to the
maximum flow in a network. Kalai and Zemel [7,8], and Deng et al. [4] showed
that the cores of flow games are always nonempty, and an element in the core
can be found in polynomial time. On the other hand, it was proved that checking
whether a given imputation belongs to the core is co-NP-complete [6]. Recently,
both Deng, Fang and Sun [3], and Potters, Reijnierse and Biswas [9] showed that
the nucleolus of a simple flow game (where all arc capacities in the network are
equal to one) can be computed in polynomial time, while for general flow games,
computing the nucleolus is NP-hard [3].

The motivation of this work is to extend the core stability to general flow
games. For this purpose, the concepts of the restricted core and restricted core
stability of flow games are introduced. We first give a characterization on the
restricted core, and then propose a sufficient and necessary condition on the re-
stricted core stability for flow games associated with general networks. Further-
more, we show that testing the restricted core stability can be done in polynomial
time. The known results on simple flow games, such as the core characterization
and core stability condition, can be viewed as direct corollaries of our results.

The organization of the paper is as follows. In Section 2 we introduce the
definitions of restricted core and restricted core stability of flow games. Section
3 is dedicated to a structural description of the restricted core. In Section 4 we
focus on the characterization of the network for which the associated flow game
possesses the restricted stable core.

2 Definitions

2.1 Flow Game

A flow network is denoted by D = (V,E; c; s, t, ), where V is the vertex set,
E is the arc set and c : E → R+ is the arc capacity function, s (the source)
and t (the sink) are two distinct vertices of D. An arc e ∈ E from u to v is
denoted by (u, v), u and v are called the tail and the head of e, respectively.
For two disjoint subsets X,Y ⊆ V , let E(X,Y ) denote the set of arcs of E
with tails in X and heads in Y , δ+E (X) = E(X,X) and δ−E (X) = δ+E(X) (where
X = V \ X). An arc set δ+E(X) with s ∈ X and t �∈ X is called an s-t cut. In
the case without confusion, δ+E(X) and δ−E (X) is denoted briefly as δ+(X) and
δ−(X), respectively. For X ⊆ V , denote by E(X) the set of arcs with both tails
and heads in X .

Let P = {P1, · · · , Pm} be the set of all simple directed paths from s to t
(called s-t paths) inD, and E = {e1, e2, · · · , en}. Let A be the path-arc incidence
matrix, i.e., the matrix with rows and columns indexed by paths P1, · · · , Pm and
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edges e1, · · · , en, respectively, and the entry in position (Pi, ej) is 1 or 0 according
to whether Pi passes through ej or not (i = 1, 2, · · · ,m; j = 1, 2, · · · , n). Define
fi as the value of flow along path Pi (i = 1, 2, · · · ,m), and f = (f1, f2, · · · , fm).
Then the maximum flow from s to t can be formulated as the following linear
program:

max{f1 : fA ≤ c, f ≥ 0} (2.1)

where 1 is the all-one column vector of dimensions m and c = (c(e1), c(e2), · · · ,
c(en)). The flow through arc e ∈ E is denoted by f(e) =

∑
Pi: Pi�e fi. Thus, the

constraints fA ≤ c can be rewritten as f(e) ≤ c(e) for each e ∈ E. The dual of
the above maximum flow problem (2.1) is

min{cz : Az ≥ 1, z ≥ 0} (2.2)

Let γ∗ denote the maximum flow value in D, which equals optimal value of dual
program (2.2). Set

QD = { z = (z1, z2, · · · , zn) : Az ≥ 1 and cz = γ∗} ,
Qc

D = { (c1z1, c2z2, · · · , cnzn) : z = (z1, z2, · · · , zn) ∈ QD} .
(2.3)

The flow game associated with network D = (V,E; c; s, t) is denoted by ΓD.
We assume that each player controls one arc in E, i.e., we can identify the set
of arcs with the set of players. The flow game ΓD = (E, γ) is defined formally
as follows:

(i) The player set is E;
(ii) ∀S ⊆ E, the characteristic function value, denoted by γ(S), is the value of

the maximum flow from s to t in the subnetwork induced by the arc set S.

Theorem 2.1 [4,7,8]. Let ΓD be the flow game associated with network D =
(V,E; c; s, t). Then Qc

D ⊆ C(ΓD).

The above theorem shows that the core of a flow game is always non-empty and
an element in the core can be found in polynomial time [4,7,8]. However, the
problem of testing whether an imputation is in the core is co-NP-complete [6].
Although in general, Qc

D is a proper subset of C(ΓD), when the network D is
simple, Qc

D coincides with C(ΓD). The following characterization is due to Kalai
and Zemel [8] and Deng et al. [4].

Theorem 2.2 [4,8]. Let ΓD be the flow game associated with simple network
D. Then C(ΓD) = Qc

D, and moreover, C(ΓD) is exactly the convex hull of the
indicator vectors of the minimum s-t cuts of D.

2.2 Restricted Core Stability

Given a cooperative game Γ = (N, γ), the core C(Γ ) is stable means that for
any y ∈ I(Γ ) \ C(Γ ), there exists a core element x ∈ C(Γ ) and a nonempty
coalition S ⊂ N such that

(a) xi > yi for all i ∈ S; (b) x(S) = γ(S). (2.4)
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The main purpose of this paper is to propose a new kind of core stability,
called restricted core stability, by adding two restrictions to the original core
stability on a general flow game ΓD: (i) C(ΓD) is restricted to Qc

D, and (ii)
the nonempty coalition S ⊂ E is restricted to an s-t path. More formally, the
restricted version of the core stability of flow games is defined as follows.

Definition 2.1. Let ΓD = (E, γ) be the flow game associated with network
D = (V,E; c; s, t). Qc

D is called the restricted core of ΓD; moreover, Qc
D is called

restricted stable if for every y ∈ I(ΓD) \Qc
D, there exist an x ∈ Qc

D and an s-t
path P in D such that

(a∗)x(e) > y(e) for all e ∈ P ; (b∗)x(P ) = γ(P ). (2.5)

We also say that x P -dominates y if (a∗) holds.

The reasons why we impose the restrictions on the core stability are as follows:
First, testing whether x ∈ I(ΓD) \ C(ΓD) itself is NP-hard [6], while on the

contrary, testing whether x′ ∈ I(ΓD) \Qc
D is polynomial-time solvable. Second,

for flow game ΓD, a nonempty coalition S ⊂ E satisfying (2.4)(a) contains an s-t
path satisfying (2.5)(a∗), conversely (2.5)(a∗) is a special case of (2.4)(a). Third,
when D is a simple network, two stabilities coincide, i.e., Qc

D = C(ΓD) and the
nonempty coalition S ⊂ E can be restricted to an s-t path [12].

3 Restricted Core Characterization

In what follows, a flow means a flow from s to t and a minimum s-t cut means an
s-t cut with minimum capacity. Without loss of generality, we may assume that
every arc is on some s-t path, moreover, the capacity c(e) > 0 for each e ∈ E
since only the maximum flow problem is concerned. Recall the definition of QD

and Qc
D in (2.3), we rewrite Qc

D as follows:

QD = {z : Az ≥ 1 and cz = γ∗}, Qc
D = {Mz : z ∈ QD},

where M is the square diagonal matrix with the components of c on its main
diagonal. In this section, we shall give a structural characterization of the re-
stricted core Qc

D. From the complementary slackness of LP, we first give the
following lemma.

Lemma 3.1. Let z ∈ QD. If z(e) > 0, then there is an s-t path P ∈ P such that
e ∈ P and z(P ) = 1.

Theorem 3.2. The set QD is exactly the convex hull of the indicator vectors of
the minimum s-t cuts of D.

Proof. It is easy to see that the indicator vector of any minimum s-t cut of D is
in QD, so is the convex combination of these indicator vectors.

Conversely, suppose z ∈ QD. Consider z as a length function on E, and let
d(s, v) be the length of the shortest path from s to v ∈ V w.r.t. length z. Then
we first have the claim:

Claim. d(s, t) = 1 and d(s, v) ≤ 1 for every v ∈ V .
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In fact, the complementary slackness of LP yields directly d(s, t) = 1. For v ∈ V ,
let P be an s-v path in D and e = (u′, u′′) be the last arc on P with z(e) > 0.
Then by Lemma 3.1, there is an s-t path Pi passing through e with z(Pi) = 1,
which implies that d(s, v) ≤ d(s, u′′) ≤ z(Pi) = 1.

Based on the claim, we may rearrange the different values of distances as
0 = p0 < p1 < . . . < pk = 1, and consequently, partition the vertex set V into k
subsets:

Vi = {u ∈ V | d(s, u) = pi}, i = 0, 1, · · · , k. (3.1)

From the partition (3.1), we obtain k s-t cuts of D:

Xi =
⋃i−1

j=0 Vj , Ci = δ+(Xi), i = 1, · · · , k. (3.2)

Now let us show each Ci (i = 1, · · · , k) in (3.2) to be a minimum s-t cut. Clearly,
z(e) > 0 for each e ∈ Ci, implying that f(e) = c(e) for any maximum flow f .
We also have f(e′) = 0 for any e′ = (u′, u′′) ∈ δ−(Xi) and any maximum flow
f . For otherwise, by Lemma 3.1, there is an s-t path Pj passing through e′ with
z(Pj) = 1. Denote P̂ ′ the sub-path of Pj from s to u′′, then z(P̂ ′) ≥ d(s, u′) >
d(s, u′′). Replacing P̂ ′ by a shortest s-u′′ path, we may obtain an s-t path with
length less than 1, a contradiction.

Let χi denote the indicator vector of Ci (i = 1, · · · , k), then it can be shown
that z is a convex combination of χ1, χ2, · · · , χk, furthermore,

z =
∑k

i=1(pi − pi−1)χi.

In fact, if z(e) = 0, then e �∈ ∪k
i=1Ci; if z(e) > 0 for e = (u, v), then by

Lemma 3.1, there is an s-t path Pi passing through e with z(Pi) = 1, which
implies that Pi is a shortest path and d(s, v) = d(s, u) + z(e). Suppose u ∈ Vi

and v ∈ Vj , then j > i and e is covered only by Ci+1, . . . , Cj , and hence,
z(e) = pj − pi =

∑j−1
�=i (p�+1 − p�).

The proof is completed.

When the network D is simple, Qc
D = QD, Theorem 2.2 is a direct corollary of

Theorems 3.2.

4 Restricted Core Stability

In this section, we discuss sufficient and necessary conditions on the restricted
core stability for flow games. Given the network D = (V,E; c; s, t), define

E1 = {e ∈ E : e ∈ δ+(X) for some minimum s-t cut δ+E (X) in D},
E1 = E \ E1.

It can be seen that for any maximum flow f ,

f(e) = c(e), ∀ e ∈ E1. (4.1)

Lemma 4.1. There exists a minimal laminar collection C∗ = {δ+(X1), · · · ,
δ+(Xq)} of minimum s-t cuts such that
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(a) X1 ⊂ X2 ⊂ · · · ⊂ Xq and
⋃q

i=1 δ
+(Xi) = E1;

(b) For each v ∈ Xi (i = 1, 2, · · · , q), there exist an s-v path with all vertices in
Xi.

Proof. (a) Since every e ∈ E1 is covered by a minimum s-t cut, there exists a col-
lection C of minimum s-t cuts covering E1. Among all such covering collections,
we choose a collection such that∑

δ+(X)∈C
|X ||X| (4.2)

is minimized, and denote it by C∗ = {δ+(X1), · · · , δ+(Xq)}.
We show that in C∗, either Xi ⊂ Xj or Xj ⊂ Xi for i �= j. Suppose to the

contrary that, there is a pair 1 ≤ i < j ≤ q such thatXi\Xj �= ∅ andXj\Xi �= ∅.
Then it is easy to see that both δ+(Xi ∩Xj) and δ+(Xi ∪Xj) are minimum s-t
cuts, furthermore,

|Xi ∩Xj||Xi ∩Xj |+ |Xi ∪Xj ||Xi ∪Xj | < |Xi||Xi|+ |Xj ||Xj |,

δ+(Xi ∩Xj) ∪ δ+(Xi ∪Xj) ⊇ δ+(Xi) ∪ δ+(Xj).

Thus, replacing δ+(Xi) and δ+(Xj) by δ+(Xi ∩Xj) and δ+(Xi ∪Xj) in C∗, we
obtain a new collection covering E1 with the sum (4.2) decreased, contradicting
to the assumption of C∗. We can relabel the members of C∗ such that X1 ⊂
· · · ⊂ Xq holds. The minimality of C∗ derives directly from the minimization of
(4.2).

Let Ci denote δ+(Xi) in C∗, i = 1, 2, · · · , q. To prove (b), let j be the minimum
index such that for some v ∈ Xj , there is no s-v path with all vertices in Xj ,
and let V ′

j denote the set of such vertices in Xj .
We claim that δ+(v)∩Cj = ∅ for every v ∈ V ′

j . For otherwise, say e = (v, w) ∈
δ+(v)∩Cj , then f(e) = c(e) for any maximum flow f . On the other hand, every
s-w path P ′ must contains backward arc of some minimum cut in C∗, implying
that f(e) = 0, a contradiction.

Modify the sets X1, X2, · · · , Xq obtained in (a) as follows:

X ′
i =

⎧⎨⎩
Xj \ V ′

j if i = j
Xj+1 ∪ V ′

j if i = j + 1
Xi otherwise.

It is easy to see that X ′
1 ⊂ X ′

2 ⊂ · · · ⊂ X ′
q,
⋃q

i=1 δ
+(X ′

i) = E1 and for each
v ∈ X ′

i (i ≤ j), there exists an s-v path with vertices all in X ′
i. Repeat this

process until the collection C∗ has the property (b).

Lemma 4.1 plays an important role in our discussion. In the rest of this paper,
X1, X2, · · · , Xq are fixed to be the sets defined in Lemma 4.1, denote Ci =
δ+(Xi) (i = 1, 2, · · · , q) and C∗ = {C1, C2, · · · , Cq}. From Lemma 4.1, it can be
seen that for any maximum flow f ,

f(e) = 0, ∀ e ∈ δ−(Xi). (4.3)
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Before giving the main result of this section, we first present some properties
on P -restricted domination.

Lemma 4.2. If each y ∈ I(ΓD) \Qc
D can be P-dominated by an element in Qc

D,
then

c
(
δ−(v) ∩ E1

)
= c
(
δ+(v) ∩ E1

)
, ∀v ∈ V \ {s, t}. (4.4)

Proof. Suppose v ∈ Xi \Xi−1 and c(δ−(v)∩E1) > c(δ+(v)∩E1), i.e., c(δ−(v)∩
Ci−1) > c(δ+(v) ∩ Ci). Then for any maximum flow f ,

f (δ+(v) \ Ci) = f (δ−(v)) − f (δ+(v) ∩ Ci)
≥ c (δ−(v) ∩ Ci−1)− c (δ+(v) ∩ Ci) > 0.

By Lemma 4.1 and formula (4.3), we have ∅ �= E(v,Xi\Xi−1) ⊆ δ+(v)\Ci ⊆ E1.
Hence, δ+(Xi−1∪{v}) is not a minimum s-t cut, implying that c(δ−(v)∩Ci−1) <
c(δ+(v) ∩ Ci) + c(E(v,Xi \Xi−1)). Let

λ =
c(δ−(v) ∩ Ci−1)− c(δ+(v) ∩ Ci)

c(E(v,Xi \Xi−1))
,

y(e) =

⎧⎨⎩
c(e) if e ∈ (δ+(v) ∩Ci) ∪ (Ci−1 \ δ−(v))
λc(e) if e ∈ E (v,Xi \Xi−1)
0 otherwise.

From the above analysis, we have 0 < λ < 1. And it is easy to check that
y ∈ I(ΓD) \ Qc

D, but for all x ∈ Qc
D and any s-t path P , x(e) ≤ y(e) for

e ∈ P ∩ δ+(Xi−1 ∪ {v}). It follows that y can not be P -dominated by any
element in Qc

D, a contradiction. With similar arguments, it is also shown that
c(δ−(v) ∩ E1) < c(δ+(v) ∩ E1) is not true.

Lemma 4.3. If each y ∈ I(ΓD) \Qc
D can be P-dominated by an element in Qc

D

and e = (u, v) �∈ E1, then

either (a) u, v ∈ Xi \Xi−1 for some 2 ≤ i ≤ q;
or (b) u ∈ Xj \Xj−1 and v ∈ Xi \Xi−1 for some 1 ≤ i < j ≤ q.

Moreover, in case (a), δ−(v) ∩ Ci−1 = δ+(v) ∩Ci = ∅.
Proof. We first show that u �= s and v �= t. Indeed, if u = s, i.e., e ∈ δ+(s),
then c(δ+(s)) > γ∗ ≥ c(δ+(s) ∩E1). Set

y(e) =

⎧⎪⎨⎪⎩
c(e) if e ∈ δ+(s) ∩ E1
γ∗−c(δ+(s)∩E1)

c(δ+(s)\E1)
c(e) if e ∈ δ+(s) \ E1

0 otherwise.

Obviously, y ∈ I(ΓD) \ Qc
D, and it can not be P -dominated by any x ∈ Qc

D.
Similarly, v �= t can be proved. Thus, in the subsets X1, X2, · · · , Xq obtained in
Lemma 4.1, X1 = {s} and Xq = V \ {t}, implying the cases (a) and (b).
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Now we show δ−(v) ∩ Ci−1 = δ+(v) ∩Ci = ∅. Otherwise, set

x̂(e) =
{
c(e) if e ∈ (δ−(v) ∩Ci−1) ∪ (Ci \ δ+(v))
0 otherwise.

Notice (4.4), with the similar analysis as in the proof of Lemma 4.2, it can be
checked that x̂ ∈ I(ΓD) \Qc

D and it cannot be P -dominated by any element in
Qc

D, a contradiction.

Let V0 = {v ∈ V : δ+(v) ∪ δ−(v) ⊆ E1},
V1 = {v ∈ V : δ+(v) ∩E1 �= ∅, δ−(v) ∩ E1 �= ∅}.

Lemma 4.3 shows that when Qc
D is P -dominated, for any e = (u, v) �∈ E1 with

u, v ∈ Xi \Xi−1 for some 2 ≤ i ≤ q, the head v must belong to V0; and for any
e = (u, v) ∈ E1, both the tail u and the head v belong to V1.

Lemma 4.4. If each y ∈ I(ΓD) \Qc
D can be P-dominated by an element in Qc

D

and e = (u, v) �∈ E1, then when u ∈ Xj \Xj−1, there is a path P = v1v2 · · · vl

passing through e satisfying that

(i) v1 ∈ Xj \Xj−1, vl ∈ Xi \Xi−1 for some i < j;
(ii) v1, vl ∈ V1 and v2, · · · , vl−1 ∈ V0.

Proof. By Lemma 4.1 (b), there is an s-u path contained in Xj, say P1 =
s · · · v0v1 · · · vk(= u), where v0 ∈ Xj−1 and v1, v2, · · · , vk ∈ Xj \Xj−1. Also by
Lemma 4.1 and 4.3, we have v1 ∈ V1 and v2, · · · , vk ∈ V0.

On the other hand, there is an s-t path traversing e, then its u-t subpath
P ′

1 = vkvk+1 · · · vl · · · t (vk = u, vk+1 = v) traverses internally some vertex in V1.
Suppose vl is the first such vertex traversed and vl ∈ Xi \Xi−1. Then i < j and
vk+1, · · · , vl−1 ∈ V0.

Clearly, the coalesced path P = v1v2 · · · vl (by P1 and P ′
1) is as required.

Now we are in the position to present the sufficient and necessary condition on
the restricted stability of Qc

D. We first need to identify a special kind of arcs in
E1, denoted by E0.

• Let E0 be the set of arcs of paths P satisfying that all internal vertices of P
belong to V0, and moreover, there is a path P ′ ⊆ E1 from the end vertex to
the starting vertex of P .

Theorem 4.5. Let ΓD be the flow game associated with network D=(V,E; c; s, t).
Then Qc

D is restricted stable if and only if

(1) E = E1 ∪ E0; (4.5)
(2) for any s-t path P ⊆ E1, the arcs in P have the same capacity.

Proof. The proof depends on the laminar collection C∗ of minimum s-t cuts in
Lemma 4.1. Denote cP = min{c(e) : e ∈ P} for any s-t path P .

Necessity. Suppose that E \ (E1 ∪ E0) �= ∅. Then for each e ∈ E \ (E1 ∪ E0),
there is a path Pe ⊆ E1 satisfying conditions (i) and (ii) of Lemma 4.4, and
moreover, there is no vl-v1 path contained in E1. Among all such paths, choose
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P ∗ = v1v2 · · · vl ⊆ E1 with the smallest index j = j∗ (v1 ∈ Xj∗ \Xj∗−1) firstly
and the largest index i = i∗ (vl ∈ Xi∗ \Xi∗−1) secondly. Set

R1 = {v ∈ Xj∗ \Xi∗ : there is a v-v1 path contained in E1},
R2 = {v ∈ Xj∗ \Xi∗ : there are u ∈ R1 and a u-v path contained in E1};
R = R1 ∪R2.

It is not difficult to show that

(a) R1 ⊆ V1;
(b) R2 ∩ V1 ⊆ R1, and furthermore, R \R1 ⊆ V0.

Claim 1. Let X̃ = Xi∗ ∪R, then δ+(X̃) is also a minimum s-t cut in D.

In fact, E(V \Xj∗ , R)∩E1 = ∅; and E(Xj∗ \ X̃, R)∩E1 = ∅, since R \R1 ⊆ V0.
Hence

δ−(R) ∩ E1 = E(Xi∗ , R) ⊆ Ci∗ . (4.6)

Also by the definition of R, we have E(R,Xj∗ \ X̃) ⊆ E1, yielding that

δ+(R) ∩ E1 = E(R, V \ X̃). (4.7)

Combining formulas (4.6),(4.7) and c (δ−(R) ∩ E1) = c (δ+(R) ∩ E1) (4.4), we
have

c
(
δ+(X̃)

)
= c
(
δ+(Xi∗)

)
− c (E(Xi∗ , R)) + c

(
E(R, V \ X̃)

)
= c
(
δ+(Xi∗)

)
.

That is, δ+(X̃) is a minimum s-t cut, the claim is proved.
Based on Claim 1, we set

y(e) =

{
c(e) if e ∈ δ+

(
X̃ \ {vl}

)
∩E1

0 otherwise.
(4.8)

Let us first show y ∈ I(ΓD). Since there is no vl-v1 path in E1 by the
choice of P ∗, hence, E(vl, R)∩E1 = ∅. By Lemma 4.2, c

(
δ+(X̃ \ {vl}) ∩ E1

)
=

c
(
δ+(X̃)

)
= γ∗. Next, we show that y �∈ Qc

D. Notice that v1, vl ∈ V1, so there
are paths P1 from s to v1 and P2 from vl to t in E1. Furthermore, P1 and P2
are vertex-disjoint as there is no vl-v1 path in E1 and δ+(X̃) is a minimum cut.
Hence, the coalesced path P = P1P

∗P2 is an s-t path with y(P ) = 0, implying
that y �∈ Qc

D.
It is easy to verify that for all x ∈ Qc

D and any s-t path P , x(e′) ≤ y(e′) if
e′ ∈ δ+(X̃ \ {vl}) ∩ P , i.e., y cannot be P -dominated by any element in Qc

D.
Therefore, E \ (E1 ∪ E0) = ∅.

Finally, we show condition (2) holds. Let z ∈ QD and x = Mz. Let P be an
arbitrary s-t path with P ⊆ E1. Since x ∈ Qc

D ⊆ C(ΓD),

x(E \ P ) ≥ γ(E \ P ) = γ∗ − cP , i.e., x(P ) ≤ cP . (4.9)
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Followed from P ⊆ E1, we also have z(e) > 0 for each e ∈ P and z(P ) = 1,
yielding that

x(P ) =
∑

e∈P x(e) =
∑

e∈P c(e)z(e) ≥ cP , (4.10)

where the equality holds if and only if c(e) = cP for each e ∈ P . Condition (2)
follows directly from (4.9) and (4.10).

Sufficiency. Given y ∈ I(ΓD) \ Qc
D, let z = M−1y, it follows that z is not a

feasible solution to (2.2), that is, there is some s-t path P satisfying z(P ) < 1.
Let Dr = D \ E0, ẑ and ĉ be the restrictions of z and c to E1, respectively.
Obviously, the maximum flow value in Dr is the same as that in D.

Claim 2. There is an s-t path P ∗ in Dr with zr(P ∗) < 1.

Otherwise, zr is an optimal solution to (2.2) restricted to Dr, that is, zr(P ′) = 1
for all s-t path P ′ in Dr. By the induction on the number k of subpaths of P
connecting two vertices of V1 and with all internal vertices in V0, we show that
z ∈ QD, i.e., z(P ) ≥ 1 for all s-t paths P in D.

Suppose that P = PuPuvPv, where Pu is an s-u path, Pv is a v-t path and Puv

is a u-v path with u, v ∈ V1 and all internal vertices in V0. As u, v ∈ V1, there
exists an s-v path P ′

v and a u-t path P ′
u in Dr. For the connection between u and

v, since E \E1 = E0, there exists a v-u path P ′
uv in Dr. Therefore, the coalesced

path P ′
vP

′
vuP

′
u is an s-t path in Dr and z(P ′

vP
′
vuP

′
u) = zr(P ′

vP
′
vuP

′
u) = 1. By

induction, z(PuP
′
u) ≥ 1, z(P ′

vPv) ≥ 1, which implies that

z(P ) ≥ z(Pu) + z(Pv) ≥ z(P ′
vP

′
vu) + z(P ′

vuP
′
u) ≥ 1.

Thus, z ∈ QD, which contradicts to the assumption y �∈ Qc
D. The claim is proved.

Now we proceed to define a required z′ ∈ QD based on P ∗. For each e ∈ P ∗,
let k(e) be the number of s-t cuts in C∗ covering e. Obviously,

∑
e∈P ∗ k(e) = q.

For each Ci ∈ C∗ with Ci ∩ P ∗ = {e} (i = 1, 2, · · · , q), set

λi =
z(e)
k(e)

+
1− z(P ∗)

q
,

z′(e) =
{∑

{λi : e ∈ Ci ∈ C∗} if e ∈ E1
0 otherwise.

That is, z′ =
∑q

i=1 λiχi, where χi is the indicator vector of Ci (i = 1, 2, · · · , q).
It is easy to check that

– 0 ≤ λi ≤ 1 (i = 1, 2, · · · , q) and z′(P ∗) =
∑q

i=1 λi = 1.

– z′(e) = z(e) +
k(e)(1 − z(P ∗))

q
> z(e) for each e ∈ P ∗.

– z′(P ) ≥
∑q

i=1 λi = 1 for any s-t path P in D.

By Theorem 3.2, z′ ∈ QD. Let x = Mz′, then x ∈ Qc
D and x(e) = c(e)z′(e) >

c(e)z(e) = y(e) for each e ∈ P ∗. Also by condition (2), all arcs in P ∗ have the
same capacity cP ∗ , we have

x(P ∗) =
∑

e∈P ∗ c(e)z′(e) = cP ∗
∑

e∈P ∗ z′(e) = cP ∗ = γ(P ∗).

Therefore, Qc
D is restricted stable.
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Corollary 4.6. Let ΓD be the flow game associated with simple network D =
(V,E; s, t). Then the core C(ΓD) is stable if and only if E = E1 ∪ E0.

Now we consider the computational complexity for detecting the restricted core
stability. It is well known that there is a polynomial time algorithm for seeking
out E1 (see, e.g., [1]). On the other hand, the vertex sets V1 and V0 can be
identified easily knowing the set E1. Furthermore, for each pair of vertices u, v ∈
V1, by checking whether there is not only a u-v path with all internal vertices in
V0 but also a v-u path using all arcs in E1, we can identify all the arcs in E0.
Therefore, we have

Theorem 4.7. Testing the restricted core stability of a flow game can be done
in polynomial time.
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Abstract. We study a problem in a network. The input is an edge-
weighted graph G = (V, E) such that V contains a specific source node
r. Every v ∈ V \{r} is an entity which wants to be connected to r either
directly or via other entities. The main question is how do the entities
deviate from a socially optimal network if they are not monitored by a
central authority. We provide theoretical bounds on the (strong) price of
anarchy of this game. In particular, three variants – each of them being
motivated by a practical situation – are studied.

1 Introduction

How (in)efficiently self-interested agents make use of a common resource? This
question is central in computer science because today’s major platform – net-
works – is often operated by spontaneous and selfish users. In recent works in-
cluding [1,2,3,8] the situation is modelled as a strategic game. A strategic game
is a tuple 〈N, (Si)i∈N , (ui)i∈N 〉 where N is the set of players while Si and ui are
respectively the set of strategies of player i and her utility function. Players are
supposed to be selfish and rational. Each of them chooses a strategy in order to
maximize her own utility.

In this paper, we study three versions of a selfish spanning tree game (sst-
game in short) respectively denoted by min sst-game, max sst-game and bot-
tleneck sst-game. The sst-game is defined upon a complete graph G = (V,E)
where every edge e ∈ E has a positive weight w(e). Each node except a specific
source node r is controlled by a self-interested player. Players want to be con-
nected to r either directly or via another player, herself connected to r. For the
min sst-game (resp. the max sst-game), the utility of a player is the negative of
the weight (resp. the weight) of the first edge of the (unique) path between her
and r. For the bottleneck sst-game, a player’s utility is the minimum weight of
the edges of the path between her and r.

The sst-game is motivated by two situations: when the source node r sends
a message to all player nodes (one-to-all communications) and when each player
node sends a request to r (all-to-one communications). For the min sst-game,
the weight of an edge can represent its cost. If each node pays the price of its
upstream edge then the cost of the whole network is covered. Hence each player
wishes to receive the message at the lowest price. Another application of the
min sst-game arises in power control for static wireless networks. The weight

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 465–476, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of an edge represents its length and the power needed to send a message to a
remote node increases with the distance. Hence each player wishes to consume
as little power as possible to send its request. For the max sst-game, the weight
of an edge represents its reliability: the higher the weight of an edge, the less a
message passing through it is vitiated by errors. Then it is in a player’s interest
to choose the most reliable link from which data arrive in order to spend as little
time as possible in repairing it (it is assumed that a message is always sent or
forwarded without errors). For the bottleneck sst-game, the weight of an edge
represents its free bandwidth. For one-to-all communications, the flow of data
at a node depends on the flow at each intermediate node, i.e. it is limited by
the edge with smallest free bandwidth. Therefore each player of the bottleneck
sst-game wants to maximize her own flow.

The players of the sst-game may not spontaneously reach a social optimum
as uncoordinated decisions and conflicting interests often lead to suboptimal
performances. The main concern of this paper is to say how (in)efficiently players
of the sst-game make use of the graph if they act selfishly. To do so, we study
the price of anarchy (PoA) [12] and the strong price of anarchy (SPoA) [2] of the
sst-game. These two measures resort to two important concepts in game theory
– the Nash equilibrium and the strong equilibrium – to quantify the performance’s
deterioration due to self-interested behaviors.

2 Definitions and Notations

The sst-game. We are given a complete graph G = (V,E) on n + 1 vertices
where V contains a specific node r and a weight function w : E → R+. The
sst-game is such that N = V \ {r} (each node except r is a player) and Si = V
for all i ∈ N (each player selects a node). The number of players is finite and
denoted by n. A strategy profile (or state) σ = (σ1, σ2, . . . , σn) is an element of
S = S1×S2× · · · ×Sn. We say that σ connects i ∈ N to the source iff there is a
path between i and r in the graph (V, {[u, v] : σu = v or σv = u}). For the min
sst-game, the utility of a player i is defined as ui(σ) = −w([i, σi]) if σ connects
i to r, otherwise ui(σ) = −∞. For the max sst-game, the utility is defined as
ui(σ) = w([i, σi]) if σ connects i to r, otherwise ui(σ) = −∞. For the bottleneck
sst-game, the utility is defined recursively as

ui(σ) =

⎧⎨⎩
w([i, σi]) if σi = r
min{w([i, σi]), uσi(σ)} if σ connects i to r
−∞ otherwise

Every player i selects her strategy σi so that ui(σ) is maximum. The graph
being complete, any player can select her direct link to r and have a utility
different from −∞. Therefore the players always build a spanning tree of G if
none of them can unilaterally improve her utility.

Throughout this article, the spanning tree induced by a strategy profile σ is
denoted by T σ and defined as {[i, j] ∈ E : σi = j or σj = i}. The strategy profile
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induced by a spanning tree T is denoted by σT and defined as σT
i = j for all

i ∈ N where [i, j] is the first edge of the unique path between i and r in T .

Equilibria and the price of anarchy. Given σ ∈ S, let us denote by (σ |i s)
the strategy profile where σi is replaced by s in σ whereas the strategy of the
other players is unchanged, i.e. (σ1, . . . , σi−1, s, σi+1, . . . , σn). A Nash equilib-
rium is a stable state in which no player has an incentive to unilaterally move
away. That is, σ ∈ S is a Nash equilibrium if ∀i ∈ N , ∀s ∈ Si, ui(σ |i s) ≤ ui(σ).

We speak about pure Nash equilibria when every player i deterministically
chooses a strategy σi ∈ Si. The sst-game always has a pure Nash equilibrium
since such a state can be computed as follows. Start with any pure strategy
profile (e.g. ∀i ∈ N, σi = r) and change the strategy of a player as far as it is
profitable (i.e. her utility strictly increases). If such a deviation is not possible
then the current state is a Nash equilibrium. Otherwise the utility of at least one
player has increased and the utility of all the others has not decreased. Hence if
σ and σ′ respectively denote the strategy profile before and after the deviation,
we have

∑
i∈N ui(σ′) >

∑
i∈N ui(σ). One can repeat the process until a pure

strategy Nash equilibrium, i.e. a local optimum for
∑

i∈N ui(σ), is reached.
We only consider pure strategies so we omit from now on the adjective ”pure”.

The price of anarchy (PoA) [12] is the value of the worst Nash equilibrium relative
to the social optimum. As usual the social welfare is defined as the sum of the
players’ utility. We use a function S : S → R defined as S(σ) =

∑
i∈N ui(σ).

Let σ be a strategy profile at Nash equilibrium whereas σ∗ denotes a strategy
profile induced by a social optimum1. The PoA of the sst-game is the maximum
value of S(σ)/S(σ∗) over all instances.

One particular weakness of the Nash equilibrium is its vulnerability to de-
viations by coalitions of players. Selfishness does not avoid cooperation as long
as it is profitable. Aumann introduced the notion of strong equilibrium [4]. It is
a Nash equilibrium where no set of players can cooperatively deviate in a way
that benefits all its members, taking the strategies of the players outside the
coalition as given. Given two strategy profiles σ, β and a set N ′ ⊆ N , (σ |N ′ β)
denotes the strategy profile α where αi = σi if i ∈ N \ N ′ and αi = βi if
i ∈ N ′. Then σ is a strong equilibrium if for all N ′ ⊆ N , there is no β ∈ S
such that ui(σ |N ′ β) > ui(σ) for all i ∈ N ′. Andelman, Feldman and Mansour
[2] proposed the notion of strong price of anarchy (SPoA) which is the PoA re-
stricted to strong equilibria. The SPoA of the sst-game is the maximum value
of S(σ)/S(σ∗) over all instances.

3 Contribution and Related Work

Contribution. We first show that any Nash equilibrium of the min sst-game
is a strong equilibrium (actually the proof also works for the max sst-game).

1 The strategy profile induced by a minimum (resp. maximum) weight spanning tree
is a social optimum for the min (resp. max) sst-game. A simple greedy algorithm
can build a social optimum for the bottleneck sst-game.
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Since PoA=SPoA in this situation we only study the PoA of the min sst-game.
We first observe that the PoA of the min sst-game is in general unbounded so
we restrict ourselves to instances satisfying the triangle inequality. Under this
standard assumption it is proved in Section 4 that PoA∈ Θ(log n) and PoA≤ d∗
where n is the number of players (i.e., n = |N | = |V | − 1) and d∗ is the depth
(maximum number of edges from a leaf to the root) of the tree induced by a
social optimum. In addition we bound the PoA with respect to a modified social
welfare which is motivated by energy consumption in wireless communications.
The PoA of the max sst-game and the bottleneck sst-game are studied in
Section 5 (the triangle inequality is not imposed anymore). For the former we
prove that PoA= 1/∆∗ where ∆∗ is the maximum degree of a player node (i.e.
all nodes except r) in the tree induced by a social optimum. For the bottleneck
sst-game we show that any Nash equilibrium is a social optimum (PoA= 1),
implying that any Nash equilibrium is a strong equilibrium. Some concluding
remarks are given in Section 6. Due to space limitations, some proofs and tight
examples are omitted.

Related work. In 1973 Claus & Kleitman [6] introduced the problem of allocat-
ing the cost of a spanning tree. Subsequently Bird [5] and Granot & Huberman
[9,10] studied the problem as a cooperative game: the players must agree on the
structure (the tree) and how its cost is shared. Bird’s cost allocation [5] consists
in computing a minimum cost spanning tree and each player-node pays the price
of the first edge of her path to the source. This allocation belongs to the core2 of
the game; further results on the core are provided by Granot & Huberman [9,10].
Then the min sst-game (resp. max sst-game) is a non cooperative version of
Claus & Kleitman’s problem with a Bird like allocation rule.

A central network problem viewed as a strategic game is the one introduced
by Anshelevich et al. [3] (subsequently studied by Albers [1]). We are given an
edge-weighted graph G = (V,E) and pairs (si, ti) ∈ V × V . Each si wants to
connect to ti so the strategies of i are the paths from si to ti in G. The weight
w(e) of an edge e represents a cost that is evenly shared among its users. Namely
e costs w(e)/ν(e) to each of its users where ν(e) denotes the number of e’s users
(this cost sharing method is called the shapley cost in [3,1]). The total cost of a
player is the sum of the prices she is charged over all edges in her path. Taking
the social cost as the sum of all player’s individual cost, Anshelevich et al. show
that there always exists a Nash equilibrium with social cost at most O(log |V |)
times the social optimum. In the sst-game all ti’s are the same vertex but the
main difference resides in the way an agent’s utility is defined. In contrast with
the shapley cost where a player pays a fraction of each edge of her path, a
player’s utility in the min sst-game depends only on the first edge. Actually the
three variants of the sst-game studied in this paper model situations where the
agents’ utility is ruled by the topology since quantities like electric power, time
(to repair a message) or bandwidth are, unlike money, hard to transfer.

2 Roughly speaking, the core is the set of all allocations such that no group of players
is ”mistreated”.
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In [8] Fabrikant et al. study the price of anarchy of a game where each player is
the node of a graph. A player’s strategy set consists of all subsets of edges incident
to her. Each player’s cost is the number of edges times a positive constant plus
the sum of the distances from the node to all others.

The min sst-game is strongly related to two topology control problems (the
Connectivity Game and the Strong Connectivity Game) in static ad hoc networks
studied by Eidenbenz et al. [7]. The input of these problems is a graphH = (V,E)
where each edge e has a weight w(e) ≥ 0 (w satisfies the triangle inequality).

In the Connectivity Game [7] we are given pairs (si, ti) ∈ V × V such that
si needs to connect to ti (possibly over several intermediate vertices). Each
si has to choose a radius. The radius function ρ is a mapping from V to R+
(ρv ≥ 0 denotes the radius of v). It induces a directed graph Gρ = (V,A) where
A = {(u, v) : [u, v] ∈ E and ρu ≥ w([u, v])}. Gρ is called the transmission
graph [13], i.e. s connects to t if there is a directed path from s to t in Gρ. The
utility of si is defined as −M if si does not connect to ti in Gρ (M being some
very large number), otherwise it is −(ρsi)α. Here α ≥ 1 is a constant known as
the power gradient [13]. So, each si is a selfish agent whose best strategy is the
minimum radius that connects her to ti. The social cost is defined as

∑
v∈V (ρv)α.

Deciding whether an instance of the Connectivity Game has a pure NE is an
NP-complete problem [7]. The Strong Connectivity Game [7] is a special case
of the Connectivity Game where each vertex needs to connect with every other
vertex. It always has a pure Nash equilibrium and its PoA is Θ(nα).

The min sst-game is a particular case of the Connectivity Game where ti = r
for all i = 1, . . . , k, {si : i = 1, . . . , k} = V \ {r} and α = 1. It can be also viewed
as a relaxation of the Strong Connectivity Game where each vertex needs to
connect to r (or if we consider the transmission graph as an unoriented graph,
each vertex is connected to every other vertex).

4 The Min sst-Game

Strong-Nash equivalence. A strong equilibrium is a Nash equilibrium but a
Nash equilibrium is not necessarily strong (e.g. the prisoner’s dilemma). We show
that the min sst-game has a particular structure since any Nash equilibrium is
strong. This property is known as the strong-Nash equivalence [11].

Theorem 1. Any Nash equilibrium of the min sst-game is a strong equilibrium.

Proof. Given i ∈ N and a Nash equilibrium σ, let DEP (i, σ) be the players who
depend on i to be connected to r: DEP (i, σ) = {j ∈ N \ {i} : ui(σ |i j) = −∞}.
Suppose that σ is a Nash equilibrium but not a strong equilibrium. Then there
exists a coalition N ′ ⊆ N and a strategy profile β such that ui(σ |N ′ β) > ui(σ)
for all i ∈ N ′. W.l.o.g., we suppose that (σ |N ′ β) = β.

If there exists i′ ∈ N ′ such that βi′ /∈ DEP (i′, σ) then ui′(σ |i′ βi′) = ui′(σ |N ′

β) > ui′(σ). Since i′ can unilaterally change her strategy and improve her utility,
σ is not a Nash equilibrium, contradiction.
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If βi ∈ DEP (i, σ) for all i ∈ N ′ then (σ |N ′ β) does not connect any i ∈ N ′ to
r. To see this, let L′ =

⋃
i∈N ′ DEP (i, σ) \N ′ and U ′ = N \ (N ′ ∪ L′). Actually

L′, N ′ and U ′ form a partition of N . The strategy of a node in L′∪N ′ is to select
a node in L′ ∪N ′. The strategy of a node in U ′ is to select a node in U ′ ∪ {r}.
Therefore ui(σ |N ′ β) = −∞ < ui(σ) for all i ∈ N ′, contradiction. ��

Then we only consider the price of anarchy of the min sst-game but our results
also hold for the strong price of anarchy.

Definitions and properties. The utility of each player (to be maximized) is
the negative of a cost (to be minimized). Given i ∈ N and σ ∈ S, the cost of i is
denoted by ci(σ) and defined as −ui(σ). For the sake of convenience, we often
manipulate the cost of a player (which is a non negative value) instead of her
utility (which is a non positive value).

We introduce several definitions which will be useful in the next proofs and
give two basic properties. In the following, σ denotes a strategy profile at Nash
equilibrium. Meanwhile σ∗ denotes a social optimum, that is

∑
i∈N ci(σ

∗) is
minimum.

Definition 1. Given (i, j) ∈ V ×V , let path∗(i, j) be the path (i.e. set of edges)
between i and j in T σ∗

.
Let weight∗(i, j) =

∑
e∈path∗(i,j) w(e) and visited∗(i, j) ⊆ V be all nodes of

path∗(i, j).
Let root∗(i, j) be the vertex of visited∗(i, j) which plays the role of the source,

i.e. root∗(i, j) = r if r ∈ visited∗(i, j), otherwise root∗(i, j) = � where � ∈
visited∗(i, j) and σ∗� /∈ visited∗(i, j).

Let path, weight, visited and root be defined similarly w.r.t. the tree induced
by σ.

Property 1. If σ is a Nash equilibrium then ci(σ) ≤ w([i, r]) holds for all i ∈ N .

Property 2. If σ is a Nash equilibrium then min{ci(σ), cj(σ)} ≤ w([i, j]) holds
for all (i, j) ∈ N ×N such that i �= j.

The PoA according to the number of players. We start with a disap-
pointing observation: the players of the min sst-game can arbitrarily deviate
from the social optimum. Consider an instance with two players 1 and 2. The
weight function is defined as w([1, 2]) = w([1, r]) = 1 and w([2, r]) = X where
X > 1. The strategy profile σ∗ where σ∗1 = r and σ∗2 = 1 is a social opti-
mum. The strategy profile σ where σ1 = 2 and σ2 = r is a Nash equilibrium
since 1 has no incentive to change her strategy. Therefore the price of anarchy
S(σ)/S(σ∗) = (1 +X)/2 tends towards ∞ when X tends towards ∞. This in-
stance does not satisfy the standard hypothesis which says that the cost of a link
depends on its length. From now on, we assume that weights satisfy the triangle
inequality, i.e. w([x, y]) + w([y, z]) ≥ w([x, z]) for all triple of nodes x, y and z.

Let us give a lower bound on the PoA of the min sst-game.

Proposition 1. When the triangle inequality holds, the PoA of the min sst-
game is at least 1 +

(
logn

)
/2.
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Proof. We consider an instance of the game with 2k players for all positive integer
k. Players are numbered from 1 to 2k. We assume that the source node r has
number 0. The weight function is defined as w([i, j]) = |i−j| for all pair of nodes
(i, j). It is not difficult to see that the triangle inequality holds. The minimum
weighted tree (an optimal solution), denoted by T ∗

k , consists of all edges [i, i+1]
(i = 0, . . . , 2k − 1). Its total weight is 2k.

We are going to describe a spanning tree Tk such that the strategy profile
induced by Tk is a Nash equilibrium for the min sst-game. Tk consists of the
edges [2k−1, 2k], [0, 2k] and a subtree Tk which is a complete binary tree on
vertices 1, . . . , 2k − 1. To construct Tk, we start from a complete binary tree on
2k − 1 vertices which are subsequently numbered.

Each leaf of Tk receives an odd integer between 1 and 2k − 1. The numbering
follows the DFS order. Next the number of a non-leaf vertex is defined as the
average number of its two children. For instance the root of Tk has number
2k−1 and it is denoted by rk in the following. It suffices to make the union of
{[2k−1, 2k], [0, 2k]} and Tk to get Tk.

Given i ∈ {1, . . . , k}, let Ni be the set of vertices of Tk whose distance (i.e.
number of edges) to rk in Tk is i− 1. In particular N1 = {rk}, Nk contains all
leaves of Tk and |Ni| = 2i−1. The following properties can be easily shown by
induction:

(i) The numbering of the vertices of Ni is {2k−i(2j − 1) : j = 1, . . . , 2i−1}.
(ii) Denote by p(v) the father of v in Tk. If v ∈ Ni with i ∈ {2, . . . , k} then

w([v, p(v)]) = 2k−i.
(iii) Given a tree T and a node v of T , we denote by Sub(T, v) the subtree of

T rooted at v. If v0 ∈ Ni0 with i0 �= k has the number 2k−i0(2j0 − 1) for
some j0 ∈ {1, . . . , 2i0−1} then the number of the vertices of Sub(Tk, v0)
are the integers between 2k−i0+1(j0 − 1) + 1 and 2k−i0+1j0 − 1, that is
{2k−i0+1(j0 − 1) + 1, . . . , 2k−i0+1j0 − 1}.

Let us prove that the strategy profile induced by Tk is a Nash equilibrium.
By construction a vertex v of Tk can be linked to any vertex except those of
Sub(Tk, v) (otherwise v is not connected to r anymore). So, assume that v ∈ Ni0

has number 2k−i0 (2j0 − 1) for some i0 ∈ {1, . . . , k} and j0 ∈ {1, . . . , 2i0−1}. By
Property (iii), we know that the two vertices v0 and v1 closest to v are numbered
2k−i0+1(j0 − 1) and 2k−i0+1j0 respectively. Thus, we deduce that w([v, v0]) =
|2k−i0(2j0 − 1) − 2k−i0+1(j0 − 1)| = 2k−i0 and w([v, v1]) = |2k−i0(2j0 − 1) −
2k−i0+1j0| = 2k−i0 . By Property (ii), these distances are equals to w([v, p(v)]).
Finally, by observing that the distance of rk (numbered 2k−1) to r is equal to
the distance of rk to 2k, we conclude that Tk is a Nash equilibrium. Now, using
Properties (i) and (ii), we deduce that the total weight of Tk is 2k + 2k−1 +∑k

i=1 |Ni|2k−i = 2k + 2k−1 + (k − 1)2k−1 = (k + 2)2k−1. Then the price of
anarchy of the min sst-game is at least

(
(k+2)2k−1

)
/2k = (k+2)/2 = 1+ log n

2
since n = 2k. ��

Before giving an upper bound on the PoA of the min sst-game we prove an
intermediate result which is useful in the subsequent proof.
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Lemma 1. Given an oriented tree T = (V,E) rooted at r on n + 1 vertices,
and for any subset V ′ = {v1, . . . , v2p+1} ⊆ V \ {r} of 2p + 1 vertices (hence,
2p + 1 ≤ n), one can exhibit p + 1 edge disjoint unoriented paths pathi for
i = 1, . . . , p+ 1 in T such that one path, say pathp+1, is a path from vj to r for
j ≤ 2p+ 1 whereas the endpoints set of the p other paths is exactly V ′ \ {vj}.

Let us return to the PoA of the min sst-game.

Theorem 2. When the triangle inequality holds, the PoA of the min sst-game
is at most �logn�+ 1 + 2

n .

Proof. Let σ be a Nash equilibrium while σ∗ denotes a social optimum. We
suppose that the players are sorted by decreasing cost, i.e. c1(σ) ≥ · · · ≥ cn(σ)
where n = |N |. In order to keep simple, we assume that n is odd. We mainly
prove the following property:

∀p = 0, . . . ,
n− 1

2
,

2p+1∑
i=p+1

ci(σ) ≤
n∑

i=1

ci(σ∗) (1)

Suppose that (1) holds and replace p by 2j − 1. One has
∑2j+1−1

i=2j ci(σ) ≤∑n
i=1 ci(σ

∗) and the result follows:

n∑
i=1

ci(σ) ≤
�log n	−1∑

j=0

2j+1−1∑
i=2j

ci(σ) +
n∑

i= n+1
2

ci(σ) ≤ (�log n�+ 1)
n∑

i=1

ci(σ∗)

If n is even then we conduct the same proof on the n − 1 first players and we
use the fact that n

2 cn(σ) ≤
∑n−1

i= n
2
ci(σ) ≤

∑n
i=1 ci(σ

∗). Then it suffices to prove
inequality (1).

Given p ∈ {0, . . . , n−1
2 }, let Vp be the 2p + 1 players with largest costs, i.e.

Vp = {1, . . . , 2p+ 1}. Let T ∗ be the tree induced by σ∗. The total weight of T ∗

is denoted by OPT ; it is equal to
∑n

i=1 ci(σ
∗). We know from Lemma 1 with

input Vp that one can find p+1 edge-disjoint paths in T ∗. W.l.o.g., assume that
these paths are path∗(π(2i − 1), π(2i)) for i = 1, . . . , p and path∗(π(2p + 1), r)
where π is a permutation of Vp. We deduce:

p+1∑
i=1

weight∗(π(2i− 1), π(2i)) ≤ OPT. (2)

By the triangle inequality, we also get:

w([π(2i − 1), π(2i)]) ≤ weight∗(π(2i− 1), π(2i)) (3)

for i = 1, . . . , p and

w([π(2p+ 1), r]) ≤ weight∗(π(2p+ 1), r). (4)
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Using Property 2 we have:

min{cπ(2i−1)(σ), cπ(2i)(σ)} ≤ w([π(2i− 1), π(2i)]) for i = 1, . . . , p (5)

Using Property 1, the cost of player π(2p+ 1) is less than w([π(2p+ 1), r]) if
she is connected to r via another player in σ. Therefore

cπ(2p+1)(σ) ≤ w([π(2p+ 1), r]) (6)

Since players are numbered by decreasing cost, we have
2p+1∑

i=p+1

ci(σ) ≤
p∑

i=1

min{cπ(2i−1)(σ), cπ(2i)(σ)} + cπ(2p+1)(σ). (7)

Summing up inequalities (5) for i = 1, . . . , p and adding inequality (6) we get:
p∑

i=1

min{cπ(2i−1)(σ), cπ(2i)(σ)} + cπ(2p+1)(σ) ≤
p∑

i=1

w([π(2i − 1), π(2i)])

+w([π(2p+ 1), r]) (8)

Finally, using inequalities (7), (8), (2),(3) and (4), we obtain inequality (1), that
is
∑2p+1

i=p+1 ci(σ) ≤ OPT . ��
Therefore the PoA of the min sst-game belongs to Θ(log n). One can generalize
the min sst-game to the case where the social cost is defined as

∑n
i=1(ci(σ))α

(problem denoted by min sst-game (α) in the following). Here α is a constant
greater than 1 such that dα is the minimum power to transmit a message at
distance d [13].

Theorem 3. For any α ≥ 1, the PoA of the min sst-game (α) is upper bounded
by nα−1(�logn�+ 1 + 2

n ).

The PoA according to the depth of an optimum tree. We propose an
alternative bound on the PoA of the min sst-game. We need some notations
and two intermediate results to show the result.

Let T be an oriented tree rooted at r in the following definitions. Given i ∈ N ,
let Ti be the subtree of T rooted at i. Let V (T ) be the set of vertices spanned
by T . The weight of T , denoted by w(T ), is defined as

∑
e∈T w(e). The depth of

T , denoted by depth(T ), is defined as maxi∈N{|pathT (i, r)|} where pathT (i, r)
is the path (i.e. set of edges) between i and r in T . The level of i ∈ N in T ,
denoted by �(T , i), is defined as |pathT (i, r)|. Given N ′ ⊆ N , let f(T , N ′) be a
node of N ′ with minimum level in T , i.e. f(T , N ′) = argmini∈N ′{�(T , i)}.
Lemma 2. We are given a spanning tree T of G = (V,E) rooted at r, a span-
ning tree T induced by a Nash equilibrium σ, a player i ∈ N and H ⊆ V (Ti)\{i}
such that ∀a, b ∈ H, a /∈ Tb and b /∈ Ta. Let i∗ be the element of H ∪ {i} with
minimum level in T , i.e. i∗ = f(T,H ∪{i}). If the triangle inequality holds then⎛⎝ ∑

j∈H∪{i}
cj(σ)

⎞⎠− ci∗(σ) ≤ 2

⎛⎝∑
j∈H

w([i, j])

⎞⎠− w([i, i∗]).
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Proposition 2. We are given a spanning tree T of G = (V,E) rooted at r, a
spanning tree T induced by a Nash equilibrium σ and i ∈ N (i.e., i �= r). Let
i∗ = f(T, V (Ti)). If the triangle inequality holds then∑

j∈V (Ti)

cj(σ) − ci∗(σ) ≤ (depth(Ti) + 1)w(Ti)− w([i, i∗]).

Now we are able to prove that the PoA is upper bounded by the depth of a
minimum weight spanning tree rooted at r (denoted by d∗ in the following). For
instance the case d∗ = 1 is a direct consequence of Property 1.

Theorem 4. When the triangle inequality holds, the PoA of the min sst-game
is at most d∗.

Proof. Let T ∗ be a minimum weight spanning tree rooted at r with depth d∗.
T ∗ is induced by a social optimum σ∗. Let T be the tree induced by a Nash
equilibrium σ. Denote by 1, . . . , k the sons of r in T ∗, i.e. {i ∈ N : [i, r] ∈ T ∗} =
{1, . . . , k}. Proposition 2 for any i ∈ {1, . . . , k} gives∑

j∈V (T ∗
i )

cj(σ) ≤ (depth(T ∗
i ) + 1)w(T ∗

i )− w([i, i∗]) + ci∗(σ) (9)

where i∗ = f(T, V (T ∗
i )). Using Property 1 and the triangle inequality we obtain

ci∗(σ) ≤ w([r, i∗]) ≤ w([r, i]) + w([i, i∗]). Then inequality (9) becomes:∑
j∈V (T ∗

i )

cj(σ) ≤ (depth(T ∗
i ) + 1) (w(T ∗

i ) + w([r, i])) (10)

Using depth(T ∗
i ) + 1 ≤ depth(T ∗) and summing up inequality (10) for i = 1 to

k we get:

k∑
i=1

∑
j∈V (T ∗

i )

cj(σ) ≤ depth(T ∗)
k∑

i=1

(w(T ∗
i ) + w([r, i]))

∑
j∈N

cj(σ) ≤ depth(T ∗)w(T ∗) = depth(T ∗)
∑
j∈N

cj(σ∗). ��

5 The Max sst-Game and the Bottleneck sst-Game

In contrast with the previous section we do not suppose that the triangle inequal-
ity holds. Let us begin with the max sst-game. It is noteworthy that the proof
of Theorem 1 also works for the max sst-game. Then any Nash equilibrium of
the max sst-game is strong. Again we only study the PoA since PoA=SPoA.

Theorem 5. The PoA of the max sst-game is 1/∆∗ where ∆∗ is the maximum
degree of a player node in a maximum cost spanning tree.
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Proof. We know that w([i, j]) ≤ max{ui(σ), uj(σ)} for any pair of players (i, j)
(the property is similar to Property 2). Moreover w([i, r]) ≤ ui(σ) holds for all
i ∈ N (the property is similar to Property 1). We use these inequalities for each
edge of the optimal tree as follows.

S(σ∗) :=
∑

{i∈N :σ∗
i �=r}

w([i, σ∗i ]) +
∑

{i∈N :σ∗
i =r}

w([i, r])

S(σ∗) ≤
∑

{i∈N :σ∗
i �=r}

max{ui(σ), uσ∗
i
(σ)} +

∑
{i∈N :σ∗

i =r}
ui(σ)

A player’s utility may appear several times in the upper bound but at most
∆∗ times. Hence, S(σ∗) ≤ ∆∗∑

i∈N ui(σ) = ∆∗S(σ) and PoA= S(σ)/S(σ∗) ≥
1/∆∗. Tight examples (with and without the triangle inequality) exist. ��

Theorem 6. The PoA of the bottleneck sst-game is 1.

Proof. Let σ∗ (resp. σ) be a strategy profile which maximizes the social welfare
(resp. a Nash equilibrium). Let B = {i ∈ N : ui(σ) < ui(σ∗)} be the players
whose utility is suboptimal. Denote by h(i) the number of edges which compose
the unique path between node i and the source r along the tree induced by σ∗.
Let i∗ = argmin{h(i) : i ∈ B} (ties are arbitrarily broken).

If h(i∗) = 1 then ui∗(σ |i∗ r) = ui∗(σ∗). However ui∗(σ) ≥ ui∗(σ |i∗ r)
always holds because σ is a Nash equilibrium. We get ui∗(σ) ≥ ui∗(σ∗) which
is in contradiction with i∗ ∈ B. Therefore h(i∗) > 1. Let j∗ ∈ N be such that
σ∗i∗ = j∗. By definition, we have

ui∗(σ∗) = min{uj∗(σ∗), w([i∗, j∗])} (11)

We know that j∗ /∈ B because h(j∗) < h(i∗). We deduce

uj∗(σ∗) ≤ uj∗(σ) (12)

Moreover ui∗(σ |i∗ j∗) = −∞ since by (11) and (12) we have

ui∗(σ∗) ≤ min{uj∗(σ), w([i∗, j∗])} = ui∗(σ |i∗ j∗).

Now, since i∗ ∈ B, we deduce ui∗(σ |i∗ j∗)) ≥ ui∗(σ∗) > ui∗(σ) would contradict
the fact that σ is a Nash equilibrium. Then i∗ ∈ visited(j∗, r) implies

uj∗(σ) ≤ ui∗(σ) (13)

Using inequalities (11), (12) and (13), we get ui∗(σ∗) ≤ ui∗(σ) which is in con-
tradiction with i∗ ∈ B. Then B must be empty and ui(σ) ≥ ui(σ∗) holds for all
i ∈ N . The result follows since S(σ∗) ≥ S(σ) =

∑
i∈N ui(σ) ≥

∑
i∈N ui(σ∗) =

S(σ∗). ��

Corollary 1. The SPoA of the bottleneck sst-game is 1 and any Nash equilib-
rium is a strong equilibrium.
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6 Concluding Remarks

We prove that a Nash equilibrium is a strong equilibrium for all games under
consideration. Then, is cooperation inefficient? On the one hand cooperating
with a player who depends on you to be connected (i.e. you are on her path
to r) can be profitable. On the other hand cooperating with a player who does
not depend on you to be connected (i.e. you are not on her path to r) is never
profitable. Since two players cannot mutually depend on the other to connect to
r, cooperation is unlikely.

We study three variants of a strategic spanning tree game but the focus is
on the min sst-game. The gap between the lower bound (1 + (log n)/2) and the
upper bound (�log n� + 1 + 2/n) is quite narrow but it is certainly possible to
give a better analysis of the upper bound. The same goes for Theorem 3 (when
the social cost of the min sst-game is

∑
i∈N (ci(σ))α), we believe that a more

accurate upper bound can be derived. We were not able to find tight examples
for Theorem 4 (except when d∗ = 2) and believe that the upper bound d∗ can
be improved.
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Abstract. We study stochastic submodular maximization problem with
respect to a cardinality constraint. Our model can capture the effect of
uncertainty in different problems, such as cascade effects in social net-
works, capital budgeting, sensor placement, etc. We study non-adaptive
and adaptive policies and give optimal constant approximation algo-
rithms for both cases. We also bound the adaptivity gap of the problem
between 1.21 and 1.59.

1 Introduction

The problem of maximizing submodular functions with respect to known con-
straints is a very well-studied problem in operations research and computer sci-
ence. A function f : Rn → R is submodular if for all x, y ∈ Rn:

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y)

where x∨y and x∧y denote the component-wise maximum and the component-
wise minimum of x and y, respectively. If f is twice differentiable, then sub-
modularity is equivalent to the condition ∂2f

∂xi∂xj
≤ 0, where xi and xj are any

two coordinates of x [17]. One may imagine the function f on the domain of
0/1-vectors as a set function where f(S) = f(x), xi = 1 whenever i ∈ S, and
xi = 0 otherwise. In other words, a set function f : 2N → R is submodular if for
any two subsets S, T ⊆ N :

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T )

A wide range of optimization problems that arise in the real world can be
modeled as maximizing submodular functions with respect to some (usually car-
dinality) constraints. One instance is the problem of viral marketing and maxi-
mizing influence through the network [9,14], where the goal is to choose an initial
“active” set of people, so as to maximize the spread of an innovation or behavior
in a social network. It is well-known that under many models of influence prop-
agation in networks (e.g. decreasing cascade model [9]), the expected size of the
final cascade is a submodular function of the set of initially activated people.
Also, due to some budget limitations the number of people that we can activate
in the beginning is bounded. Hence, the maximizing influence problem can be
seen as a maximizing submodular function problem subject to some cardinality
constraint.
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Another example is the capital budgeting problem which is to find the opti-
mal investment of capital among different projects with a limited budget. There
is a set of projects and one wants to invest on a group of them that maxi-
mizes his expected profit while not exceeding his budget. This problem has been
studied extensively under various assumptions on the utility of the investor and
dependencies among the projects [20,21,13,2]. Naturally, the utility functions
are non-negative and monotone. Also, the risk-averse investors are characterized
by their submodular utility functions. Therefore, such investors need to solve a
submodular maximization problem to find their best bet.

Yet another example is the problem of optimal placement of sensors for envi-
ronmental monitoring [11,12] where the objective is to place a limited number of
sensors in the environment in order to most effectively reduce uncertainty in ob-
servations. It is known that the efficiency of a subset of sensors is a submodular
set function.

For the problem of maximizing submodular set functions subject to a cardinal-
ity constraint, the celebrated result of Cornuejols et al. [4] and Nemhauser et al.
[15] shows that for nonnegative monotone submodular functions the greedy al-
gorithm that at each step chooses an element with the maximum marginal value
gives a (1− 1

e ≈ 0.632)-approximation of the optimal solution. This problem has
also been studied for more complicated domains. In particular, for maximizing
a submodular function over a matroid (note that the cardinality constraint is a
special case of this) a recent result by Vondrak [19] shows that it is still possible
to get a 1− 1

e -approximation.
However, in practice one must deal with the stochasticity caused by the uncer-

tain nature of the problem, the incomplete information about the environment,
etc. For instance, in viral marketing some people in the initial set might not
adopt the behavior. Another example is the capital budgeting problem where
some projects taken by an investor may fail (in the beginning) due to some un-
expected events in the market. Also, in environmental monitoring some sensors
might not work properly because of bad weather or inconsistent connections.

All these possibilities motivate the problem of stochastic submodular maxi-
mization. In the stochastic setting, the outcome of the elements in the selected
set are not known in advance; when they are picked, with some known prob-
ability they might remain in the set or not. One may think of probability pi

corresponding to each element i, and then the expected value of selecting a set
S will be the expected value of function f over set Ŝ derived from S by removing
each element i independently with probability 1 − pi. In fact, in this paper we
will consider a more general version of this problem in which the stochasticity
of the problem converts the set S into a vector in the continuous space via some
known probability distributions. For the exact definitions see Section 2.

The main difference between the non-stochastic and stochastic problems is
that the latter can benefit from adaptivity. An adaptive policy can use the out-
come of the steps taken so far to optimize the decisions it is going to make in the
future. On the other hand, the actions chosen by a non-adaptive policy are in-
dependent of the outcome of the other actions. Therefore, a non-adaptive policy
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is equivalent to a predetermined subset of elements. Although non-adaptive poli-
cies may not perform as well as adaptive ones, they are particularly useful when
it is difficult or time-consuming to discover the outcome of an action.

Our Results: In Section 3 we first show that the expected value of a submodular
set function in the stochastic setting is still a submodular set function. This
immediately leads to a (1− 1

e )-approximation of the optimal non-adaptive policy.
Then, we consider the adaptive policy that at each step chooses an element
with the maximum expected marginal value, conditioned on the outcome of the
previous elements. We show that the approximation ratio of this greedy policy
with respect to the optimal adaptive policy is 1− 1

e .1 We also give a lower bound
and an upper bound on the adaptivity gap of the problem. The adaptivity gap
is defined as the maximum ratio between the expected value of the optimal
adaptive and non-adaptive policies [5]. As a lower bound, we prove that the
adaptivity gap of stochastic submodular maximization problem is at least 1.21
(see Section 2.1). On the flip side, in Section 4 we show that the adaptivity gap
is bounded from above by e

e−1 ≈ 1.59, i.e. there exists a non-adaptive policy
which achieves at least 1

1.59 fraction of the value of best adaptive policy. We
also show that a non-adaptive policy within a factor of (e−1

e )2 ≈ 1
2.51 of the

optimum adaptive policy can be found in polynomial time. In order to prove
this bound, we generalize some of the techniques developed by Vondrák [18].
These extensions could be of independent interest.

1.1 Related Work

We first briefly overview some parts of the literature on (non-stochastic) sub-
modular optimization. Then, we explain some of the works that study stochastic
settings similar to ours.

Cornuejols et al. [4] proved that a simple greedy algorithm gives a (1 − 1
e )-

approximation for the problem of maximizing monotone submodular set
functions subject to capacity constraints. Later, Feige [6] proved that it is not
possible to improve this ratio unless NP ⊂ TIME(nO(log log n)). For maximizing
non-monotone submodular, recently Feige et al. [7] gave a constant approxima-
tion algorithm. Another well-studied submodular maximization problem is the
problem of allocating resources to agents with submodular utilities, for which
several interesting approximation algorithms have been developed, see [18]. In
this paper, we use some of these techniques to bound the adaptivity gap.

Goemans and Vondrák [8] consider the problem of stochastic covering. In this
problem the goal is to cover all elements of a target set using minimum number
of subsets. The subsets are random variables and their probability distributions
are given. They propose adaptive and non-adaptive policies for the problem.
They also observe that the adaptivity gap is not constant.

Chan and Farias [3] study a generalization of the stochastic maximum k-cover
problem where the sequence of elements arrive according to a stochastic process
1 This is also independently observed by Chan and Farias [3].
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and utility functions may vary over time. They show that under some conditions,
a myopic policy is a 2-approximation of the optimal adaptive policy.

In a recent work, Streeter and Golovin [16] study an online job scheduling
problem in a setting that the cost of jobs is given by a submodular function.
The goal is to cover as many jobs as possible subject to a budget constraints.
They take the regret minimization approach and present approximate optimal
policy.

2 Problem Definition

We define the following abstraction for the stochastic submodular maximization
problem. A set A = {X1, · · · , Xn} of independent random variables is given.
After choosing Xi, its actual value (outcome of an element), denoted by xi, is
discovered. We assume that xi ∈ [0, 1]. Let S ⊆ A be a subset of variables. Also,
let vector s = < x̂1, · · · , x̂n > denote the realization of set S, where x̂i = xi for
i ∈ S and x̂i = 0 for i /∈ S. The value obtained by choosing the set S after the
realization is equal to f(s), where f : [0, 1]N → R+ is a submodular function.

Let gi be the probability distribution of random variable Xi. For every subset
S ⊂ A, it defines a probability measure gS : [0, 1]n → R, which represents the
probability density function of observing s while selecting S:

gS(ds) =
∫

x∈ds

∏
i∈S

gi(dxi)

Also, gS(ds) is defined to be zero if there exist i such that si �= 0, i /∈ S. Now
define function Fg : [0, 1]n → R+ as the expected value obtained by choosing set
S, i.e.,

Fg(S) =
∫

s∈[0,1]n
f(s)gS(ds) (1)

Our goal is to choose a set S of size at most k which maximizes Fg(S).

max
S⊂A:|S|≤k

Fg(S).

For simplicity, we assume one cannot choose an element of A multiple times.2

For this problem, we study two types of policies: adaptive and non-adaptive.
A non-adaptive policy is represented by a fixed subset of A. An adaptive policy
uses the realized value of the previously chosen elements to determine the next
element in the subset. In order to compare the value of these optimal policies,
we study the adaptivity gap of the problem. The adaptivity gap is defined as the
ratio between the expected value of optimal adaptive and non-adaptive policies.
2 This assumption is not necessary for our results, and is made for sake of simplicity.

One can create k independent copies of each random variable to simulate multiplicity.
This is in contrast with the set cover problem where allowing to chose multiple copies
of an element significantly reduces the adaptivity gap [8].
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One issue that arises in the algorithmic discussions of this paper and many of
the related works is computing the value of functions similar to Fg. We assume
that we are given an oracle which computes these values up to a desired degree of
accuracy. In fact, it can be shown that in many interesting cases such an oracle
can be built efficiently. Two most important cases are when the probability
distribution functions (gj ’s) are constant Lipschitz continuous, or when their
support is a polynomial size set of discrete values. Therefore, from now on, all
of our results will involve an arbitrary small error term of ε that we will not
mention explicitly.

In the next section, we illustrate the problem by giving an example. We also
present a non-adaptive and an adaptive policy for this example.

2.1 An Example: Stochastic Maximum k-Cover

A special case of stochastic submodular maximization is the stochastic maximum
k-cover problem. Given a collection F of subsets of {1, 2, · · · , n}, the max k-cover
problem is defined as finding k subsets from F such that their union has the
maximum cardinality [6]. In the stochastic version, the subset that an element
of F would cover becomes known after choosing the element. In this section,
we define an instance of this problem. We also use this example to give a lower
bound on the adaptivity gap.

The instance we consider in this section is as follows: A ground set G =
{1, 2, · · · , 2n} and a collection F = {C1, C2, · · · , C2n} of its subsets are given.
For 1 ≤ i ≤ n, Ci = {1, 2, · · · , n} with probability 1

n and is the empty set with
probability 1 − 1

n . For n + 1 ≤ i ≤ 2n, Ci = {i} with probability 1
e and is the

empty set with the remaining probability. The goal is to cover the maximum
number of elements in G by selecting at most n subsets in C.

Lemma 1. For large enough values of n, the optimal non-adaptive policy is to
select S = {C1, C2, · · · , Cn}. Also, the expected value of this policy is n(1− 1

e ).

Proof. Consider a subset S′ selected by a non-adaptive policy. Let q the fraction
of elements of S′ that are in {C1, C2, · · · , Cn}, i.e., q = |S′∩{C1, C2, · · · , Cn}|/n.
Such a policy covers the elements of {1, 2, · · · , n} with probability 1− (1− 1

n )nq.
Also, in expectation, S′ covers at most n

e (1−q) elements from set {n+1, · · · , 2n}.
Therefore, the expected number of covered elements is

n(1− (1 − 1
n

)nq) +
n

e
(1− q)

We can approximate the expression above by n(1 + 1
e − (1

e )q − q
e) with ar-

bitrary high precision for large enough n. This expression is increasing in q.
Therefore, for the optimum non-adaptive policy we have q = 1 or equivalently
S = {C1, C2, · · · , Cn}.

Now consider the following adaptive policy that at each step chooses the elements
with maximum marginal value: At step i, 1 ≤ i ≤ n, choose set Ci until one of
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these sets covers {1, · · · , n}. After that, pick a set from {Cn+1, · · · , C2n} until
the number of chosen sets reaches n.

The following lemma gives a lower bound on the number of elements covered
by the adaptive policy.

Lemma 2. For large enough n, the expected number of elements covered by the
adaptive policy describe above is n(1− 1

e + 1
e2 ).

Proof. The probability that Ci covers the first n elements is 1
n (1 − 1

n )i−1. If Ci

covers the first n elements, the policy will choose n−i subsets fromCn+1, · · · , C2n,
each covers a single element with probability 1

e . Therefore, the expected number
of covered elements is:

n∑
i=1

[
1
n

(1− 1
n

)i−1 × (n+ (n− i)1
e
)] = (1 +

1
e
)

n∑
i=1

(1− 1
n

)i−1 − 1
en

n∑
i=1

i(1− 1
n

)i−1

≈ (1 +
1
e
)n(1 − 1

e
)− 1

en

[
n2(1− (1 − 1

n
)n)− n2(1− 1

n
)n

]
≈ n

[
(1 − 1

e2
)− 1

e
(1− 2

e
)
]

= n(1− 1
e

+
1
e2

).

which completes the proof of the lemma.

By combining the results of Lemmas 1 and 2 we have the corollary below.

Corollary 3. The adaptivity gap of stochastic maximum k-cover is at least:

1−e−1+e−2

1−e−1 > 1.21

3 Near-Optimal Non-adaptive and Adaptive Policies

In this section we first present non-adaptive policy for the stochastic submod-
ular maximization problem. Later, we give an adaptive policy. A non-adaptive
policy is represented by a fixed subset S ⊆ A. The expected value of the policy
is equal to Fg(S). Therefore, finding the optimal non-adaptive policy is equiv-
alent to finding set S which maximizes Fg(S). Note that the maximum k-cover
problem is a special case of our problem. Therefore, it is not possible to find
an approximation ratio better than 1− 1

e for the optimal adaptive policy unless
NP ⊂ TIME(nO(log log n)) [6]. In this section, we show that there exists a policy
that is implementable in polynomial time and its value is within a 1 − 1

e ratio
of the optimal non-adaptive policy. For the ease of notation, when it is clear
from the context, we use F (S) instead of Fg(S). Note that F (S) is a convex
combination of a set of monotone submodular functions. Therefore, we have the
following lemma.

Lemma 4. The function F (S) is monotone and submodular in S.
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Submodularity of F , immediately leads to the following result [4,15].

Corollary 5. Consider the non-adaptive greedy policy that at each step chooses
the element with maximum marginal increase in value. The approximation ratio
of this policy with respect to the optimal non-adaptive policy is at least 1− 1

e .

Now we present an adaptive greedy policy with approximation ratio 1− 1
e , with

respect to the optimal adaptive policy. It is easy to see that finding maximum
k-cover can be reduced to designing an adaptive policy. Therefore, it is not
possible to improve this ratio unless NP ⊂ TIME(nO(log log n)).

Theorem 6. Consider the adaptive greedy policy that at each step selects an
element with the maximum marginal value, conditioned on the realized value of
the previously chosen elements. The approximation ratio of the adaptive greedy
policy with respect to the optimal adaptive policy is 1− 1

e .

Before stating the proof, we describe some notations. For 1 ≤ i ≤ k, let Si be
the set of elements chosen by the greedy adaptive policy up to (and including)
step i . Define S0 to be the empty set. Also, let si denote the realization of Si.
The adaptive greedy policy at each step i chooses an element in

argmaxj∈A\Si−1
E[F (Si−1 ∪ j)|si−1]

Proof. The proof presented here is similar to the proof of Kleinberg et al.[10]
for submodular set functions. Let Tj be the set chosen by the optimal adaptive
policy up to step j. Also, denote the expected marginal value of the ith element
chosen by the greedy policy by ∆i, i.e.,

∆i = E[F (Si)|si−1]− f(si−1) = E[F (Si)− F (Si−1)|si−1]

Consider a realization si of Si. Because the realization of each element of Tj is
independent from other elements, and f is submodular, we can write F (Tj∪Si|si)
as the sum of a set of monotone submodular functions. Therefore, F (Tj ∪ Si|si)
is monotone submodular with respect to j. Hence, for T = Tk we have:

E[F (T )|si] ≤ E[F (T ∪ Si)|si] ≤ E[F (Si) + k(F (T1 ∪ Si)− F (Si))|si]

Because ∆i ≥ E[F (T1 ∪ Si)− F (Si)|si] we get,

E[F (T )|si] ≤ E[F (Si) + k∆i+1|si]
Since the inequality above holds for every history, adding up all such inequal-

ities, for all i, 0 ≤ i ≤ k − 1, we have:

E[F (T )] ≤ E[F (Si)] + kE[∆i+1]
= E[∆1 + · · ·+∆i] + kE[∆i+1]

We multiply the ith inequality, 0 ≤ i ≤ k− 1, by (1− 1
k )k−1−i, and add them

all up. The sum of the coefficients of E[F (T )] is equal to

k−1∑
i=0

(1− 1
k

)k−1−i =
k−1∑
i=0

(1− 1
k

)i =
1− (1 − 1

k )k

1− (1− 1
k )

= k(1− (1− 1
k

)k) (2)
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One the right hand side, the sum of the coefficient of E[∆i], 1 ≤ i ≤ k, is
equal to

k(1− 1
k

)k−i +
k−1∑
j=i

(1− 1
k

)k−1−j = k(1− 1
k

)k−i +
k−i−1∑

j=0

(1− 1
k

)j

= k(1− 1
k

)k−i + k(1 − (1− 1
k

)k−i)

= k (3)

Therefore, by inequalities (2) and (3) we get

E[F (T )] ≤ (1− (1− 1
k

)k)
k∑

i=1

E[∆i] = (1− (1− 1
k

)k)E[F (Sk)]

Therefore, the approximation ratio of the greedy policy is at least 1− 1
e .

It is easy to see from the proof above that if at every step, a policy chooses an
element which is an α approximation of the maximum marginal value, then it
achieves approximation ratio 1− (1

e )α.

4 Adaptivity Gap: An Upper Bound of 1.59

Our concern in this section will be to set an upper bound for the adaptivity
gap. In other words, we want to have a lower bound on the approximation ratio
of non-adaptive policies against the best adaptive policy. We establish such a
bound through the following theorem:

Theorem 7. There exists a non-adaptive policy that approximates the optimal
adaptive policy within a factor of e−1

e ≈ 1
1.59 . Moreover, There exists a poly-

nomial time non-adaptive policy with the approximation ratio at least ( e−1
e )2 ≈

1
2.51 .

The proof of the above theorem is inspired by the techniques in Section 3.5
of [18]. For the sake of consistency, we will use the same notation as [18] wherever
possible. We generalize these techniques by extending the domain of the function
Fg to real vectors. We will define a function f+ which sets an upper bound on
the performance of all adaptive policies and also lies within a constant factor (at
most e

e−1 ) of the maximum value of Fg. As we will see, this implies that for every
adaptive policy Adapt there exists a non-adaptive policy which gains at least a
fraction of e−1

e of the expected value gained by Adapt. Also, Corollary 5 shows
that the greedy non-adaptive policy approximates the optimal non-adaptive by
a factor of e−1

e . Hence, it will be within a factor of ( e−1
e )2 of the best adaptive

policy.
Here comes our basic observation about adaptive policies. Consider an arbi-

trary adaptive policy Adapt. Any such policy decides to choose a sequence of
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elements, where the decision about which element to choose at any step might
depend on the realized values of the previously chosen elements. Therefore, for
any realization of outcomes (i.e. realized values of elements) a distribution on the
sequence of elements will be implied by Adapt

3. This distribution corresponds
to what Adapt does if it observes that specific realization. Any adaptive policy
can be described by a (possibly randomized) decision tree in which at each step
an element is being added to the current selection. Due to the constraints of the
problem, the height of the tree is k. Each path from the root to a leaf of this
tree corresponds to a subset with k elements and occurs with some certain prob-
ability. Clearly, these probabilities sum up to one. Let yi be the probability that
element i is chosen by Adapt. Also, let βs be the probability density function
for the outcome s. Then, we have the following properties:

1.
∫

s

βs = 1.

2. ∀s : βs ≥ 0.

3. ∀i, dxi :
∫

s,si∈dxi

βsds = yigi(xi)dxi.

The first two properties hold because β defines a probability measure on the
space of all outcomes. The third property is due to the fact that the left hand
side is in fact computing the probability that the element i is chosen and its
observed value is xi.

Now, we are ready to define the function f+ : [0, 1]n → R which establishes
an upper bound on the performance of any adaptive policy. The definition of
f+ is motivated by the above observation about all the possible outcomes of an
arbitrary adaptive policy. It can be seen as the generalization of function f+

in [18] to the continuous domain. For any vector y ∈ [0, 1]n we define f+(y) as
follows:

sup
α

{∫
s

αsf(s)
}

where the supremum is taken over all probability measures α defined on [0, 1]n

for which
∀i, dxi :

∫
s,si∈dxi

αsds = yigi(xi)dxi.

Now, we can bound the performance of Adapt using function f+. Consider
all possible realizations of elements under Adapt. Let yi and βs be defined as
before. Then, the expected value of Adapt is

∫
s
βsf(s). On the other hand, by

the construction of β, it is one of the possibilities that can be used as α in the
“sup” term in the definition of f+(y). Therefore, the performance of the policy
is bounded by f+(y) and we have the following lemma.

Lemma 8. The expected value of the adaptive policy Adapt is at most f+(y).

3 The reason that we mentioned a distribution (and not just a specific sequence) is
that Adapt may be a randomized policy by itself. But as we will see, it does not
affect our arguments.
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Now, let Pk be the matroid polytope {v : 1 · v ≤ k, v ≥ 0}. Any valid policy is
limited to select at most k elements, i.e., y ∈ Pk. Therefore, the desired upper
bound on the optimal adaptive policy can be obtained as a corollary of Lemma 8.

Corollary 9. The expected value of the optimal adaptive policy is bounded from
above by maxy∈Pk

{f+(y)}.

We also define the extension Fg : [0, 1]n → R. For any vector y ∈ [0, 1]n, Fg(y) is
the expected value of its realized outcome ŷ when yi is set to be 1 with probability
yi and 0 otherwise. More formally, if N = {1, 2, · · · , n} then

Fg(y) = E[Fg(ŷ)] =
∑
R∈N

∏
i∈R

yi

∏
i/∈R

(1− yi)Fg(R).

To complete the proof of Theorem 7 we need to prove that there exists a
0/1 vector w ∈ Pk such that the value of Fg(w) is a good approximation of
the optimum value of f+. We will do that in two steps. First, we show that
for any vector y, the values of Fg(y) and f+(y) are within a constant of each
other. Then, in Lemma 11 we will show that there exists a proper 0/1 vector w
so that Fg(w) ≥ Fg(y). Remember that in fact Fg(w) = Fg(S) for the subset
S corresponding to entries equal to 1 in w. It proves that the ratio of the best
non-adaptive and adaptive policy is at least 1 − 1

e . For the second part of the
result we show that a 0/1 vector w′ such that Fg(w′) ≥ (1 − 1

e )Fg(w) can be
found in polynomial time which provides an efficient way to find a non-adaptive
policy within a factor (1− 1

e )2 of the optimal adaptive policy.
The following lemma proves that the defined extension f+ cannot be too far

from F .

Lemma 10. For any monotone submodular function f and any vector y, Fg(y)
≥ (1 − 1

e )f+(y).

Proof. The proof might be viewed as of a generalization of the proof of Lemmas
3.7 and 3.8 in [18] to the continuous space. We define an auxiliary function
f∗ : [0, 1]n → R as the following:

f∗(y) = inf
z
{f(z) +

∑
j∈N

∫
sj>zj

gj(s)(f(zs(j))− f(z))dsj ,

where zs(j) is the vector z with its j-th entry changed to sj whenever sj > zj .
We prove that for any vector y, Fg(y) ≤ f+(y) ≤ f∗(y). The first inequality

follows directly from the definition of Fg and f+. To prove the second inequality,
note that for any feasible measure α and any vector z,∫

s

αsf(s)ds ≤
∫

s

αs[f(z) +
∑
j∈N

(f(zs(j))− f(z))]ds

≤ f(z) +
∑
j∈N

∫
sj>zj

gj(s)(f(zs(j))− f(z))dsj .
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The first inequality above holds due to submodularity of f and the second one
is a consequence of the definition of α. Also, observe that by plugging α = β in
this inequality we have f+(y) ≤ f∗(y).

Now, it is enough to prove that for all y, Fg(y) ≥ (1− 1
e )f∗(y). Similar to the

proof of Lemma 3.8 [18], for each j we define a Poisson clock Cj with rate yj . We
start with a vector z = 0. Once clock Cj sends a signal, a random variable x is
produced from distribution gj . Then, if zj < x, the value of zj will change to x.
By abuse of notation, we denote this new value by zx(j) and the value of vector
z at time t by z(t). One can observe that E[f(z(1))] ≤ Fg(y), using monotonicity
of f . On the other hand,

E[f(z(t+ dt))− f(z(t))|z(t) = z] =
∑

j

yjdt[
∫

x>zj

gj(x)(f(zx(j))− f(z))dx].

But the R.H.S. is at least (f∗(y)− f(z))dt, by the definition of f∗. Therefore,
the following bound can be derived on the derivative of E[f(z(t))]:

1
dt
E[f(z(t+ dt))− f(z)|z(t) = z] ≥ (f∗(y)− f(z))dt

⇒ d

dt
E[f(z(t))] ≥ (f∗(y)− E[f(z(t))])dt.

Solving the differential equation above, shows that E[f(z(t)) ≥ (1 − e−t)f∗(y).
Combining this with the fact that f+(y) ≤ f∗(y) and also that E[f(z(1)] ≤ Fg(y)
completes the proof of lemma.

The next lemma shows how to round the vector y to a proper 0/1 vector w.

Lemma 11. There exists a 0/1 vector w ∈ Pk such that ∀y : Fg(w) ≥ Fg(y).

Proof. The essential rounding tool for the proof is pipage rounding introduced
by [1]. In order to be able to use pipage rounding we need to prove some convexity
property on Fg. Define F y

ij = Fg(yij(λ)) where yij(λ) is a vector obtained by
adding λ to yi, subtracting λ from yj and leaving all other entries of y unchanged.
First, we show that F y

ij is a convex function of λ. For any y, the function Fg(y)
can be written as below.

Fg(y) =
∑

R∈N\{i,j}

∏
k∈R

yk

∏
k/∈R∪{i,j}

(1− yk)× [(1 − yi)(1 − yj)Fg(R) +

(1 − yi)yjFg(R+ j) + yi(1− yj)Fg(R+ i) + yiyjFg(R+ i+ j)].

Hence, we can write the second derivative of F y
ij in an explicit form:

∂2F y
ij

∂λ2 =
∑

R∈N\{i,j}

∏
k∈R

yk

∏
k/∈R∪{i,j}

(1 − yk)×

[−Fg(R) + Fg(R + i) + Fg(R + j)− Fg(R + i+ j)],

which is clearly non-negative due to submodularity of Fg.
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As a result of convexity of F y
ij , for any vector y ∈ Pk, the main result of [1]

ensures that Pipage rounding yields a 0/1 vector w inside Pk such that Fg(w) ≥
Fg(y). Hence, there exists such a vector w for which Fg(w) ≥ Fg(y) holds for all
y ∈ Pk.

Now, we are ready to prove Theorem 7.

Proof. [Theorem 7]. Lemma 8 shows that OPT = maxy∈Pk
f+(y) is an upper-

bound on the performance of the best adaptive policy. But from Lemma 10
we know that there exists a vector y∗ such that Fg(y∗) ≥ (1 − 1

e )OPT. On
the other hand, Lemma 11 implies that there exists a 0/1 vector w ∈ P such
that Fg(w) ≥ Fg(y∗) and hence, Fg(w) ≥ (1 − 1

e )OPT. Notice that Fg(w) is
in fact the expected value gained by a non-adaptive policy that selects the set
S corresponding to the vector w. Also, due to Corollary 5 greedy non-adaptive
policy obtains a value at least (1− 1

e )Fg(w) that will be at least (1− 1
e )2OPT.
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On Pure and (Approximate) Strong Equilibria
of Facility Location Games�
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Abstract. We study social cost losses in Facility Location games, where
n selfish agents install facilities over a network and connect to them, so
as to forward their local demand (expressed by a non-negative weight per
agent). Agents using the same facility share fairly its installation cost, but
every agent pays individually a (weighted) connection cost to the chosen
location. We study the Price of Stability (PoS) of pure Nash equilibria
and the Price of Anarchy of strong equilibria (SPoA), that generalize
pure equilibria by being resilient to coalitional deviations. For unweighted
agents on metric networks we prove upper and lower bounds on PoS,
while an O(ln n) upper bound implied by previous work is tight for non-
metric networks. We also prove a constant upper bound for the SPoA
of metric networks when strong equilibria exist. For the weighted game
on general networks we prove existence of e-approximate (e = 2.718 . . .)
strong equilibria and an upper bound of O(ln W ) on SPoA (W is the sum
of agents’ weights), which becomes tight Θ(ln n) for unweighted agents.

1 Introduction

We study Facility Location games played by n selfish agents residing on the
nodes of a network. Eash agent chooses strategically a certain network location
to connect and forward its local demand to (expressed by a non-negative weight
wi for agent i), so as to minimize its individual facility installation and (weighted)
connection costs to the chosen location. We use Shapley (fair) cost-sharing [1] for
facility installation costs; agents connecting to the same location v share facility
installation cost at v, so that each pays an amount proportional to the fraction
of total demand that it forwards to v. This game models Content Distribution
Network creation, and distributed selfish caching [2]. We study the social cost
(sum of individual agents’ costs) of stable network infrastructures, represented
by pure Nash equilibria and strong equilibria of the game. Strong equilibria -
introduced by Aumann in [3] - extend pure equilibria by being resilient to pure
coalitional deviations: no subset of agents can deviate so that all of its members
are better off. We prove bounds on the Price of Stability (PoS) of pure equilibria,
i.e. the cost of the cheapest equilibrium relative to the socially optimum cost [1],
and on the Price of Anarchy of strong equilibria (SPoA), the cost of the most
expensive strong equilibrium relative to the socially optimum cost [4].
� Center for Algorithmic Game Theory, funded by the Carlsberg Foundation, Denmark.
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Anshelevich et al. [1] first studied the Price of Stability for network design
games with fair cost sharing. In these games n agents wish to connect node pairs
in a network, by sharing fairly installation costs of links and paying individu-
ally link delays. The authors showed that for unweighted agents these games
are potential games (see [5]), hence they have pure equilibria. They proved log-
arthmic (in n) upper bounds on the PoS. Research thereafter was focused on
games without non-shareable delays. For weighted agents it was shown in [6] that
pure equilibria do not always exist. The authors studied approximate equilibria.
Albers [7] recently considered strong equilibria: though they do not always exist,
she showed that O(lnW )-approximate equilibria do exist (W is the sum of the
agents’ weights). She proved polylogarithmic upper and lower bounds on the
PoS and the SPoA in the weighted and the unweighted case. However, strong
equilibria in the context of (single-sink) unweighted network design games with
fair cost sharing were first studied in [8]. The authors gave topological character-
izations for the existence of strong equilibria and proved that SPoA = Θ(log n).
The Facility Location game is a special case of the model studied in [1], that is
interesting on its own right: it finds numerous applications and exhibits intrigu-
ing characteristics. It emboddies non-shareable delays explicitly and in a sense
specializes single-sink network design considered in [6,8]: augment the network
with a node t and set links (v, t) to have fairly shareable cost equal to the facility
opening cost at v. The original network links have a delay cost only. Then every
agent needs to choose at most two edges from the node it resides on, to t.

Results. For unweighted agents on metric networks we prove constant upper
and lower bounds on the PoS, by analyzing the social cost increase caused by
an iterative best response procedure. Strong equilibria do not always exist, but
their SPoA is constant upper-bounded when they do. For weighted agents on
general networks we prove that α-approximate strong equilibria exist for α ≥
e = 2.718 . . . (no subset deviation causes factor α improvement to all of its
members), and that their SPoA is at most α(1 + lnW ). This becomes Θ(lnn)
for unweighted agents on general networks. See [9] for additional results, omitted
proofs and technical details. Refer to [2,10,11] for related work on facility location
game models. [2] is similar to ours, but does not incorporate fair cost-sharing of
facility costs. [11] specializes the model of [1], but does not incorporate delays.

Definitions. The network will be a complete graph G(V,E), having each edge
(u, v) associated to a non-negative cost d(u, v). We consider a set A of n agents;
agent i resides on ui ∈ V and has a non-negative demand weight wi. The strategy
space of agent i is V : i chooses a location v ∈ V to receive service from. Opening
a facility at node v ∈ V costs βv. Denote a strategy profile (configuration)
by s = (s1, . . . , sn), si ∈ V . We define Ws(v) =

∑
i:si=v wi. The cost ci(s)

experienced by agent i in s is ci(s) = wi

(
d(ui, si) + βsi

Ws(si)

)
. Agent i pays a

fraction wi

Ws(si)
of the facility installation cost at si. We denote facility locations

specified in s by Fs ⊆ V . The social cost c(s) is:
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c(s) =
∑

i

ci(s) =
∑

i

wid(ui, si) +
∑

i

wiβsi

Ws(si)
=
∑

i

wid(ui, si) +
∑
v∈Fs

βv

We use W (I) for the sum of weights of agents in the set I. cI(s) is the social cost
of agents in I, and cv(s) is the social cost of agents connected to v ∈ V under s.

The unweighted Facility Location game is a potential game [5] specializing the
network design games of [1], and therefore has pure Nash equilibria reachable by
iterative best response performed by the players. For unweighted agents the PoA
of pure equilibria can be n, while the PoS upper bound of H(n) (n-th harmonic
number) from [1] is tight for non-metric networks [9].

Definition 1. For α ≥ 1, a strategy profile s is an α-approximate strong equilib-
rium if no subset of agents can perform a pure deviation, and each of its members
be better off by a factor more than α. If α = 1, s is a strong equilibrium [3,8].

2 Unweighted Agents on Metric Networks

We analyze evolution of an equilibrium through iterative best response executed
by the agents, when the initial configuration is the social optimum. The following
lemma charges any specific agent i a bounded amount of social cost increase
during the algorithm’s execution.

Lemma 1. Let As∗(v) be the subset of agents that are connected to v in s∗. For
any i ∈ As∗(v) that deviates from v during iterative best response let Ai

s∗(v) ⊆
As∗(v) be the subset of agents that have not yet deviated from v exactly before
the first deviation of i. Then we can charge i with a total increase contribution
to the social cost at most βv/|Ai

s∗(v)|, throughout the algorithm’s execution.

Proof. For simplicity let |Ai
s∗(v)| = ki(v). Clearly i ∈ Ai

s∗(v). Let us analyze
contribution of i to social cost increase during its first deviation. By deviating i
reduces its individual cost from ci(v) = xi(v)+ βv

ki(v) to ci(v′) = xi(v′)+
βv′

λi(v′) by
joining another facility node v′. xi(v) and xi(v′) is the connection cost payed by i
before and after its first deviation. λi(v′) is the number of agents sharing facility
cost at v′, including i. Since ci(v′) < ci(v), we get xi(v′)− xi(v) ≤ βv

ki(v) −
βv′

λi(v′) .
Let ∆sci(v) be the social cost difference caused by i. There are four cases:

1. ki(v) > 1, λi(v′) > 1: Then ∆sci(v) = xi(v′)− xi(v) ≤ βv

ki(v) −
βv′

λi(v′) .

2. ki(v) = 1, λi(v′) > 1: Then ∆sci(v) = −βv + xi(v′)− xi(v) ≤ − βv′
λi(v′) .

3. ki(v) > 1, λi(v′) = 1: Then ∆sci(v) = βv′ + xi(v′)− xi(v) ≤ βv

ki(v) .
4. ki(v) = 1, λi(v′) = 1: Then ∆sci(v) = βv′ − βv + xi(v′)− xi(v) ≤ 0.

Clearly the above hold in general for any agent deviating from any node v to
any node v′. Now we implement a charging procedure along with iterative best
response. Give all agents an initial label l(i) = i, before executing iterative best
response. The current label l(i) of i will denote the agent to which an increase
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caused by i is charged. Initialize ∆scl(i) = 0. For every facility node v ∈ Fs∗ and
every i ∈ As∗(v) initialize λl(i) = λi to a distinct value from {1, 2, . . . , |As∗(v)|}.
Charging is implemented by relabeling deviating agents in the following manner.
For an agent i that deviates from node v to node v′ set kl(i)(v) to the number
of agents connected to v exactly before deviation of i. If kl(i)(v) = λl(i)(v) no
relabeling is needed. Otherwise there must be some j �= i connected to v such
that λl(j)(v) = kl(i)(v). In this case exchange labels of i and j. Subsequently add
the increase caused by deviation of i to ∆scl(i)(v). Finally, set λl(i)(v′) equal to
the number of agents connected to v′ right after i has joined v′.

By the previous definitions it follows that if kl(i)(v) �= λl(i)(v), then it is always
kl(i)(v) > λl(i)(v), i.e. i has joined v before some agent j with λl(j)(v) = kl(i)(v),
but leaves v before i leaves. By exchanging labels of i,j we add the increase caused
by i to the agent that previously labeled j. Possible increases in 1.,2.,3.,4., imply
that any agent is charged by the end of iterative best response at most βv

|Ai
s∗(v)|

for some i. Initializing λi(v) = ki(v) in s∗ charges exactly i. ��

Note: In the following we assume an order of agents, so that agents of the same
facility in the initial configuration best-respond consecutively.

Theorem 1. The Price of Stability for the unweighted metric Facility Location
game is upper bounded by a constant, strictly less than 2.36.

Proof. Let∆sci denote the increase contributed by agent i to the social optimum
c(s∗), during iterative best response initialized at s∗. Assume an order of agents,
such that agents i ∈ As∗(v) “best-respond” consecutively, for each v ∈ Fs∗ .
Define cv(s∗) = βv+

∑
i:s∗

i =v d(ui, v). Then c(s∗) =
∑

v∈Fs∗ cv(s
∗). We will upper

bound the PoS by maxv∈Fs∗

cv(s∗)+
�

i:s∗
i
=v ∆sci

cv(s∗) . We focus on the first deviation
of i ∈ As∗(v), for any facility v ∈ Fs∗ . Let v′ be the node that i deviates to,
and δx∗i = d(ui, v

′) − d(ui, v). We also use x∗i = d(ui, v) for convenience. Let
λi be the number of agents serviced at v′ right after deviation of i. The new
cost of i right after its first deviation is: d(ui, v) + δx∗i + βv′

λi
. For a second agent

j ∈ As∗(v) deviating from v to some node v′′ after i, we have:

d(uj , v) + δx∗j +
βv′′

λj
≤ d(uj , v

′) +
βv′

λi
(1)

Substitute d(uj , v
′) in (1) by triangle inequality: d(uj , v

′) ≤ d(uj , v) + d(ui, v) +
d(ui, v

′). Also, by lemma 1 δx∗i + βv′
λi
≤ βv

k∗
i
, where k∗i = |Ai

s∗(v)| (Ai
s∗(v) is

defined as in lemma 1). Thus:

d(ui, v) ≥
1
2

(
δx∗j − δx∗i +

βv′′

λj
− βv′

λi

)
≥ 1

2

(
δx∗j +

βv′′

λj
− βv

k∗i

)
(2)

The latter has to hold for every pair of distinct agents i, j ∈ As∗(v), hence:

d(ui, v) ≥ max
{
0,

1
2

(
max

j:s∗
j =v

(
δx∗j +

βv′′

λj

)
− βv

k∗i

)}
(3)
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We use (3) for the connection cost of agents in As∗(v) under s∗, and consider two
complementary cases: either some agents never deviate from v, or all of them do.
Let ns∗(v) = |As∗(v)|. We only analyze the first case here (the second is similar
- see [9]). If r agents never deviate from v, then trivially in (3) we set v′′ = v,
δx∗j = 0, and λj = r, whereas k∗i ≥ r + 1. The cost cv(s∗) is:

cv(s∗) ≥ βv +
βv

2

ns∗ (v)∑
k=r+1

(1
r
− 1
k

)
= βv +

βv

2

(ns∗(v)− r
r

−H(ns∗(v))+H(r)
)

(4)

By lemma 1 it is
∑

i:s∗
i =v∆sci ≤ H(ns∗(v)) − H(r). Using equality in (4) for

cv(s∗), and cv(s) = cv(s∗)+
∑

i:s∗
i =v ∆sci, we obtain the following ratio. Simplify

using γ + lnm ≤ H(m) ≤ 1 + lnm (γ > 0.5 is Euler’s constant):

PoS ≤
1 + 1

2

(
ns∗ (v)−r

r +H(ns∗(v)) −H(r)
)

1 + 1
2

(
ns∗ (v)−r

r −H(ns∗(v)) +H(r)
) ≤ 1.5 + ns∗ (v)

r + ln ns∗(v)
r

0.5 + ns∗ (v)
r − ln ns∗(v)

r

Let y = ns∗ (v)
r . The upper bound can be numerically maximized to < 2.36. ��

Lower Bound. Take 2n agents; n on a singe node v, the rest on a separate node
each (black nodes in Fig. 1(a)). Facility costs are 1. In the social optimum s∗,
n agents on v are serviced by v. The rest are equipartitioned to v∗l , l = 1 . . . k,
k =

√
n. We analyze a single facility v∗l , henceforth denoted by v∗ (same for the

rest). By abusing notation, cv∗(s) is the cost of v∗-agents at equilibrium. Then:

PoS = lim
n→∞

1 + kcv∗(s)
1 + kcv∗(s∗)

≥ lim
n→∞

cv∗(s)
(1/
√
n+ cv∗(s∗))

(5)

In the least expensive equilibrium s, agents from each facility v∗ of s∗ miss-
connect to v in s. For some constant p ∈ (0, 1), only r = �(1 − p)k� of these
agents increase the social cost significantly, by increasing their connection cost.
Follow iterative best response of these r agents starting from s∗. Assume λ ≥ n
agents “play” v before r agents of v∗ deviate to v. Set the i-th deviating agent to
increase its connection cost x∗i by δx∗i = 1

k−i+1 −
1

λ+i − ε, i = 1 . . . r; it decreases
ci by ε. By (1),(2), and because all r agents deviate to v (hence βv′′

λj
− βv′

λi
= 0

in (2)), it is x∗i = d(ui, v
∗) = max{0, 1

2 (max δx∗j − δx∗i )}, max δx∗j = δx∗r . For the
rest k − r agents set x∗j = 0, d(uj , v) = 1

k−r+1 . Summing up as in (4) yields:

cv∗(s∗) = 1 +
1
2

[ r

k − r + 1
−∆H(k, k − r)

]
− 1

2
r

n+ r
+

1
2
∆H(λ+ r, λ) (6)

where∆H(n,m) = H(n)−H(m). Then
∑r

i=1 δx
∗
i = ∆H(k, k−r)−∆H(λ+r, λ),

and we can set cv∗(s) = cv∗(s∗)− 1 + k−r
k−r+1 +

∑r
i=1 δx

∗
i in (5). Simplify ∆H by

logarithmic bounds and substitute r = �(1 − p)k� appropriately. Then limits of
numerator and denominator in (5) exist (see [9] for details); the resulting simpli-
fied fraction can be maximized numerically to > 1.45 for p + 0.18. Experimental
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x∗
i + δx∗

i

v

v∗

x∗
i

veq

vopt

ε ε ε ε

dn−2dn−1dn d1

di = α
i − 1

n, i = 1 . . . n

(a) (b)

Fig. 1. Lower bounds: (a) unweighted metric PoS, (b) unweighted non-metric SPoA

evidence showed that PoS > 1.77. It is easy to verify that any configuration
other than s∗ and s is more expensive [9].

Strong equilibria do not always exist, even for unweighted agents on metric
networks. We prove the following (see [9] for the proof, and for existence of
2.36-approximate strong equilibria with constant strong Price of Anarchy):

Theorem 2. When strong equilibria exist in the unweighted metric Facility Lo-
cation game, their Price of Anarchy is at most a constant.

3 Approximate Strong Equilibria for Weighted Agents

The existence of pure equilibria for weighted agents is an open issue. We reduce
the logarithmic approximation factor known for general network design [7,6] to
a constant. Our result is more general, as it concerns strong equilibria. We make
use of the following remark.

Remark 1. If an instance of the Facility Location game does not have strong
equilibria, then there is at least one cycle of deviations of particular coalitions
that results in a circular sequence of configurations {sj}k

j=1 with s1 = sk.

Given such a sequence {sj}k
j=1, we denote the coalition that deviates from sj

to form sj+1 by Ij . Such a deviation causes a cost decrease of agents in Ij and
possibly a cost increase of agents in A \ Ij . Recall that A is the set of all agents.
We define two quantities, the weighted improvement impr(Ij) for agents in Ij
and the weighted damage dam(Ij) caused by agents in Ij respectively:

impr(Ij) =
∏
i∈Ij

(
ci(sj)
ci(sj+1)

)wi

dam(Ij) =
∏

i∈A\Ij

(
ci(sj+1)
ci(sj)

)wi

We derive an approximation factor that eliminates cycles.

Lemma 2. Let {sj}k
j=1 with s1 = sk be a cycle of configurations in a Facility

Location game instance, caused by consecutive deviations of coalitions. The game
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instance has an α-approximate strong equilibrium if for all such sequences α ≥
dammax({sj}k

j=1), where dammax({sj}k
j=1) = max

j=1...k−1
dam(Ij)1/W (Ij ).

Proof. If there is no α-approximate strong equilibrium we know that there is at
least one cycle {sj}k

j=1 such that ∀j ∈ {1, . . . , k − 1}∀i ∈ Ij : ci(sj)
ci(sj+1) > α.

Because s1 = sk we have that
∏k−1

j=1
ci(sj)

ci(sj+1) = 1 for every agent i. Then:

1 =
n∏

i=1

⎛⎝k−1∏
j=1

ci(sj)
ci(sj+1)

⎞⎠wi

=
k−1∏
j=1

impr(Ij)
dam(Ij)

>

k−1∏
j=1

αW (Ij)(
dam(Ij)1/W (Ij)

)W (Ij)

It follows that dammax({sj}k
j=1) > α. The lemma follows by contradiction. ��

We derive an approximation factor as an upper bound of dammax({sj}k
j=1) for

any cycle.

Theorem 3. For every α ≥ e there exist α-approximate strong equilibria in the
Facility Location game.

Proof. We prove that dammax({sj}k
j=1) < e for every cycle {sj}k

j=1 of configura-
tions and the result follows from Lemma 2. Let Ij(v) be the set of agents going
to v in sj , but not in sj+1, and Aj(v) be the set of agents going to v in both sj

and sj+1. Note that Ij =
⋃

v∈V Ij(v), therefore:

dammax({sj}k
j=1) = max

j

⎛⎜⎜⎝∏
v∈V

⎛⎝ ∏
i∈Aj(v)

(
ci(sj+1)
ci(sj)

)wi

⎞⎠
W (Ij(v))
W (Ij(v))

⎞⎟⎟⎠
1

W (Ij )

⇒

dammax({sj}k
j=1) ≤ max

j,v

⎛⎝ ∏
i∈Aj(v)

(
ci(sj+1)
ci(sj)

)wi

⎞⎠
1

W (Ij (v))

Hence, we need only consider what happens at the worst case node. For an agent
i in Aj(v) we get that:

ci(sj+1)
ci(sj)

=
wi

(
d(ui, v) + βv

Wsj+1 (v)

)
wi

(
d(ui, v) + βv

W (Ij(v))+W (Aj(v))

) ≤ 1 +
W (Ij(v))
W (Aj(v))

It follows that:

dammax({sj}k
j=1) ≤ max

j,v

(
1 +

W (Ij(v))
W (Aj(v))

)W (Aj(v))
W (Ij (v))

< lim
r→∞

(
1 +

1
r

)r

= e ��

Corollary 1. The Facility Location game with non-uniform agent demands has
α-approximate pure strategy Nash equilibria for every α ≥ e.
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For the SPoA of α-approximate strong equilibria we show [9]:

Theorem 4. The Price of Anarchy of α-approximate strong equilibria, for the
Facility Location game is upper bounded tightly by αH(n) for unweighted and by
α(1 + lnW ) for weighted agents, where W is the sum of weights.

Fig. 1(b) shows a tight (non-metric) example for wi = 1. Facility opening costs
are 1 and agents reside on vopt. A single facility at veq is the most expensive
α-approximate strong equilibrium, of cost αH(n): no coalition has incentive to
deviate to vopt, the sole optimum facility location of social cost 1, for ε = n−2 → 0

Open Problems. Existence of pure equilibria for the weighted game merits
further investigation. Extending our (unweighted) metric analysis of the PoS for
weights (or proving a non-constant lower bound) appears to be quite challenging.
This seems to apply for the lower bounding of the weighted SPoA on general
networks as well. Lower bounding techniques of [7] do not seem applicable.

Acknowledgements. We thank participants of CAGT Open Problems Jam
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Abstract. Recently, [8] defined the class of Linear Nash Bargaining
Games (LNB) and obtained combinatorial, polynomial time algorithms
for several games in this class. [8] also defines two natural subclasses
within LNB, UNB and SNB, which contain a number of natural Nash
bargaining games. In this paper we define three basic game theoretic
properties of Nash bargaining games: price of bargaining, fairness and
full competitiveness. We show that for each of these properties, a game
in UNB has this property iff it is in SNB.

1 Introduction

The bargaining game was first modeled in John Nash’s seminal 1950 paper [5]
using the framework of game theory given a few years earlier by von Neumann
and Morgenstern [9]. Since bargaining is perhaps the oldest situation of conflict
of interest, and since game theory develops solution concepts for negotiating in
such situations, it is not surprising that this paper led to a theory (of bargaining)
that lies today at the heart of game theory (e.g., see [3,7,6]).

In a recent paper, Vazirani [8] initiated a study of Nash bargaining games
via combinatorial, polynomial time algorithms. [8] defines LNB (Linear Nash
Bargaining Games) – the class of games whose feasible set of utilities is defined by
finitely many packing constraints. [8] also defines two natural subclasses within
LNB: UNB and SNB. These classes contain a number of natural Nash bargaining
games. In this paper we define three basic game theoretic properties of Nash
bargaining games and show that for each of these properties, a game in UNB
has this property iff it is in SNB. Below we intuitively define the classes UNB and
SNB and then state the three properties; formal definitions appear in Section 2.

UNB is the subclass in which for each available resource, each agent who
uses this resource uses it in the same way, i.e., the coefficients in the packing
constraints are 0/1. Clearly, only 2|A| such constraints are needed, where A is
the set of agents – one for each subset of A. We can now view the right hand
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sides of these constraints as being given by a set valued function over the power
set of A. If this function is submodular, the game is said to be in the subclass
SNB of UNB.

We define price of bargaining in a way that is analogous to the notion of
price of anarchy [4], i.e., it measures the loss in efficiency in resorting to the
Nash bargaining solution as compared to the most efficient solution that can
be obtained in a centralized manner. We will say that a Nash bargaining game
is fully competitive if whenever one player increases his disagreement utility,
no other player’s utility can increase in the resulting Nash bargaining solution.
We consider max-min and min-max fairness of the Nash bargaining solution in
relation to all feasible solutions that are Pareto optimal. For all these properties,
we gave a complete characterization of bargaining games in UNB. That is, any
bargaining game in UNB has one of these properties if and only if it is in SNB.

2 Uniform Nash Bargaining Games

For a set of agents A, a Nash bargaining game is defined by a pair (c,P), where
P ⊆ R|A|

+ is a compact and convex set which defines the feasible set of utilities
of all the agents, and c ∈ P is known as the disagreement point which defines
the amount of utility each agent will get if the bargaining process fails.

Nash [5] defined the bargaining solution u ∈ P of this game to be the one which
satisfies four axioms: Pareto optimality, Invariance under affine transformation,
Symmetry, and Independence of irrelevant alternatives. Nash proved that there is
a unique point in P which satisfies these axioms, and moreover this point (u ∈ P)
is the one that maximizes

∏
i∈A(ui − ci) or equivalently

∑
i∈A log(ui − ci).

The class Linear Nash Bargaining Games (LNB), defined in [8], consists
of games whose feasible set P is defined by a finite number of linear packing
constraints. The main focus of our paper will be on a natural subclass of LNB
called Uniform Nash bargaining games (or UNB) which was also defined in [8].
In these games, the coefficients of the variables in the linear packing constraints
are either 0 or 1. Clearly there can be at most 2|A| such constraints, thus a
function of the form v : 2A → R+ uniquely encodes a feasible set in UNB games.

Now given a disagreement point c, and a fixed set of agents T ⊆ A, the
solution to a UNB game can be captured by the following convex program:

max
∑
i∈T

log(ui − ci)

s.t. ∀S ⊂ T :
∑
i∈S

ui ≤ v(S)

∀i ∈ T : ui ≥ 0 (1)

For a fixed function v : 2A → R+, we will define a family of games F (v) to be
the set of all Nash bargaining games for various choices of disagreement points
c and set T ⊆ A. An instance (c, T ) ∈ F (v) will refer to a particular Nash
bargaining game in F (v) with a fixed set T and disagreement point c. A UNB
game is called an SNB if the function v is a submodular function.



500 D. Chakrabarty et al.

We will assume that the following two natural conditions are satisfied by the
function v:

1. Non degenerate: v(∅) = 0.
2. Non redundancy of sets: ∀S ⊆ A, there exists a feasible utility vector u

such that set S is tight w.r.t. u, i.e.
∑

i∈S ui = v(S).

We will call such functions to be valid functions. Note that the second
condition above implies 1)Monotonicity: for any Z1 ⊂ Z2 ⊆ A, we have
v(Z1) ≤ v(Z2), and 2)Complement freeness: v(Z1 ∪ Z2) ≤ v(Z1) + v(Z2).

In this paper, we are interested in the following three game theoretic properties
of UNB games:

Price of Bargaining: For any valid function v : 2A → R+, we define the Price
of bargaining of F (v) to be min

(c,T )∈F (v)

u(c,T )
v(T ) , where u(c, T ) is the total utility

obtained by set T of agents in the bargaining solution of the instance (c, T ).

Full competitiveness: For any valid function v : 2A → R+, we say that
F (v) is fully competitive if, for all games in F (v), the following property holds:
On increasing the disagreement utility ci of an agent i, the bargaining solution
doesn’t increase the utility for any other agent j, where j �= i.

Fairness: For any instance I = (c, T ) ∈ F (v), define core(I) to be the set of
all feasible Pareto optimal solutions. For any vector u, let udec be the vector
obtained by sorting the components of u in decreasing order. A vector x min-
max dominates y if xdec is lexicographically smaller than ydec. Also let u∗ be
bargaining solution of instance I. Instance I is said to be min-max fair if the
vector u∗ − c min-max dominates y − c for all y ∈ core(I). F (v) is said to be
min-max fair if all the instances in F (v) are min-max fair. Similarly we define
the notion of max-min fairness.

Main results of this paper are described in theorems 1, 2, and 3.

3 Preliminaries

For any valid function v, we say that S is tight w.r.t. u if
∑

i∈S ui = v(S). Let
u∗ be the solution to the convex program given in (1). Then by KKT conditions,
there must exist variables {pS, ∀S ⊆ T } such that:

1. ∀S ⊆ T, pS ≥ 0.
2. ∀S ⊆ T, pS > 0 ⇒ u∗ makes set S tight.
3. ∀k ∈ T , we have

∑
S:k∈S

pS = 1
u∗

k−ck
.

We will call pS to be the price of set S.
Now we give some properties of the submodular and non-submodular

functions which will be used in our proofs.
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Property 1. Given a valid submodular function v : 2A → R+, and a utility vector
u, if Z1, Z2 ⊆ A are tight sets w.r.t. u, then Z1 ∪ Z2 and Z1 ∩ Z2 are also tight
sets w.r.t. u.

By using the uncrossing argument and the above property, we get the following
corollary.

Corollary 1. Given any SNB instance specified by v, c and T , we can choose
the prices for all subsets of T in the KKT conditions, such that the tight sets with
positive prices form a nested set family, i.e. T = T1 ⊃ T2 ⊃ · · ·Tk ⊃ Tk+1 = ∅.
Also, we will use the following property of non-submodular functions which is
similar to the one given in [1]. Proof is given in the full version.

Property 2. Given a valid non-submodular function v : 2A → R+, there exists
set S ⊂ A, i, j ∈ A \ S, l ∈ S and a feasible utility vector u such that:

1. S ∪ {i}, S ∪ {j} are both tight w.r.t. u.
2. Let T = S ∪ {i, j}, Fk = {Z ⊆ T : k ∈ Z, and Z is tight w.r.t. u}. Then

following holds
Fl = Fi ∪ Fj , Fi ∩ Fj = ∅ .

3. uk > 0, ∀k ∈ T .

4 Price of Bargaining

Theorem 1. For any valid function v, F(v) has Price of bargaining equal to 1
if and only if v is submodular.

Proof. ⇐: Suppose v is submodular. We want to show that for any disagreement
point c, and set S ⊆ A, if we restrict to the subproblem among agents in S, the
Nash bargaining solution u∗ satisfies

∑
i∈S u

∗
i = v(S).

Since u∗ is the solution of Nash bargaining game, it must be Pareto optimal.
Therefore every agent i is in some tight set Ti. Therefore by Property 1, we have
S = ∪i∈STi is also tight, which means

∑
i∈S u

∗
i = v(S).

⇒: Suppose v is not submodular. By Property 2, there is a set T = S ∪ {i, j}
and a feasible utility vector u = (uk)k∈T such that: (1) uk > 0, ∀k ∈ T , (2) S ∪ i
and S ∪ j are tight w.r.t. u, (3) T is not tight w.r.t. u. This is obtained from
Fi ∩ Fj = ∅.

Now for any k ∈ T , k is in some tight set w.r.t u, hence by the lemma 1 below
(proof in full version), there exists c such that u is the Nash bargaining solution
corresponding to c.

By condition 3 above, we have
∑

k∈T uk < v(T ), which implies the Price of
bargaining is strictly less than 1.

Lemma 1. Given any valid function v, an instance (c, T ) in F(v), and a utility
vector u with ui > 0,∀i ∈ T , u is Pareto optimal if and only if there exists
a vector c, with ci > 0 ∀i ∈ T , such that u is the bargaining solution for the
instance (c, T ).
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5 Full Competitiveness

Theorem 2. For any valid function v, F(v) is fully competitive if and only if v
is submodular.

Proof. ⇐: We first describe the algorithm for finding the optimal solution to the
convex program (1) when the function v is a submodular function. Let y := u−c.
Then, an equivalent convex program is max{

∑
i log yi : y(S) ≤ f(S);y ≥ 0},

where f(S) := v(S) − c(S). Call a set tight if y(S) = f(S). Call an agent
free if w.r.t the current y it is not in any tight set. The algorithm maintains
a set of tight sets T initially empty. For all agents i which are free increase yi

simultaneously until some new set X gets tight. If X intersects with any set
in T , then since v is submodular, their union must be tight. Pick X to be the
maximal (inclusion-wise) tight set and put it in T . Continue till T (the set of all
agents) becomes tight. We have the following lemma (Proof in the full version):

Lemma 2. The utility allocation returned by the above algorithm is an optimal
solution to the convex program.

Now we prove that SNB games are fully competitive. Suppose the disagreement
of agent i goes from ci to ci+δ. Call the new disagreement vector c′. Let f ′(S) :=
v(S)− c′(S) for all S. To show full competitiveness, it suffices to show that the
optimum, y′ of the convex program max{

∑
i log yi : y(S) ≤ f ′(S);y ≥ 0} is

dominated by y, the solution to the original convex program with f(). We will
use the continuous time algorithm above to prove this.

Firstly, note that f ′(S) = f(S) for all sets not containing i and f ′(S) =
f(S) − δ for all others. This implies, that there is at least one agent j with
y′j < yj. Secondly, observe from the description of the algorithm that for any
agent j with y′j < yj, there must be a corresponding tight set in T ′ which
contains both j and i.

We now show that if an agent j became non-free at time t in the original run
(which means yj = t), then by time t it must be in a tight set in the new run.
We do so by showing that at time t if y′j = t, then some set containing j at that
time is tight (or over-tight which would imply y′j < t).

Let A be the set containing j which went tight in the original run of the
algorithm. Consider the set A in the new run of the algorithm at time t. Let
Q := {j ∈ A : y′j < yj}. Note that if j ∈ Q, we are done. Assume j /∈ Q. By
the second observation made above and using the submodularity of v (to show
union of intersecting tight sets is tight), we know there must exist a set Z which
contains both Q and i, and which is tight. That is, y′(Z) = f ′(Z) = f(Z) − δ.
We claim that y′(Z ∪A) ≥ g′(Z ∪A) and thus we are done.

This is because

y′(Z ∪A) = y′(A \Q) + y′(Z) ≥ y(A \Q) + f ′(Z) = y(A)− y(Q) + f ′(Z)
≥ f(A)− f(Q) + f(Z)− δ ≥ f(A ∪ Z)− δ = f ′(A ∪ Z)

The first inequality follows from definition of Q, the second from the tightness
of A under y and feasibility of y and the last follows from submodularity of f .
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⇒: Suppose v is not submodular, then by property 2 there must exist a set
S and agents i, j ∈ A \ S, l ∈ S, and a feasible utility vector u such that: (1)
S∪{i}, S∪{j} are both tight w.r.t. u, (2)Fl = Fi∪Fj , Fi∩Fj = ∅ , (3) uk > 0,
∀k ∈ T , where T = S ∪ {i, j}.

We will now construct an instance (c, T ) ∈ F (v) which is not fully competitive.
Let δ = mink∈T uk > 0. For tight sets S ∪ {i}, S ∪ {j}, we set their prices to be
pS,i, pS,j respectively, where pS,i = pS,j = P = 2

δ . For any other set Z ⊆ T , we
set its price pZ to be zero.

Let

∀k ∈ T ck = uk −
1∑

Z⊆T,k∈Z pZ

Since S ∪ {i} and S ∪ {j} are both tight, so for any k ∈ T , there exist at least
one Z ⊆ S such that pZ = P , and we have

ck ≥ uk −
δ

2
> 0.

By the definition of c, all the KKT conditions hold, thus u is the bargaining
solution w.r.t. (c, T ).

We will now construct a c′ and its corresponding bargaining solution u′, such
that: (1) ∀k ∈ T, k �= j, c′k ≥ ck, and (2) c′j = cj and u′j > uj .

Note that if the above conditions hold, then we can show that there exists
a game in F(v) which is not fully competitive. This is because c′ can be
obtained from c by increasing only the coordinates other than j. If F (v) is
fully competitive, then each time a coordinate of c is increased utility allocated
to j shouldn’t increase. But if u′j > uj is true then we get a contradiction.

Now we give the construction of u′ and c′. Let u′ equals u except that u′j =
uj + ε, u′i = ui + ε, u′l = ul− ε. Using arguments similar to the proof of property
2, one can show that there exists small enough ε (given below) so that u′ is
feasible.

ε < min{ε0, ul/2}, where ε0 := min
non-tight Z⊆T

(v(Z)−
∑

k∈Z uk)
2

.

Now we construct c′, so that it satisfies the condition mentioned above and
the KKT conditions.

Note that for the KKT conditions, if we only assign positive price to tight sets
S ∪ i, S∪ j, say p′S,i and p′S,j respectively, then u′, c′ satisfy the KKT conditions
and the above requirements iff

– c′i = u′i − 1
p′

S,i
= ui + ε− 1

p′
S,i
≥ ui − 1

pS,i
= ci;

– c′j = u′i − 1
p′

S,i
= uj + ε− 1

p′
S,j

= uj − 1
pS,j

= cj ;

– c′l = u′l − 1
p′

S,i+p′
S,j

= ul − ε− 1
p′

S,i+p′
S,j
≥ ul − 1

pS,i+pS,j
= cl;

– c′k = u′k − 1
p′

S,i+p′
S,j

= uk − 1
p′

S,i+p′
S,j
≥ uk − 1

pS,i+pS,j
= ck, ∀k �= l, k ∈ S.
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The above conditions can be reduced to the following:

p′S,j =
1

ε+ 1
pS,j

, p′S,i ≥
1

1
pS,i+pS,j

− ε
− p′S,j

This can be satisfied as long as ε < 1
pS,i+pS,j

= δ
4 .

To sum up, by setting ε = min{ε0/2, δ/8}, we can find p′S,i, p
′
S,j such that:

p′S,j =
1

ε+ 1
pS,j

, p′S,i ≥
1

1
pS,i+pS,j

− ε
− p′S,j

Note that this value of ε is consistent with the previous mentioned upper
bound on it. Therefore, we can construct c′ such that u′ is the bargaining solution
w.r.t. c′ and c′k ≥ ck, ∀k ∈ T , c′j = cj . Thus (c, T ) ∈ F (v) is not fully competitive.

6 Fairness

Theorem 3. For any valid function v, F(v) is min-max and max-min fair if
and only if v is submodular.

Proof. ⇐: Suppose v is submodular. let u∗ be the Nash bargaining solution for
(c, T ) where T ⊆ A. By corollary 1, we can choose the prices such that the tight
sets w.r.t u∗ with positive price form a nested set family, T = T1 ⊃ T2 ⊃ ...... ⊃
Tt ⊃ ∅.

Pick any element g in core((c, T )) i.e. g is Pareto optimal. If u∗ does not
min-max dominate g, then g min-max dominates u∗. In this case we will show
that g = u∗, which leads to a contradiction.

Since g is Pareto optimal therefore every agent is in some tight set w.r.t g.
Hence by property 1, T1 is tight, i.e.

∑
k∈T1

gk = v(T1). Since g is feasible, we
have ∑

k∈T2

gk ≤ v(T2)

T1 and T2 are tight sets w.r.t u∗, so we have∑
k∈T1−T2

gk ≥
∑

k∈T1−T2

u∗k (2)

Since each agent i in T1 − T2 has the highest ui − ci among all the agents, if g
min-max dominates u∗, then for any k ∈ T1 − T2, we have gk ≤ u∗k. Then by
(2), we have gk = u∗k, ∀k ∈ T1 − T2. Then we can use induction to show for any
1 ≤ i ≤ t and any k ∈ Ti − Ti+1, gk = u∗k. Hence g = u∗.

This proof also shows that u∗ is the unique min-max fair utility vector. By
using an argument similar to [2], we can show that any unique min-max fair
utility vector is also max-min fair.
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⇒: Suppose v is not submodular, then by property 2, there is a set T =
S ∪ {i, j} and a g = (gk)k∈T such that: (1) gk > 0, ∀k ∈ T , (2) S ∪ {i} and
S ∪ {j} are tight w.r.t g, (3) Fl = Fi ∪ Fj , Fi ∩ Fj = ∅.

For each k ∈ T , let ck = gk − ε, where 0 < ε < mink∈T {gk}. Clearly g is a
feasible core element corresponding to c, since each k is in a tight set (either
S ∪ {i} or S ∪ {j} ).

Let u∗ be the Nash bargaining solution corresponding to (c, T ). Since g is the
unique min-max and max-min feasible solution, thus if u∗ min-max and max-min
dominates g, then u∗ must equal g. Next we show that this is not possible.

Suppose u∗ = g, by KKT conditions, we can price all the subsets of T such
that:

1
gl − cl

=
∑

Z∈Fl

pZ =
∑

Z∈Fi

pZ +
∑

Z∈Fj

pZ =
1

gi − ci
+

1
gj − cj

which contradicts the fact that gl − cl = gi − ci = gj − cj = ε.
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Abstract. We present a polynomial-time algorithm for finding one extensive
form correlated equilibrium (EFCE) for multiplayer extensive games with per-
fect recall. This the first such algorithm for an equilibrium notion for games of
this generality. The EFCE concept has been defined by von Stengel and Forges
[1]. Our algorithm extends the constructive existence proof and polynomial-time
algorithm for finding a correlated equilibrium in succinctly representable games
by Papadimitriou and Roughgarden [2,3]. We describe the set of EFCE with a
polynomial number of consistency and incentive constraints, and exponentially
many variables. The algorithm employs linear programming duality, the ellipsoid
algorithm, and Markov chain steady state computations. We also sketch a possible
interpretation of the variables in the dual system.

1 Introduction

Extensive games with perfect recall are a fundamental model of noncooperative game
theory. They are game trees where players may have imperfect information about the
game state, modeled by information sets [4]. The standard rationality assumption of
perfect recall is a condition on the information sets that asserts that a player never
forgets what he knew or did earlier.

The game tree, with its information sets, moves, chance probabilities, and payoffs,
is a succinct representation of a game. The strategic form of the game is in general
exponentially larger because because a pure strategy of a player is a tuple of moves, one
for each information set, so there are exponentially many strategies per player; in the
terminology of [2,3], this means the game is not of “polynomial type”. Already for zero-
sum two-player games, finding an equilibrium is therefore an interesting computational
problem. It is solved by the sequence form [5], which is a strategic description of the
same size as the game tree, and allows to solve huge two-person zero-sum games, for
example of poker (see [6], also for earlier references related to the sequence form).

Finding a Nash equilibrium of an extensive game with any number of players is
as difficult as for a game in strategic form. For the latter, a (more general) correlated
equilibrium (CE) [7] can be found in polynomial time. Papadimitriou and Roughgarden
[2,3] give a polynomial-time algorithm for succinctly representable games. Applying
the ellipsoid method [8] to a linear program derived from the existence proof for CE
due to [9] and [10], the method generates a polynomial-sized LP. The solution to that
LP gives a distribution on product distributions that describes the desired CE for the
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c© Springer-Verlag Berlin Heidelberg 2008



Computing an Extensive-Form Correlated Equilibrium in Polynomial Time 507

succintly represented game. However, this method cannot be applied to extensive games
because they are not of polynomial type.

We present the first polynomial-time algorithm for finding an equilibrium for general
extensive games that have any number of players and perfect recall. We have to adapt
the concept of correlated equilibrium, but preserve the spirit of the extensive game in
the sense that any “uncorrelated” such equilibrium is a Nash equilibrium (this is not the
case for the agent form, where [2,3] can be applied, as discussed in [1]). We consider
the new concept of extensive form correlated equilibrium (EFCE) [1]. A strategic-form
CE can be considered as a device that selects a profile of pure strategies from a joint
probability distribution and sends each player privately his pure strategy in that profile
as a recommendation of what to play. In an EFCE, such a profile is also selected by
the device before the game starts. However, the recommendations in an EFCE are “de-
layed”: rather than telling the entire strategy in advance, each recommended move is
given only when the player reaches the information set where she can make that move.

For two-player perfect recall extensive game without chance moves, [1] give a poly-
nomial-size system that describes the set of all EFCE. Hence, any solution to that system
can be found in polynomial time. However, already in two-player games with chance
moves, it is not possible to give a polynomial-sized description of the set of all EFCE,
unless P = NP [11,12,1].

In this paper, we use a description of the set of EFCE for general extensive games
with any number of players with perfect recall, and possible chance moves. We describe
the set of EFCE by a polynomial number of constraints, but with exponentially many
variables, which allows us to extend the method of [2,3].

In an EFCE, unlike in a CE, a player has only to decide whether a recommended
move is optimal, which involves a small number of comparisons with the other moves
at the respective information set. In addition, a player who considers deviating from a
recommended move has to look at additional future moves at previously unreached own
information sets. We represent these by suitable incentive constraints with variables
and constraints that, essentially, mimick “dynamic programming” in a single-player
decision tree. The resulting system is small but somewhat involved, because one has to
study carefully the propagation of payoffs for possible deviations through the game tree
via dual variables.

Our blueprint, the proof by [2,3], uses the constructive existence proof of CE of [9,10],
and employs linear programming duality, the ellipsoid algorithm, Markov chain steady
state computations, as well as application specific methods for computing expectations
over product distributions. We run the ellipsoid algorithm on the, more complicated, dual
system. In contrast to the computation of a CE for a succinct strategic-form game [2,3],
the dual system contains additional “consistency” information in the form of certain
equalities for the dual variables. At each step, the ellipsoid algorithm finds a violated
convex combination of the constraints of the dual system. These correspond, dually, to
product distributions on moves at information sets. These do not represent steady states
of a Markov chain, unlike in [2,3]. However, by assuming that the required distribution
exists for preceding information sets, it can be considered as a steady state. For this
reason, our algorithm uses Markov chain computation at each information set from the
root of the game tree down to the information sets closest to the leaves of the game tree.
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We give our construction first for for perfect-recall extensive games without chance
moves, and then consider chance as an extra player who gets no payoff and never de-
viates. For reasons of space, we have to omit all proofs, and, unfortunately, examples,
which are available in a long version of this paper.

2 Incentive Constraints

We use the notation of [1], except that a player is typically denoted by p and N is the
set of all players, often omitted. The set of all information sets of player p is Hp. For
h ∈ Hp, the set of moves or choices at h is Ch. A pure strategy sp of player p is an
element of ∏h∈Hp Ch, and a strategy profile s is an element of ∏p ∏h∈Hp Ch.

In an EFCE, a player receives a move recommendation when reaching an information
set, unlike in a CE where a player gets a recommended strategy at the beginning of the
game. The player then compares the expected payoffs of moves at that information set
and chooses the move with maximum expected payoff.

We first consider games without chance moves. Given an extensive game with perfect
recall, is there a “sequence form” to compute one EFCE? For two-player games without
chance moves, the answer is yes, as described in detail in [1]. The system of consistency
and incentive constraints of sequences defines the set of EFCE. This holds because
the condition of perfect recall imposes strong restrictions on the players’ information
sets, so that the recommended move at each information set can be generated uniquely.
However, for games of more than two players, or with chance moves, the consistency
constraints of the sequences on the marginal probabilities of moves that are correlated
across information sets are only necessary conditions. For this reason, our system does
not use the sequence form.

Therefore, instead of introducing an auxiliary variable u(σ) to denote the expected
payoff contribution of a sequence σ as in [1], we use u(c) to denote the expected payoff
contribution of the move c when the player follows his recommendations at all informa-
tion sets he reaches. Before giving the expression of u(c), the relations between moves
and strategies need to be clarified.

Definition 1. An information set h∈Hp precedes another information set k ∈Hq if and
only if p = q and there are nodes u∈ h and v ∈ k such that u is on the path from the root
to v. Furthermore, h ∈Hp immediately precedes k ∈Hp when h precedes k and there is
no information set l ∈ Hp that succeeds h and precedes k.

Unlike in [1], the relation “precedes” is only between two information sets of the same
player.

Definition 2. A move c ∈ Ch agrees with a strategy profile s if and only if the infor-
mation set h is reached and the move c is chosen when players play according to s.
A move c ∈Ch of player p terminates a strategy profile s−p if and only if h is reached
and no further information set of player p is reached if p plays the moves leading to h
at all preceding information sets and plays c at h, and the other players play s−p . An
information set h ∈Hp is reachable by a strategy profile s ∈ S if and only if the player p
reaches h at a certain stage if all players choose the strategies in s.
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Let ap(s) be the payoff to player p if all players choose the strategies in s, and let z(s)
be the probability according to which the correlation device selects the strategy profile
s. For any c ∈Cp, the variable u(c) is given by

u(c) = ∑
s ∈ S : c agrees with s

ap(s)z(s). (1)

Thus for any move c so that no further information set of player p is reached afterwards,
u(c) is the expected payoff to player p if he plays the recommended move c. The fol-
lowing lemma shows that u(c) is the expected payoff contribution also for a move c that
leads to further information sets of player p.

Lemma 3. Given a move c ∈ Ch and the set {k ∈ Hp : h precedes k} is not empty, we
have

u(c) = ∑
s ∈ S : c agrees with s,

c terminates s−p

ap(s)z(s)+ ∑
l ∈ Hp : h immediately

precedes l via c

∑
c′∈Cl

u(c′).

The expected payoff u(c) when the player chooses the recommended move c is com-
pared with the possible payoff when the player deviates from his recommendation.
Given a move c ∈ h and an information set k such that k = h or k succeeds h, we
use v(k,c) to denote the optimal expected payoff at k given the player is recommended
move c at h. It is the maximum of the payoffs for the possible moves d ∈Ck, which may
either directly give a payoff ap(sk

d) when d terminates s−p (where sk
d is the strategy pro-

file that specifies moves leading to k at information sets preceding k, and d at k, and the
same moves as s at all other information sets), or are obtained from subsequent optimal
payoffs at later information sets. This is expressed by the following inequalities:

v(k,c)≥ ∑
s ∈ S : c agrees with s,

d terminates s−p

ap(sk
d)z(s)+ ∑

l ∈ Hp : k immediately

precedes l via d

v(l,c), d ∈Ck. (2)

These incentive constraints constraints are completed by

u(c) = v(h,c), (3)

for any move c ∈Ch. That is, given a recommended move c, the player does not gain by
deviating from move c.

Theorem 4. In a perfect-recall extensive game, a probability distribution z that fulfills
for all players the incentive constraints (1),(2) and (3) defines an EFCE. The number
of constraints that describe the set of EFCE is polynomial in the size of the game tree.

3 Existence Proof

In the system describing the set of EFCE, (3) states that the expected payoff contribu-
tion of the recommended move must be optimal, as expressed by (1) and (2). One can
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obviously substitute v(h,c) with u(c) when c ∈ Ch in (2). We rewrite these simplified
constraints as matrix inequalities and consider the linear program

maximize ∑
s∈S

z(s), subject to Az+ Bv≥ 0, z≥ 0. (4)

So the entries of A are either 0 or linear terms of a(s) for certain s and the entries of
B, for (2) and (3), are either 0, 1 or −1. The LP (4) is either trivial with the objective
function being 0 or unbounded. When it is unbounded the normalized solution is an
EFCE. Therefore by duality, to prove the existence of EFCE, it suffices to show that the
dual of (4)

A.y≤−1, B.y = 0, y≥ 0 (5)

is always infeasible. We need the following lemma, analogous to [9,10,2].

Lemma 5. If y≥ 0, B.y = 0, then there is a product distribution z so that z.A.y = 0.

Here, z.A.y is a convex combination of left sides of the constraints A.y≤ −1 in (5),
and hence for every feasible y ≥ 0, B.y = 0, it should evaluate to something negative.
Thus this lemma shows that (5) is infeasible.

The proof of Lemma 5 uses the following lemma which has a long but straightfor-
ward proof. There is one dual variable yk

c,d for each information set k and move d ∈ k

and c∈ h where h = k or h precedes k. To prove that given y≥ 0 and B.y = 0, there is a
convex combination of components of A.y equal to 0, we first show how a component
of A.y can be expressed in terms of the payoff ap and the dual variable y.

Lemma 6. Given a strategy profile s ∈ S and y≥ 0 such that B.y = 0,

(A.y)s = ∑
p

∑
k∈Hp

∑
h ∈ Hp : h = k or

h precedes k and h

is reachable by s

∑
d∈Ck

yk
ch

s ,d
[ap(sk)−ap(sk

d)] (6)

where sk is the strategy profile in S that specifies moves leading to k at information sets
preceding k and the same moves as s at all other information sets (k may not be reached
according to the moves s specifies at information sets of other players), and ch

s is the
move that s specifies at h.

The following lemma provides the main step to prove Lemma 5.

Lemma 7. For any y such that y ≥ 0 and B.y = 0, there is a product distribution
z = ∏p∈N ∏k∈Hp zk such that for any information set k, the probability distribution zk

on the moves d at k satisfies

zk(d)[αk(d)+ αk( /0)] = ∑
c∈Ck

zk(c)β k
1 (c,d)+ β k

2 (d) (7)
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where for any c ∈Ck,

αk(c) = [ ∏
l∈Hk

zl(cl
k)] ∑

d∈Ck

yk
c,d , αk( /0) = ∑

h ∈Hp : h

precedes k

∏
l∈Hh

zl(cl
h) ∑

c∈Ch

zh(c) ∑
d∈Ck

yk
c,d ,

β k
1 (c,d) = [ ∏

l∈Hk

zl(cl
k)]y

k
c,d , β k

2 (d) = ∑
h ∈ Hp : h

precedes k

∏
l∈Hh

zl(cl
k) ∑

c∈Ch

zh(c)yk
c,d .

Here Hk is the set of information sets l (of the same player as k) that precede k, and cl
k

is the unique move at l that leads to k.

Nau and McCardle [10] discussed “joint coherence” in noncooperative games, and thus
gave a possible interpretation of the variables involved in both the primal and the dual
system. Myerson [13] used this interpretation to obtain further properties of CE. For
EFCE, we consider a certain move transition matrix T k in order to prove Lemma 7,
for each information set k. Any such move transition matrix for information set k can
be interpreted as a random deviation plan for the player who will make a move at that
information set. Each number yk

c,d in (6), where d ∈Ck, represents the trend that player
would deviate to the move d when c is recommended at this information set or some
earlier stage of the game (and the player ignores any recommendation after getting c).
More precisely, the trend that the player ignores a recommendation at some earlier
stage and chooses move d at information set k is β k

2 (d), and the trend that the player
chooses d at information set k is ∑c∈Ck

zk(c)β k
1 (c,d)+ β k

2 (d). On the other hand, the
trend that the player would be getting recommended move d (he or she may ignore it) is
zk(d)αk(ck

s)+ zk(d)αk( /0). One can then show that the deviation plan does not change
the distribution on the player’s actions at the information set k.

The preceding lemmas require several pages of proofs in full detail. Lemma 5 then
implies the existence of EFCE.

Theorem 8. Every game of extensive form without chance moves has an EFCE.

4 Algorithm for Games without and with Chance Moves

To find an EFCE in polynomial time, we follow [2,3] and apply the ellipsoid algorithm
to the dual (5) of the system (4) that characterizes the set of EFCE. The LP (4) has
polynomially many constraints and exponentially many variables. Thus for the dual (5)
the opposite holds, which makes it suitable for the ellipsoid algorithm.

In each iteration of the ellipsoid algorithm, an extra step is needed to maintain the
candidate solution yi to satisfy the consistency constraints B.yi = 0. At the initial iter-
ation, for the system B.y = 0, y = 0, let ȳ be the free variables in y, and y = B̄ȳ. Thus
the system (5) is equivalent to

A.B̄ȳ≤−1, ȳ≥ 0. (8)

We apply the ellipsoid algorithm to the system (8).
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Let ȳ0 = 0 be the candidate for the initial iteration. Thus every constraint A.B̄ȳ ≤
−1 is violated. Any product distribution z satisfies z.A.y = 0. Choose any product
distribution z0, and a violated inequality z.0 A.y≤ −1. At each iteration, the candidate
ȳi−1 is replaced by ȳi. Let yi = B̄ȳi. By Lemma 5, a product distribution zi such that
z.i A.y = 0 can be found. Thus the inequality (z.i A.)B̄ȳ ≤−1 is violated. We proceed
to the next step.

Since we know that (5) is infeasible, the algorithm will end up with recognizing the
system as infeasible after polynomially many iterations. Thus when the algorithm halts,
we have polynomially many candidate solutions yi and for each yi a corresponding
product distribution zi.

We now claim that a convex combination, denoted Z.ξ , of these product distribu-
tions can be found in polynomial time, such that the system AZ.ξ + Bv ≥ 0, ξ ≥ 0
is unbounded. When the ellipsoid algorithm is applied to (8), in each iteration the in-
equality (z.i A.B̄)ȳ ≤ −1 is violated by ȳi. Let Z be the matrix where each row i is
the product distribution zi found by the ellipsoid algorithm. We consider the system of
linear inequalities

[ZA.B̄]ȳ≤−1, ȳ≥ 0 . (9)

Clearly, the number of variables of (9) is equal to that of (8), and is polynomial in
the size of the game tree. Thus the ellipsoid algorithm is appropriate to (9) too. Apply it
to (9). Let the initial candidate solution be ȳ0 = 0. In each iteration i, the ith constraint
of (9) (z.i A.B̄)ȳ ≤ −1 is violated by the ith candidate solution yi. Thus the algorithm
will determine that (9) is infeasible too. That is,

[ZA.]y≤−1, y = B̄ȳ, ȳ≥ 0

or equivalently

[ZA.]y≤−1, B.y = 0, y≥ 0

is infeasible. The dual problem

maximize∑
i
(ξA)i subject to [AZ.]ξA + BξB ≥ 0, ξA ≥ 0 (10)

is unbounded. Here (ξA,ξB) is a partition of the variable vector ξ .
For any feasible solution ξ of (10), ξA after normalization is a probability distribution

on the set of strategy profiles. The product Z.ξA is a convex combination of the rows
of Z., which are the product distributions that are computed at all the iterations of the
ellipsoid algorithm. Thus the nonnegative constraints ξA ≥ 0 are satisfied if and only if
Z.ξA ≥ 0. Let z = Z.ξA, and v = ξB. The system (10) becomes

maximize∑
s

z(s) subject to Az+ Bv≥ 0, z≥ 0

which is the system that characterizes an EFCE. Therefore, (z,v) = (Z.ξA,ξB) is a
nontrivial solution to (5) when ξ is a nontrivial solution to (10). Furthermore, z = Z.ξA

is the desired EFCE.
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So far, all the arguments and inductions are based on the assumption that there are no
chance moves in the game. With chance moves, the system (4) is no longer appropriate,
because a move may “agree” with more than one strategy profile. However, the impact
of the chance moves on the reachability of an information set can be expressed by
considering chance as an extra player 0, without any incentive constraints. The chance
moves become part of a strategy profile, but their probabilities in the construction of
product distributions will be constants rather than variables, with minor modifications
of the algorithm for games without chance moves. We obtain the following result.

Theorem 9. Every multi-player, perfect-recall extensive game, which may have chance
moves, has an EFCE, which can be computed in polynomial time.

The EFCE concept is crucial to limit the number of incentive constraints. It is an open
question if one can find one (strategic-form) CE for extensive games, even with only
two players, in polynomial time as well. Because of the exponential number of strategies
for each player, it is not even clear if such a CE has a polynomial-sized description and
certification of the equilibrium property (analogous to the NP property for a decision
problem).
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Abstract. We consider the problem of joint usage of a shared wireless channel
in a an interference-bound environment, and focus on a distributed setting where
there is no central entity managing the various transmissions. In such systems,
unlike other multiple access environments, several transmissions may succeed si-
multaneously, depending on spatial interferences between the different stations.
We use a game theoretic view to model the problem, where the stations are selfish
agents aiming at maximizing their success probability. We show that when in-
terferences are homogeneous, system performance suffers an exponential degra-
dation in performance at an equilibrium, due to the selfishness of the stations.
However, when using a proper penalization scheme for aggressive stations, we
can ensure the system’s performance value is at least 1/e of the optimal value,
while still being at equilibrium.

1 Introduction

Wireless networks often involve the joint usage of common communication channels
in a multiple access environment. In most of the models capturing such settings, simul-
taneous transmission by more than one station results in a collision causing all trans-
missions at that time to fail. CSMA-type methods are usually used in such scenarios
in order to deal with collisions, in an attempt to maximize the system’s throughput.
However, in many current wireless networks, such as mesh WiFi networks, or 802.15
clusters, simultaneous usage of the same wireless channel is possible. Consider, for ex-
ample, the settings described in Fig. 1, where we outline two stations, A,B and their
transmission ranges. If the clients of A and B are a and b respectively, then simulta-
neous transmissions will cause a collision at client a, while b can receive the message
fromB. However, if the clients ofA andB are a′ and b respectively, then simultaneous
transmissions will both succeed, since they do not collide at either of the receiving ends.

In wireless networks where channel access need not be exclusive, one of the major
optimization issues is the efficient use of radio resources. In this paper we consider
the problem of joint usage of a common communication channel by a finite number
of stations, where stations are always backlogged, i.e., always have a packet to send.
We present a generalization of classic multiple access models by introducing the notion
of spatial interference parameters, which capture the pairwise interferences between
the stations contending for the common radio resource. It is important to notice that in

� Supported by ISF grant 1366/07 and BSF grant 2002276.
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A Ba

a
′

b

Fig. 1. Outline of two stations, A, B and their transmissions ranges

this model several transmissions may succeed simultaneously, and thus the commonly
assumed upper bound of one on the overall throughput of the system no longer holds.
The overall number of successful transmissions at any time can take any value between
0 and n, where n is the number of stations in the network. The exact value depends on
the inter-station interferences.

As a preliminary step in understanding this model, we focus our attention on the
case of homogeneous interferences, where every station inflicts the same amount of
interference on any other station. Indeed, such homogeneous interferences will usually
not provide an accurate modeling for real-life scenarios where different agents have dif-
ferent interference patterns. Yet, we believe that a better understanding of the restricted
settings (where the system is described by a single parameter) is both interesting and
serves as an important step toward providing insights into understanding more general
non-homogeneous environments.

Model. We model our problem as a game played by selfish agents. We consider a
system consisting of n agents using a common wireless medium. For every agent i, we
let S = [0, 1] be the strategy space of agent i, and let Ri ∈ S denote a strategy chosen
by agent i. We refer toRi as the probability that agent i transmits. Due to interferences,
the probability of a successful transmission also depends upon the transmission of other
agents. Given a profile R = (R1, . . . , Rn) ∈ [0, 1]n, we define the success probability
of agent i’s transmission as:

ri(R) = Ri ·Πj �=i(1 − αi,jRj),

where for every 1 ≤ i, j ≤ n, αi,j ∈ [0, 1] is a fixed network-dependent parameter
denoting the amount of interference inflicted on i upon simultaneous transmission of
both i and j. One way of thinking about the αi,j-s is by viewing them as the probability
that a transmission by j will interfere with a transmission of i. Given a profile R =
(R1, . . . , Rn), the social welfare ϕ(R) (also referred to as the throughput of the system)
is considered to be the overall use of resources in the system, i.e.

ϕ(R) =
n∑

i=1

ri(R) =
n∑

i=1

Ri

∏
j �=i

(1− αi,jRj).

ϕ(R) can be interpreted as the expected number of successful transmissions.
Note that a-priori, ϕ(R) can take any value between 0 and n. For example, if for all

i, j, αi,j = 0, i.e., there are no interferences, then for the profile where Ri = 1 for all i
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we obtain ϕ(R) = n, which implies an optimal use of resources. On the other hand, if
for all i, j, αi,j = 1, then the same profile obtains zero-throughput, i.e., ϕ(R) = 0. In
the latter case our model coincides with classic multiple access models, simultaneous
transmissions result in a collision, causing all transmissions to fail.

We refer to the interferences as homogeneous if there exists some α ∈ (0, 1) such
that for all i, j, αi,j = α. By the above observations, when considering homogeneous
interferences, we restrict our attention to the case where for all i, j, αi,j = α ∈ (0, 1).
In what follows we refer to a profile R as uniform, if Ri = Rj for all i, j.

For every agent i, we let Ui(R) be the utility function of agent i, assuming agents
play profile R. In the following sections we consider several choices for these utility
functions, and discuss the system’s performance where agents are selfish, and aim at
maximizing their own utility, regardless of the effect their choices have on the overall
social welfare. We refer to the above setting as the homogeneous interferences multiple-
access (HIMA) game.

Given any profile R = (R1, . . . , Rn), we let R−i denote the subprofile defined by
strategies of all agents except for agent i. We further let (R−i, R

′
i) be the profile where

every agent other than i plays the same strategy as in R, while agent i plays strategy
R′

i. Profile R is said to be a Nash equilibrium (NE) if for every i, and everyR′
i ∈ [0, 1],

Ui(R) ≥ Ui(R−i, R
′
i). Intuitively, a profile is an NE if no agent can increase its benefit

by unilaterally deviating from his choice. We letR
(n)
NE denote an NE profile for n agents,

and use R
(n)
OPT to denote any profile for n agents which maximizes the social welfare.

Assuming an NE exists, we use the notion of Price of Anarchy (PoA) [1] in order to

evaluate this effect, defined by the supremum over all NEs R
(n)
NE of the ratio between

ϕ(R
(n)
OPT) and ϕ(R

(n)
NE ), capturing the performance of the worst case equilibrium. We

further consider the notion of Price of Stability (PoS) [2, 3], defined by the infimum of
the above ratio over all NEs, capturing the performance of the best case equilibrium.

Our Contribution. We study the rational choices of agents in an HIMA game, and
analyze the performance of NE compared to the optimal performance. We focus on the
case of homogeneous interferences, and show that when the utility of an agent is its
success probability, then selfishness causes the system’s performance to be up to an
exponential factor away from the optimal performance. Specifically, we show that for
any constant α, the price of anarchy as well as the price of stability are exponential
in the number of agents, i.e., any equilibrium suffers an exponential degradation in
performance. These results appear in Sec. 2.

We then turn to explore the effect of penalization, and to what extent does such an
approach provide better system performance at a state of equilibrium. We show that
there exists a penalty function which is proportional to the amount of aggressiveness
demonstrated by an agent, such that for the case where the utility of an agent is the
sum of its success probability and its penalty, then the price of stability with regards
to the resulting coordinated equilibria can be made to drop to at most e ≈ 2.718, thus
demonstrating that an exponential improvement is possible compared to the uncoordi-
nated case. We further show that for interferences which are not too large, namely, for
α ≤ 2/e ≈ 0.735, the price of anarchy is also bounded by e, thus ensuring that the
degradation in performance due to the selfishness of the agents can be guaranteed to be
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made very small. These results mean that if we impose these penalties upon the agents,
either in the form of payment for transmission to the network operator, or considering
them as an intrinsic cost suffered by the agent due to transmission (e.g., due to power
consumption), then the performance can be dramatically improved compared to the
general case where the agent’s utility is merely its success probability. These results are
presented in Sec. 3. We note that our results for the homogeneous settings also extend
to the finite horizon repeated HIMA game [4]. Due to space constraints, some of the
proofs are omitted and may be found in [5].

Issues involving selfish behavior of agents in multiple access environments have
received much attention in recent years. The slotted Aloha model in Markovian set-
tings was studied in terms of stability conditions, and convergence to equilibrium (e.g.,
[6, 7, 8, 9], and references therein). Additional works considered rate control games in
wireless networks, (e.g., [10]), and other recent work [11, 12, 13, 14, 15] has also con-
sidered the role of introducing costs for transmissions, and pricing schemes, and their
effect on the stability of the system. Other models of interferences in wireless networks
in Markovian settings are discussed in [16, 17, 18].

2 General Nash Equilibria

In this section we present several analytical results as to the effect of selfishness on
the performance of the network, in the theoretical case where interferences are ho-
mogeneous, i.e., for every i, j, αi,j = α, for some system’s parameter α ∈ (0, 1).
We first consider the simple utility function Ui(R) = ri(R), and show that in such a
case, the system’s performance can be very far from optimal. Specifically, we prove the
following:

Theorem 1. Given n stations, and any k ∈ {1, . . . , n− 1},

1. If α ∈
[

1
k+1 ,

1
k

)
then PoA(n) = PoS(n) = k

n(1−α)n−k .

2. If α ≤ 1
n then PoA(n) = 1.

Theorem 1 implies that for any constant α we have PoA(n) = PoS(n) = 2Ω(n). In
what follows we provide the necessary elements in order to prove the above theorem.
The following lemma follows immediately from the definition of the utility function:

Lemma 1. For utility functionsUi(R) = ri(R), the only NE solution is obtained by the
uniform profile R where every station i plays the strategy Ri = 1. The social welfare
value of this NE is n(1 − α)n−1.

Lemma 1 implies in particular that since there is only one NE in these settings, then
the price of stability equals the price of anarchy. In order to determine this value, we
now turn to analyze the value of a profile which maximizes the social welfare. We first
analyze the value of the social welfare function on the boundary of the profiles domain
[0, 1]n, and then turn to analyze the maximum value obtained in the interior of the
domain.

Since ϕ is symmetric, any two integral profiles R,R
′ ∈ {0, 1}n having the same

number of 1’s, satisfy ϕ(R) = ϕ(R
′
). Let Bk = (R1, . . . , Rn) denote any profile with
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exactly k 1’s. It therefore follows that the value in every extreme point where k stations
play the 1-strategy and n−k stations play the 0-strategy, is given by vk = ϕ(Bk) where

vk =
∑

i:Ri=1

Ri

∏
j �=i

(1 − αRj) +
∑

i:Ri=0

Ri

∏
j �=i

(1− αRj) = k(1− α)k−1.

The following lemma characterizes the maximum value on the border of the profiles
domain, and its dependence on α (proof omitted).

Lemma 2. If α ∈ [ 1
k+1 ,

1
k ) then maxj vj = vk.

Since clearly ϕ(R
(n)
OPT) ≥ vk for all k and for all α, we therefore have ϕ(R

(n)
OPT) ≥

maxk vk for all α. In order to show that indeed ϕ(R
(n)
OPT) = maxk vk, we wish to show

that the maximum of ϕ(·) is not obtained in the interior of the domain. The following
lemma, whose proof is omitted, shows that there is only one possible extreme point R0
in the interior of the domain (0, 1)n, and characterizes the value of ϕ(R0).

Lemma 3. For any n and k ∈ {1, . . . , n−1}, if α ∈ [ 1
k+1 ,

1
k ) then the only possible

extreme point of the social welfare function ϕ(·) in the interior of (0, 1)n is R0 =
( 1

αn , . . . ,
1

αn ). Furthermore, ϕ(R0) ≤ vk.

Combining lemmas 2 and 3 immediately implies the following corollary:

Corollary 1. For any n and k∈{1, . . . , n−1}, if α ∈ [ 1
k+1 ,

1
k ), then ϕ(R

(n)
OPT) = vk.

Combining Lemma 1 which shows that there exists a single NE solution R
(n)
NE =

(1, . . . , 1) whose value is ϕ(R
(n)
NE ) = n(1 − α)n−1, along with Corollary 1, we can

conclude the proof of Theorem 1.
As a consequence of Theorem 1, we restrict our attention in the following sections

to the case where α ∈ (1/n, 1), since for α ≤ 1/n, the single NE of the HIMA game
is indeed optimal. The following sections present a penalization scheme which enables
the system to obtain a much better throughput, while still being at equilibrium.

3 Coordinated Nash Equilibria

In this section we introduce a penalty based scheme, where every station i incurs a
penalty pi(·) for transmission. We consider two types of penalties. The first type de-
pends upon the choices of all the stations in the system, i.e., pi(R), while the second
type only depends upon the choice of station i, i.e., pi(Ri). We refer to the former as
an exogenous penalty, whereas the latter is referred to as an endogenous penalty. The
general form of the utility function of station i is therefore Ui(R) = ri − pi (see [14]
for a similar approach in the context of power control in cellular networks). We use the
notion of coordinated NE and show that for both penalty functions, the selfishness of
the stations does not result in more than a constant factor degradation in performance
compared to the optimal performance. This should be contrasted with the results pre-
sented in the previous section showing that the price of stability for the uncoordinated
case can be exponential in the number of stations.
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We first show that there exists some q0 ∈ [0, 1] such that the uniform profileR where
Ri = q0 for all i implies a mere constant degradation in performance compared to the
optimal throughput possible. Note however that such a uniform profile need not be at
NE. We then show that there exist penalty functions which cause such a uniform profile
to be at NE. It therefore follows that by the use of appropriate penalties, selfishness
can be tamed into providing a throughput that is at most a constant factor far from the
optimal throughput.

3.1 The Power of Uniform Profiles

Given any q ∈ [0, 1], let R
q

denote the uniform profile where Ri = q for all i. Note
that the social welfare value of R

q
is given by the function ψ(q) = nq(1 − αq)n−1. It

is easy to verify that the value of q which maximizes ψ(·) is q0 = 1
αn . It follows that

the social welfare value of R
q0 is ψ(q0) = 1

α

(
1− 1

n

)n−1 ≥ 1
eα , where the inequality

follows from the fact that
(
1− 1

n

)n−1
is strictly monotone decreasing, and converges

to 1/e.
As we have seen, the optimal value of the social welfare function for α ∈ [ 1

k+1 ,
1
k )1

is obtained for a profile where k stations play the 1-strategy, and n − k stations play

the 0-strategy, resulting in a social welfare value of ϕ(R
(n)
OPT) = k(1 − α)k−1 <

k
(
1− 1

k

)k−1 ≤ 1
α .

It follows that ϕ(R(n)
OPT)

ϕ(Rq0 )
≤ e. In the following sections we show that we can choose

a penalty function such that the profileR
q0 is at NE.

3.2 Exogenous Penalties

Let q ∈ [0, 1], and consider the following utility function:

U q
i (R) = Ri

∏
j �=i

(1− αRj)(2q −Ri),

which can be cast as a utility function of the form U q
i (R) = ri(R)− pq

i (R), where the
exogenous penalty is defined by pq

i (R) =
∏

j �=i(1−αRj)((1− 2q)Ri +R2
i ). Assume

all stations except for i play strategy q. It follows that

U q
i (R) = Ri(1− αq)n−1(2q − Ri) = (1− αq)n−1(2qRi −R2

i ). (1)

By taking derivatives, we obtain that the maximum is obtained for Ri = q, i.e., the
uniform profile R

q
is at NE.

It therefore follows that the price of stability is at least maxq
ϕ(R(n)

OPT)
ϕ(Rq)

. In addition,

since choosingRi = q is the best response of station i regardless of the strategy chosen
by any station j �= i, we can conclude that the uniform profile R

q
is the only NE

solution, hence the price of anarchy is the same as the price of stability.
Combining this result with the result presented in the previous section, for q0 = 1

αn ,
we obtain the following theorem:

1 Equivalently, k < 1
α

≤ k + 1.
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Theorem 2. For every station i there exists an exogenous penalty function pi(R) for
which the price of anarchy, as well as the price of stability, are at most e.

Although Theorem 2 guarantees that aggressiveness can be tamed by using exogenous
penalties, this might not be completely satisfactory. Exogenous penalties incurred by
a station might change even if the station does not change its strategy. This might not
be considered a handicap if the penalties cannot increase if the station remains put,
however in our case, other stations being less aggressive actually increases the penalty
incurred by a station, even if this station does not change its strategy. We address this
issue in the following section, and present an endogenous penalty scheme, in which the
penalty imposed on a station depends solely on its strategy, where increased aggressive-
ness is matched by increased penalties.

3.3 Endogenous Penalties

In this section we use insights from Sec. 3.2, and discuss endogenous penalty functions
where the penalty function of station i depends only on Ri. Specifically, given any
q ∈ [0, 1], we consider for every station i the utility function

U q
i (R) = ri(R)− pq

i (Ri),

where pq
i (Ri) = (1− αq)n−1((1 − 2q)Ri +R2

i ) is an endogenous penalty function.
Assume all stations but i play the strategy q. It follows that the utility function of

station i is again defined by Eq. (1). This implies that the best strategy for station i to
play is Ri = q, hence the uniform profile R

q
is at NE. Similarly to Theorem 2, we thus

obtain the following theorem:

Theorem 3. For every station i there exists an endogenous penalty function pi(Ri) for
which the overall price of stability is at most e.

When considering the price of anarchy, the following theorem provides the conditions
for which the uniform profile R

q
is actually the only NE (proof omitted).

Theorem 4. If α ≤ 2
e , then for every station i there exists an endogenous penalty

function pi(Ri) for which the overall price of anarchy is at most e.

4 Conclusion and Open Questions

We present a generalization of the classic multiple access model, by considering spatial
interferences parameter, modeling scenarios where different transmissions to succeed
simultaneously. This new model captures the fact that collisions are a phenomenon
experienced by the receiving end of transmissions, and it depends on the amount of
interferences sensed by this receiver from the various simultaneous transmissions.

We show that for homogeneous interferences, if agents are selfish, then the system’s
performance at equilibrium can be up to an exponential factor far away from the optimal
performance. We further introduce a penalty function to be cast on the agents, inducing
a much better performance in an equilibrium, which is at most a factor of e away from
the optimal performance.
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Several interesting questions remain open. First, it would be interesting to obtain ana-
lytic guarantees as to the price of anarchy and the price of stability for non-homogeneous
interferences. We believe that our results serve as a mere first step in understanding such
interference-bound environments. Second, it is interesting to see if our model enables
the design of better medium-access protocols, taking into account possible prior knowl-
edge of inter-agents interferences.
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Abstract. We analyze a network coloring game which was first pro-
posed by Michael Kearns and others in their experimental study of dy-
namics and behavior in social networks. In each round of the game, each
player, as a node in a network G, uses a simple, greedy and selfish strat-
egy by choosing randomly one of the available colors that is different
from all colors played by its neighbors in the previous round. We show
that the coloring game converges to its Nash equilibrium if the number
of colors is at least two more than the maximum degree. Examples are
given for which convergence does not happen with one fewer color. We
also show that with probability at least 1 − δ, the number of rounds
required is O(log(n/δ)).

1 Introduction

We perform a theoretical study of the following coloring game on networks. In
the coloring game, there is an associated networkG, and each player is associated
with a vertex in this network. Each player has a set of available strategies or
colors; the payoff of a player is 1 if he plays a color different from the color
played by any of his neighbors in G, and 0 otherwise. The goal of each player is
to maximize his payoff, and we are interested in the behaviour and strategies of
the players as a function of the network structure.

Our study is motivated by the fact that graph-coloring problems arise as nat-
ural formalizations of many conflict-resolution problems in practice. An example
due to [7], is a scenario where faculty members wish to schedule classes in a lim-
ited number of classrooms, and must avoid conflicts with other faculty members.
This can be modelled as a coloring problem, where the faculty members repre-
sent vertices, classrooms represent colors, and any two faculty members who have
classes with overlapping times are connected by an edge. However, in this sce-
nario, typically there is no centralized agency which assigns classrooms to faculty
members, players coordinate among themselves to decide on a non-conflicting
assignment, and it is also unreasonable to lay down a distributed protocol and
expect the players to abide by the rules of this protocol. As a result, a game-
theoretic formulation is an appropriate model for this scenario. A second example
of a scenario where a game-theoretic formulation is appropriate is when players
are employees in an organization, and colors are skills, and employees attempt

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 522–530, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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to perfect skills that are different from the skills possessed by other employees
in their department.

An experimental study of various coloring games was initiated by [7], which
reports on behavioral experiments on human subjects who are incentivized to
play the coloring game on specified networks. Comparisons were made among
several different types of networks of moderate sizes. In addition, examples were
given to illustrate the difficulties in analyzing the dynamics of large networks
in which each node takes simple and selfish steps. The paper [7] has attracted
much attention and pointed to the need for theoretical analysis, although there
has not been any other prior work in this specific direction to the extent of our
knowledge.

In this paper, we model the coloring game as a game played on a network
over multiple rounds. We study the dynamics of the game when the players
play a very simple, greedy strategy. At each round, each player picks a color
uniformly at random from the set of colors unused by any of his neighbors in the
previous round, and plays this color. We note that this is the best response myopic
strategy [1] for the coloring game. We say that the coloring game converges, when
the color played by each player is different from the color played by any of its
neighbors. This is a Nash equilibrium of the coloring game, because no player has
an incentive to change his strategy under this configuration. We are interested in
the time taken by the players to converge, when each player adopts the greedy
strategy.

Our main result in this paper is that for a coloring game played on a network
on n vertices with maximum degree ∆, if the number of colors available to
each vertex is ∆ + 2 or more, and if each player plays the greedy strategy,
then the coloring game converges in O(log n) steps with high probability. Our
result is also accompanied by a lower bound, in which we show a graph and
a starting assignment of colors, such that, if the number of colors available to
each vertex is ∆ + 1, and if each player plays the greedy strategy, then, the
coloring game does not converge. Our upper bound holds even in the presence of
non-participating vertices, which maintain the same color throughout the game.
This indicates that if sufficient number of colors are available, then, even in the
game-theoretic scenario, even when the players play a simple greedy strategy,
convergence to the nash equilibrium is very rapid. In fact, this convergence bound
is even comparable to the convergence bound for distributed protocols for graph
coloring, which require the nodes to follow a distributed protocol and cooperate
with each other (e.g., see, for example, the work of Luby[9]).

Related Work

The problem of graph coloring has a long history, and there is a lot of literature
on centralized as well as distributed algorithms for this problem. The network
coloring game has been studied experimentally by Kearns et al. however, to the
best of our knowledge, this game has not been analyzed theoretically. On the
experimental side, a number of behavior experiments with human subjects were
conducted on the coloring game by Kearns, Suri, and Montford [7]. In their
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experiment, a group of human subjects were assigned to vertices of a graph, and
were asked to play the coloring game for some amount of time. Each subject
has access to the colors of their neighbors, and did not have any knowledge
about the structure of the rest of the graph. Three graphs were studied – a
cycle, a cycle with chords, as well as a random preferential attachment graph.
In the experiment, the subjects found it more difficult to color the preferential
attachment graph in their allotted amount of time.

In general, finding the minimum number of colors required to color a graph,
even in a centralized manner, is NP-Hard [3], as well as hard to approximate [8].
Coloring a graph when the number of available colors is more than its maximum
degree can be easily done in linear time by a centralized algorithm; however, the
same problem becomes more challenging when the algorithm is required to be
distributed.

There has also been a line of work on distributed graph-coloring. Luby [9]
provides a distributed algorithm which finds a coloring of a graph in O(log n)
rounds, when the number of available colors is ∆+ 1 or more. Notice that here
∆ is the maximum degree of any vertex in the graph. [2] also provide theoretical
as well as experimental results on a simple algorithm for coloring a graph in
a distributed manner in O(log n) rounds when the number of available colors
is ∆ + 1. Both Luby’s algorithm and the algorithm of [2] require each node to
communicate to its neighbors its status, which indicates whether this node has
any conflicts with its neighbors or not. In contrast, our scenario is purely game-
theoretic : our algorithm does not require any cooperation among the vertices,
and will succeed even if some nodes do not participate in the game.

Another line of work which is relevant to ours is the literature on Markov
Chains for randomly sampling colorings of a graph. In this case, the goal is
to bound the mixing time of a Markov Chain on colorings of a graph G. Pio-
neering work in this field was done by Mark Jerrum [6], who showed a way to
randomly sample colorings of a graph G with maximum degree ∆ in O(n log n)
time when the number of colors available is at least 2∆ + 1. This was later
improved by Vigoda [10], who could randomly sample colorings from graphs
of degree ∆, when 11∆

6 colors were available. Hayes and Vigoda [5] showed a
better bound for triangle-free graphs when the number of colors needed was
min(∆+O(1), O(log n)). Finally, it was shown in [4] that colorings from planar
graphs can be sampled in O(n log n) time when the number of colors is at least
∆/ log log∆.

A Summary of Our Results

We consider the coloring game played on a graph G. Before we state our results,
we need to define the following concepts.

The Coloring Game. In the coloring game, each vertex in G represents a
player. Each player has a set of k available strategies or colors; the payoff of a
player is 1 if he picks a color different from the colors picked by his neighbors
in G, and 0 otherwise. The game is played in rounds; each round, the players
choose their strategies simultaneously. It is assumed that the players only have
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a local view of G, which means that they only know who their neighbors are,
and the colors picked by their neighbors, and they do not have any knowledge
of the rest of the graph G.

Greedy Strategy. In this paper, we study the dynamics of the coloring game
when each player has a local view and plays the greedy strategy. A player is said
to play the greedy strategy if, in each round, he picks a color uniformly at random
from the set of colors unused by any of his neighbors in the previous round. We
note that this is the best response myopic strategy for the coloring game.

Convergence of the Coloring Game. The coloring game is said to converge
if, for every vertex v in G, the color chosen by v is different from the color chosen
by all its neighbors. We note that when the coloring game has converged, none
of the players have any incentive to change their strategy.

Participants in the Coloring Game. We say that a vertex v in graph G
is a participant in the coloring game on G if v plays according to the greedy
strategy, otherwise we say that v is a non-participant. An instance of a coloring
game on a graph G which has non-participant nodes, is said to converge, if, for
every participant vertex v in G, the color chosen by v is different from the color
chosen by all its neighbors.

The main result of this paper can be summarized by the following theorem.

Theorem 1. Let G be any graph on n vertices, and let ∆ be the maximum
degree of any vertex in G. If the number of colors available to each vertex is at
least ∆ + 2, and if each player plays the greedy strategy, then, for any starting
assignment of colors, the coloring game on G converges after at most O(log(n

δ ))
rounds with probability at least 1− δ.

In addition, we show that if there exists a set S of non-participant vertices,
such that any vertex v ∈ S has a fixed color throughout the game, then, the
convergence time of the game is still at most O(log(n−|S|

δ )) round.

Corollary 1. Let G be any graph on n vertices, ∆ be the maximum degree of
any vertex in G, and S be a set of non-participant vertices. If the vertices in S do
not change their color throughout the game, and the number of colors available
to each vertex is at least ∆+2, and if each player plays the greedy strategy, then,
for any starting assignment of colors, the coloring game on G converges after at
most O(log(n−|S|

δ )) rounds with probability at least 1− δ.

We show that when the number of colors is ∆ + 1, there is a graph G and a
starting assignment of colors such that the greedy strategy does not converge.

Theorem 2. There exists a graph G and a starting assignment of colors C such
that if the number of colors is ∆+1, and if each player plays the greedy strategy,
the coloring game on G never converges.
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2 Several Lemmas

We use ct(u) to denote the color played by player u at round t, and N (u) to
denote the set of neighbors of u in G. We say that player u at round t has a
conflict if

∃v ∈ N (u), ct(u) = ct(v)

At any time t, we use number of conflicts to mean the number of vertices v
which have a conflict. We observe that if a vertex u has no conflict at time t,
then ct+1(u) = ct(u). We use k to denote the number of colors available and ∆
to denote the maximum degree of the graph G over which the game is played.

We use the following lemma which is a minor variant of Markov’s inequality.

Lemma 1. Let X be a random variable such that 0 ≤ X ≤M . Then, for any a,

Pr[X < a] ≤ M −E[X ]
M − a .

We observe that if a vertex v has no conflict at time t, then at round t + 1, v
does not change its color; moreover, no neighbor of v picks color ct(v), and after
round t+ 1, v still has no conflict. Thus we have the following lemma.

Lemma 2. If a vertex v has no conflict at time t, then it has no conflict at any
subsequent time.

The main idea behind the proof of Theorem 1 is to show that if we consider any
two successive rounds of the coloring game, then, the conflict at each vertex is
resolved with constant probability. We note that considering the game over two
successive rounds is essential; in a single round, it is possible that a player has
as little as (1− 1

k−∆ )∆ chance of getting its conflict resolved.
The main step in the proof of Theorem 1 is the following lemma.

Lemma 3. Consider an instance of the coloring game played on a graph G, with
maximum degree ∆, in which each node has k color choices, where k ≥ ∆+2. If,
after round t, some vertex v in G has a conflict, then, there exists some constant
c such that

Pr[v has no conflict after round t+ 2] ≥ c

Proof. For vertex v, LetM denote the neighbors of v which do not have a conflict
after round t. We define

F = ∪u∈M{ct(u)}

and let f = |F |. Then, the number of choices available to v in rounds t + 1 as
well as t+2 is at most k−f . However, since t is any arbitrary round, the number
of colors available to v after round t can possibly be much less.

The proof of this lemma proceeds in two steps. First, we show in Lemma 4
that after round t + 1, with constant probability, the vertex v has at least k−f

6
color choices. Next, we show in Lemma 5 that, given that v has k−f

6 color choices
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after round t+ 1, with constant probability, v has no conflict after round t+ 2.
Combining these two facts, we get a proof of the lemma.

After round t, for any color i ∈ [k], we define the random variable Yi as follows:

Yi =
{

1 if ct+1(u) �= i, for all u ∈ N (v)
0 otherwise (1)

Let Y =
∑

i∈[k] Yi; thus Y is the number of colors available to vertex v after
round t+ 1.

For any u ∈ N (v) \M , we let χ(u) be the set of colors available to vertex u
after round t. Further, let pu = 1

|χ(u)| . For u ∈ M , we define χ(u) = {ct(u)},
and pu = 1. Note that if u ∈ N (v) \M , pu is the probability with which vertex
u picks a fixed color available to it during round t + 1. Also, as k ≥ ∆ + 2,
each vertex u ∈ N (v) \M has at least two color choices available, and therefore
|χ(u)| ≥ 2. We are interested in the probability that Y ≥ k−f

6 . We show the
following lemma.

Lemma 4

Pr(Y ≥ k − f
6

) ≥ 1
25

Proof. From the definition of Yi, we can write that:

Pr(Yi = 1) =
∏

{u∈N (v)|i∈χ(u)}
(1− pu)

The expectation of Y can therefore be estimated as:

E(Y ) =
∑
i∈[k]

∏
{u∈N (v)|i∈χ(u)}

(1 − pu)

≥
∑

i∈[k]\F

∏
{u∈N (v)\M|i∈χ(u)}

(1− pu)

The second step follows by the definition of F and M . As, for each u ∈
N (v) \M , |χ(u)| ≥ 2, we can use the inequality 1 − x ≥ e− 3

2x for 0 ≤ x ≤ 1
2 to

write:

E(Y ) ≥
∑

i∈[k]\F

e−
3
2

�
{u∈N(v)\M|i∈χ(u)} pu

Using the convexity of the exponential function,

E[Y ] ≥ (k − f)e−
3
2

1
k−f

�
i∈[k]\F

�
{u∈N(v)\M|i∈χ(u)} pu

Observe that ∑
i∈[k]\F

∑
{u∈N (v)\M|i∈χ(u)}

pu ≤
∑

u∈N (v)\M

puχ(u)
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and therefore, we can write that:

E[Y ] ≥ (k − f)e−
3
2

1
k−f

�
u∈N(v)\M puχ(u)

≥ (k − f)e−
3
2 ≥ k − f

5

The final step follows from the fact that |{u ∈ N (v) \ M}| ≤ k − f − 2.
To complete the lemma, we now use Lemma 1, which is a variant of Markov’s
inequality. �

Now we analyze the dynamics in round t+ 2 given that Y > k−f
6 .

For any color i ∈ [k], we define variables Ỹi as follows:

Ỹi =
{

1 if ct+2(u) �= i for all u ∈ N (v)
0 otherwise (2)

Let Ỹ =
∑

i∈[k] Ỹi. We are interested in the probability of the event that
Ỹ ≥ k−f

7e9 .

Lemma 5

Pr(Ỹ ≥ k − f
7e9

|Y ≥ k − f
6

) ≥ 1
42e9

Proof. We define M̃ to be the set of vertices inN (v) which have no conflicts after
round t+ 1, and F̃ as the set ∪u∈M̃{ct+1(u)}. Note, by Lemma 2, that M̃ ⊇M
and |F̃ | ≥ |F |. Further, we let f̃ = |F̃ |. Also we defineH = [k]\∪u∈N (v){ct+1(u)}.
Thus H is the number of colors available to v in round t+ 2. Obviously, |H | ≤
k − f̃ ; given that Y ≥ k−f

6 , |H | ≥ k−f
6 ≥ k−f̃

6 .
For any u ∈ N (v) \ M̃ , we define χ̃(u) as the set of colors available to vertex

u after round t+ 1, and p̃u as 1
|χ̃(u)| respectively. For u ∈ M̃ , we define χ̃(u) =

{ct+1(u)} and p̃u = 1. We can write:

Pr(Ỹi = 1) =
∏

{u∈N (v)|i∈χ̃(u)}
(1− p̃u)

Similar to the proof of Lemma 4, we can write:

E[Ỹ ] =
∑
i∈[k]

∏
{u∈N (v)|i∈χ̃(u)}

(1 − p̃u)

≥
∑
i∈H

∏
{u∈N (v)\M̃ |i∈χ̃(u)}

(1 − p̃u)

As, for each u ∈ N (v) \ M̃ , |χ̃(u)| ≥ 2, we can write:

E(Y ) ≥
∑
i∈H

e−
3
2
�

{u∈N(v)\M̃|i∈χ̃(u)} p̃u
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Using the convexity of the exponential function,

E[Ỹ ] ≥ 1
6
(k − f̃)e−

3
2

6
k−f̃

�
i∈H

�
{u∈N(v)\M̃|i∈χ̃(u)} p̃u

Observe that ∑
i∈H

∑
{u∈N (v)\M̃ |i∈χ̃(u)}

p̃u ≤
∑

u∈N (v)\M̃

p̃uχ̃(u)

and therefore, we can write that:

E[Ỹ ] ≥ 1
6
(k − f̃)e−

3
2

1
k−f̃

�
u∈N(v)\M̃ p̃uχ̃(u)

≥ 1
6
(k − f̃)e−9 ≥ k − f

6e9

The lemma now follows by an application of Lemma 1. �

Now, given that the event Ỹ ≥ k−f̃
7e9 occurs, there is a set C of k−f̃

7e9 colors,
such that the conflict of v is resolved if it picks a color from C in round t + 2.
Since v picks one out of at most k − f̃ colors, given the event Ỹ ≥ k−f̃

7e9 , v
has no conflict after round t + 2 with probability at least 1

42e9 . Combining this
with the probability of occurrence of the event Y > k−f

6 , Lemma 3 follows for
c = 1

1050e9 . �

3 Proofs of the Main Theorems

First we prove Theorem 1.

Proof. (Of Theorem 1) For a vertex v, and a time t, we define random variables
Xv(t) as follows:

Xv(t) =
{

1 if vertex v has a conflict after round t
0 otherwise (3)

From Lemma 3, for any vertex v, for some constant c,

Pr(Xv(t+ 2) = 1|Xv(t) = 1) ≤ 1− c (4)

Using Lemma 2, for any τ ,

Pr(Xv(2τ) = 1|Xv(0) = 1) = Pr(
τ⋂

i=1

Xv(2i) = 1|Xv(0) = 1)

=
τ∏

i=1

Pr(Xv(2i) = 1|
i−1⋂
j=1

Xv(2j) = 1)

≤ (1 − c)τ ≤ e−cτ
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Plugging in τ = 1
c log(n

δ ), we get, for any vertex v ∈ G,

Pr(Xv(2τ) = 0|Xv(0) = 1) ≥ 1− δ

n
(5)

The theorem follows by applying an union bound over all vertices in G. �

Proof. (Of Corollary 1) All steps and lemmas in the proof of Theorem 1 remain
valid except that we use n− |S| in place of n. �

It remains to prove Theorem 2.

Proof. (Of Theorem 2) Let G be a cycle of length 5, and let V = {v1, . . . , v5}. Let
k = 3, and suppose the initial configuration is (c(v1), c(v2), c(v3), c(v4), c(v5)) =
(1, 0, 2, 2, 0). Then, only v3 and v4 have conflicts. If v3 and v4 follow the dynamics,
then, in the next round, c(v3) = c(v4) = 1. This again causes them both to have
conflicts, so in the following round, c(v3) = c(v4) = 2, and we have a cycle in
the dynamics. �

References

1. Arcaute, E., Johariand, R., Mannor, S.: Two stage myopic dynamics in network
formation games. In: Workshop on Network and Economics(WINE) (2008)

2. Finocchi, I., Panconesi, A., Silvestri, R.: Experimental analysis of simple, distrib-
uted vertex coloring algorithms. In: SODA, pp. 606–615 (2002)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

4. Hayes, T.P., Vera, J.C., Vigoda, E.: Randomly coloring planar graphs with fewer
colors than the maximum degree. In: STOC 2007: Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, pp. 450–458. ACM Press, New
York (2007)

5. Hayes, T., Vigoda, E.: Coupling with the stationary distribution and improved
sampling for colorings and independent sets. In: SODA 2005: Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 971–979. So-
ciety for Industrial and Applied Mathematics, Philadelphia (2005)

6. Jerrum, M.: A very simple algorithm for estimating the number of k-colorings of a
low-degree graph. Random Struct. Algorithms 7(2), 157–165 (1995)

7. Kearns, M., Suri, S., Montfort, N.: An experimental study of the coloring problem
on human subject networks. Science 313(5788), 824–827 (2006)

8. Khot, S.: Improved inaproximability results for maxclique, chromatic number and
approximate graph coloring. In: FOCS, pp. 600–609 (2001)

9. Luby, M.: Removing randomness in parallel computation without a processor
penalty. In: FOCS, pp. 162–173 (1988)

10. Vigoda, E.: Improved bounds for sampling colorings. In: Proc. of FOCS (1999)



Asynchronous Best-Reply Dynamics

Noam Nisan1, Michael Schapira2, and Aviv Zohar2

1 Google Tel-Aviv and The School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Israel

2 The School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Israel

{noam,mikesch,avivz}@cs.huji.ac.il

Abstract. In many real-world settings (e.g., interdomain routing in the
Internet) strategic agents are instructed to follow best-reply dynamics
in asynchronous environments. In such settings players learn of each
other’s actions via update messages that can be delayed or even lost. In
particular, several players might update their actions simultaneously, or
make choices based on outdated information. In this paper we analyze
the convergence of best- (and better-)reply dynamics in asynchronous
environments. We provide sufficient conditions, and necessary conditions
for convergence in such settings, and also study the convergence-rate of
these natural dynamics.

1 Introduction

Many real-life protocols can be regarded as executions of best-reply dynamics,
i.e, players (computational nodes) are instructed to repeatedly best-reply to
the actions of other players. In many cases, like Internet settings, this occurs
in asynchronous environments: Think of the players as residing in a computer
network, where their best-replies are transmitted to other players and serve as
the basis for the other players’ best-replies. These update messages that players
send to each other may be delayed or even lost, and so players may update
their actions simultaneously, and do so based on outdated information. Perhaps
the most notable example for this is the Border Gateway Protocol (BGP) that
handles interdomain routing in the Internet. As observed in [1], BGP can indeed
be seen as an execution of best-reply dynamics in asynchronous environments.

Asynchronous best-reply dynamics. The most fundamental question re-
garding best-reply dynamics in asynchronous settings is “When are such dy-
namics guaranteed to converge?”. This will certainly not happen if a pure Nash
equilibrium does not exist, but is not guaranteed even in very simple and well-
structured games that have a pure Nash. We present a formal framework for the
analysis of best-reply dynamics in asynchronous environments. We then exhibit
a simple class of games for which convergence to a unique pure Nash equilib-
rium is guaranteed. We term this class, which contains all strictly-dominance-
solvable games (games where iterated elimination of strictly dominated strategies
leaves a single strategy profile [2]), “max-solvable-games”. We also discuss the
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convergence-rate of best-reply dynamics in asynchronous settings. We propose a
notion of an asynchronous phase, and show that for max-solvable games conver-
gence also happens quickly.

Theorem: Best reply-dynamics converge within
∑

imi phases for every max-
solvable game, and in every asynchronous schedule. Here mi is the size of the
strategy space of the i’th player. In particular, this holds for all strictly-dom-
inance-solvable games.

This theorem shows that even though the “input” (a normal-form representation
of a max-solvable game) is of exponential size (in the size of the strategy-spaces),
best-reply dynamics converges in a linear number of phases.

We consider a generalization of max-solvable games, called “weakly-max-
solvable games” that contains the class of weakly-dominance-solvable games
(games where iterated elimination of weakly-dominated strategies leaves a single
strategy profile [2]). For this class of games we show that no similar result holds;
not only are best-reply dynamics not guaranteed to converge, but any procedure
for finding a pure Nash equilibrium faces a severe obstacle.

Theorem: Finding a pure Nash equilibrium in weakly-max-solvable games re-
quires exponential communication in

∑
imi. This is even true for the more re-

stricted class of weakly-dominance-solvable games.

This result follows the line of research initiated by Conitzer and Sandholm [3],
and further studied in the work of Hart and Mansour [4].

Asynchronous better-reply dynamics. At this point we turn our attention
to better-reply dynamics. Now, players are not required to continuously best-
reply to the strategies of the others, but merely to always choose strategies that
are better replies than the ones they currently have. Once again, we are inter-
ested in figuring out when these dynamics converge in asynchronous settings.
A natural starting point for this exploration is the well-known class of potential
games, introduced by Monderer and Shapley [5], building on the seminal work
of Rosenthal [6]. For these games, it is known that better-reply dynamics are
guaranteed to converge (if players update their strategies one by one, and learn
of each other’s action immediately).

We show, in contrast, that even for these games asynchrony poses serious chal-
lenges and may even lead to persistent oscillations. We consider a restricted, yet
expressive, form of asynchrony – settings in which players may update strategies
simultaneously (and not necessarily one by one), but update messages arrive at
their destinations immediately (no delay). We call such restricted asynchronous
settings “simultaneous settings”. We prove the following theorem:

Theorem: If every subgame of a potential game has a unique pure Nash equi-
librium then better-reply dynamics are guaranteed to converge for every simulta-
neous schedule. (By subgame, we mean a game that is the result of elimination
of players’ strategies from the original game.)
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In fact, we show that this result is almost a characterization, in the sense that the
uniqueness of pure Nash equilibria in every subgame is also a necessary condition
for convergence in simultaneous settings for a large subclass of potential games.

Organization of the Paper: In Section 2 we present a model for analyzing
best- and better-reply dynamics in asynchronous settings. In Section 3 we present
and discuss max-solvable games. In Section 4 we explore potential games. Due
to space constraints many of the proofs are omitted (see [7] for a full version).

2 Synchronous, Simultaneous, and Asynchronous
Environments

We use standard game-theoretic notation: Let G be a normal-form game with n
players 1, 2, . . . , n. We denote by Si the (finite) strategy space of the i’th player.
Let S = S1 × . . . × Sn, and let S−i = S1 × . . . × Si−1 × Si+1 × . . . × Sn be
the cartesian product of all strategy spaces but Si. Each player i has a utility
function ui that specifies i’s payoff for any strategy-profile of the players. For
any strategy si ∈ Si, and every (n − 1)-tuple of strategies s−i ∈ S−i, we shall
denote by (si, s−i) the strategy profile in which player i plays si ∈ Si and all
other players play their strategies in s−i. Given s−i ∈ S−i, si ∈ Si is said to be
a best reply to s−i if ui(si, s−i) = maxs′

i∈Si
ui(s′i, s−i). Given s−i ∈ S−i, s′i ∈ Si

is said to be a better-reply of player i than si ∈ Si if ui(s′i, s−i) > ui(s′i, s−i).
Consider the following best-reply dynamics procedure: We start with an initial

strategy profile of the players s ∈ S. There is set of rounds R = {1, 2, ...}
of infinite size. In each round one or more players are chosen to participate.
Every player chosen to participate must switch to a best-reply to his most recent
information about the strategies of the other players, and send update messages
to all other players announcing his strategy (a player must announce his strategy
to all other players even if it did not change).

As in [1], there is an adversarial entity called the Scheduler that is in charge
of making the following decisions: Choosing the initial strategy profile s ∈ S.
Determining which players will participate in which round (a function f from R
to subsets of the players). Determining when sent update messages reach their
destinations (see below). The Scheduler must be restricted not to indefinitely
starve any player from best-replying (that is, each player participates in infinitely
many rounds). We shall name all the choices made by the Scheduler a schedule.
We distinguish between three types of settings:

Synchronous settings: In these settings, the Scheduler can only choose one
player to play in each round (that is, |f(r)| = 1 for any r ∈ R). In addition,
update messages sent by players arrive at their destinations immediately (that
is, at the end of the round in which they were sent). Hence, players’ actions are
observable to other players. Observe, that a game is a potential game iff for each
of its subgames, better-reply dynamics are guaranteed to converge to a pure
Nash equilibrium for any synchronous schedule.
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Simultaneous settings: In simultaneous settings, the Scheduler can choose any
number of players to play in each round (|f(r)| can be any number in 1, 2, . . . , n
for any r ∈ R). As in synchronous settings, players’ actions are observable (up-
date messages sent by players arrive at their destinations immediately).

Asynchronous settings: As in simultaneous settings, the Scheduler can choose
any number of players to play in each round. However, in asynchronous settings
the Scheduler can also decide when each sent update message arrives at its
destination (at the end of the round in which it was sent or in some subsequent
round) subject to the limitation that messages that were sent earlier arrive before
later ones. It can also decide to drop update messages. The Scheduler may not
prevent all update messages of a player from reaching another player indefinitely.

Elementary examples (like the “Battle of the Sexes” game) show that even
in very simple games, in which best-reply dynamics are guaranteed to converge in
synchronous settings, they might not converge in simultaneous settings (and, in
particular, in asynchronous settings). Similarly, it can be shown that convergence
of best-reply dynamics in simultaneous settings does not imply convergence in
asynchronous settings.

In an analogous way, we can now define synchronous, simultaneous, and asyn-
chronous convergence of better-reply dynamics.

3 Max-solvable Games

In this section we present a class of games called “max-solvable games” for which
best-reply dynamics are guaranteed to converge to a pure Nash equilibrium even
in asynchronous settings. We then discuss a generalization of these games, that
contains all dominance-solvable games (games in which the iterated removal of
dominated strategies results in a single strategy profile).

3.1 Max-solvable Games – Definitions

We start by defining max-solvable games.

Definition 1. A strategy si ∈ Si is max-dominated if for every strategy-profile
of the other players s−i = (s1, . . . , si−1, si+1, . . . , sn) there is a strategy s′i such
that ui(s′i, s−i) > ui(si, s−i).

That is, a strategy of a player is max-dominated if it is not a best-reply to
any strategy-profile of the other players. Observe, that every strictly dominated
strategy is max-dominated. In fact, a strategy is max-dominated even if it is
strictly dominated by a mixed strategy.

Informally, a max-solvable game is a game in which the iterated elimination
of max-dominated strategies results in a single strategy-profile.

Definition 2. A game G is said to be max-solvable if there is a sequence of
games G0, . . . , Gr such that:
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– G0 = G

– For every k ∈ {0, . . . , r− 1}, Gk+1 is a subgame of Gk achieved by removing
a max-dominated strategy from the strategy space of one player in Gk.

– The strategy space of each player in Gr is of size 1.

The class of max-solvable-games contains all strictly-dominance-solvable ones.
We shall refer to an elimination order of max-dominated strategies, that results
in a single strategy-profile as an elimination sequence of a max-solvable game.

3.2 Asynchronous Best-Reply Dynamics and Max-solvable Games

One of the helpful features of max-solvable games is the fact that such games
always have a unique pure Nash equilibrium.

Proposition 1. Any max-solvable game has a unique pure Nash equilibrium.

We now show that in max-solvable games, best-reply dynamics always converge
to the unique pure Nash equilibrium, even in asynchronous settings. How long
does this take? Answering this question requires further clarifications as we must
account for the fact that update messages can be arbitrarily delayed, and that
players might be prevented from best-replying for long periods of time. We define
an asynchronous phase to be a period of time in which every player is activated at
least once, and every player receives at least one update message from each of his
neighbours. We prove that, for any asynchronous schedule, best-reply dynamics
converge to the unique pure Nash equilibrium in a number of asynchronous
phases that is at most

∑
imi, where mi is the size of the strategy space of the

i’th player.

Theorem 1. In any max-solvable game, best-reply dynamics converges for every
asynchronous schedule within

∑
imi asynchronous phases.

Proof. Consider an elimination sequence of max-dominated strategies that re-
sults in a single strategy-profile. Let strategy s1 of some player i be the first
strategy to be eliminated. Player i is activated once during the first asynchro-
nous phase. If he is playing s1 then he will switch to another strategy since
s1 is max-dominated. Furthermore, no best-reply of player i in the future will
ever cause him to choose strategy s1. From this point onwards, the best-reply
dynamics are effectively occurring in a game where s1 does not exist. Let us
now consider the next strategy in the elimination order s2, which belongs to
some player j (that can be i, or some other player). Given that player i never
plays s1, s2 is now max-dominated. Player j is activated during the second asyn-
chronous phase. If he is playing s2 he will move to another strategy. No matter
what, s2 will never be played again. More generally, after k asynchronous phases
the k’th strategy in the elimination order will never be played again. Therefore
after

∑
i(mi − 1) asynchronous phases we are bound to reach the pure Nash

equilibrium, which is the remaining strategy-profile.
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3.3 Weakly-Max-solvable-Games

The definition of max-dominated strategies required that, for any strategy-profile
of the other players, a max-dominated strategy be strictly worse than another
strategy. In this section we discuss the case of ties.

Definition 3. A strategy si ∈ Si is weakly-max-dominated if for every strategy-
profile of the other players s−i = (s1, . . . , si−1, si+1, . . . , sn) there is another
strategy s′i such that ui(s′i, s−i) ≥ ui(si, s−i).

Now, we can define weakly-max-solvable games as games in which the iterative
removal of weakly-max-dominated strategies results in a single strategy-profile.
Observe that any weakly-dominance-solvable game is a weakly-max-solvable
game. Unfortunately, as the following example demonstrates, best-reply dynam-
ics are not guaranteed to converge even in weakly-dominance-solvable games.

Example 1. Consider the game depicted by the following matrix (the rows are
player 1’s strategies and the columns are player 2’s strategies):

1,1 0,0
1,0 0,1
0,1 1,0

First, observe that this is indeed a weakly-dominance-solvable game. Observe
that if the initial strategy-profile is the leftmost entry in the lower row (row 3)
of the game-matrix, then the following best-reply dynamics is possible: Player
one moves from row 3 to row 2, player 2 moves from the left column to the right
one, player 1 moves from row 2 to row 3, player 2 moves from the right column
to the left one, and so on.

Weakly-dominance-solvable games always have pure Nash equilibria. As we have
just seen, best-reply dynamics are not guaranteed to converge to such an equi-
librium. Is there a different procedure that can do so in reasonable time? We
prove the following impossibility result:

Theorem 2. Finding a pure Nash equilibrium in games that are weakly-dom-
inance-solvable requires communicating exponentially many bits (in

∑
imi).

4 Potential Games and Asynchrony

In this section we explore better-reply dynamics in the context of potential
games. While it is easy to see that in potential games better-reply dynamics
converge for any synchronous schedule, what happens in simultaneous and asyn-
chronous environments? We study the structural properties of potential games
for which convergence of better-reply dynamics in simultaneous settings is as-
sured.
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We prove the following theorem:

Theorem 3. If every subgame of a potential game has a unique pure Nash equi-
librium, then better-reply dynamics converge for any simultaneous schedule.

We show that the uniqueness of pure Nash equilibria in every subgame of a poten-
tial game is almost a characterization of potential games for which better-reply
dynamics always converge in simultaneous settings. We show this by proving
that this is indeed also a necessary condition for a large subclass of potential
games, we term “strict potential games”.

Definition 4. A game G is strict if for any two strategy profiles s = (s1, ..., sn)
and s′ = (s′1, ..., s′n), such that there is some j ∈ [n] for which s′ = (s′j , s−j),
uj(s) �= uj(s′).

That is, a game is strict if for any player i, for any two strategies of that player
si, s

′
i ∈ Si, and for any strategy-profile of the other players s−i, i strictly prefers

one strategy over the other. A strict potential game is a potential game that is
strict.

Theorem 4. If a strict potential game is such that better-reply dynamics con-
verge for any simultaneous schedule, then every subgame of that games has a
unique pure Nash equilibrium.

Remark 1. One might hope that any strict game in which every subgame has a
unique pure Nash equilibrium is a potential game. However, in the full version [7]
of the paper we give an example that shows that this is not the case.

What about asynchronous settings? We now show that the property that guaran-
tees the convergence of best-reply dynamics in a potential game (i.e., that every
one of its subgames has a unique pure Nash equilibrium) does not necessarily
guarantee convergence in asynchronous schedules.

Example 2. Consider the game described by Fig. 1. The arrows describe the
better-replies of players from any strategy-profile (an arrow between strategy-
profiles denotes the transition caused by a best-reply update of a single player).

Fig. 1. A game in which better-reply dynamics might diverge for some asynchronous
schedule
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The reader can verify that this is a potential game and that every subgame
has a unique Nash equilibrium. Recall, that in asynchronous settings, the Sched-
uler may delay messages. We shall show that better-reply dynamics may never
converge in such settings. Let us show such an oscillation (messages arrive im-
mediately unless specifically noted): We begin with state A and allow the row
player to update his strategy and notify everyone, thus arriving at state C. We
then activate the column player and the matrix player simultaneously and arrive
at state H . However, we delay the message sent to the row player by the matrix
player so that the row player in fact believes we are in state D. We then activate
the row player and allow him another update. He believes he moves to state B
while in fact we arrive at state F . We then release the message to the row player
and invoke the column player which updates his strategy from F to E. Then,
the matrix player is activated and we return to state A. Repeating this over and
over gives a permanent oscillation.
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Abstract. We argue that in distributed mechanism design frameworks
it is important to consider not only rational manipulation by players,
but also malicious, faulty behavior. To this end, we show that in some
instances it is possible to take a centralized mechanism and implement it
in a distributed setting in a fault tolerant manner. More specifically, we
examine two distinct models of distributed mechanism design – a Nash
implementation with the planner as a node on the network, and an ex
post Nash implementation with the planner only acting as a “bank”. For
each model we show that the implementation can be made resilient to
faults.

1 Introduction

In the standard Mechanism Design setting a centralized planner wishes to im-
plement an objective function of some players’ private information (their types).
The players are assumed to act rationally, and so the planner must provide in-
centives for the players in such a way that they are motivated to reveal their
types truthfully.

Recent research in Multi-Agent Systems, Distributed Artificial Intelligence,
and Distributed Algorithmic Mechanism Design, has considered the implemen-
tation problem in a distributed setting: There is no centralized planner, and
instead the players reside on some network. A mechanism in this setting no
longer consists of simple information-revelation to a planner, but rather involves
communication between and computation by the players. The players follow
some distributed protocol, and the result of the protocol’s execution provides
the information necessary for the computation of the objective function. As in
the centralized setting, players are assumed to follow a protocol only if it is
in their best interest to do so. Thus, we desire protocols that are faithful – a
player should not be able to gain by deviating from any part of the protocol.
The protocol itself should be in an equilibrium.

The design of distributed protocols is largely the domain of distributed com-
puting research. This field, however, is not at all concerned with the faithfulness
of protocols – non-faulty players are assumed to follow the protocol blindly – and
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instead focuses on their fault tolerance. There are no assumptions about play-
ers’ incentives in following a protocol, but rather a desire to make the protocol
tolerant of arbitrary and possibly Byzantine faults.

A model that contains Byzantine players is often well-motivated, since com-
puters that execute a protocol may crash and communication between parties
might be faulty. This motivation applies equally well in a distributed mechanism
design setting. Most of the work in this field, however, has modelled players only
as being rational, and this precludes the possibility of faulty behavior.

So what happens if Byzantine players appear in a distributed implementation?
Suppose a planner implements an objective function in a distributed setting.
Players follow a faithful protocol because it serves their interests. If some player
acts in an adversarial manner and deviates from the protocol then, even though
he does not gain anything by this deviation (since following the protocol is
optimal), other players may lose quite a bit. It is possible and even likely that,
given this player’s fault, some other player would have had a better strategy,
and that the protocol he is supposed to follow is no longer optimal for him.

Thus, we would like the protocol to be more than just faithful – we would like it
to be faithful even in the presence of faults. That is, following the protocol should
be an optimal strategy for players, even if some of the players act maliciously.

1.1 Our Results

The main thesis of this paper is that fault tolerant faithfulness is very rele-
vant for distributed mechanism design, and that it can be implemented. Imple-
mentability is demonstrated via two examples in different models for distributed
implementation, and in each model we show that sometimes mechanisms can be
implemented in a fault tolerant manner. Our results are of the following form:
given an objective function f implementable in a centralized setting with some
equilibrium concept E1 (i.e. some notion of what it means for a player to play
“optimally”), we show that it can be implemented in a distributed setting with
an equilibrium concept E2. Note that E2 can never be “stronger” than E1, and
our goal is to have E1 = E2. In the first model, we show that if E1 is some robust
notion of Nash equilibria (more formally defined in Section 2), then we can get
E2 = E1. In the second model, we examine the case where E1 is a dominant-
strategy equilibrium, and note that all previous research on this problem has
considered the case where E2 is an ex post Nash equilibrium, which is much
weaker than E1 (the reason being that it is in general impossible to obtain the
latter – see more on this in Section 4). We bridge this gap by showing that E2 can
be a fault tolerant version of ex post Nash, which may be viewed as something
between an ex post Nash and a dominant-strategy equilibrium.

We now describe the two models and our respective contributions.

Distributed Nash Implementation. The standard mechanism design problem
studied in economics is one in which players’ types are drawn from a commonly-
known distribution, and the planner wishes to implement an objective function
in a Nash equilibrium: Truth revelation should maximize players’ expected util-
ities, where the expectation is over the distributions over the types. Monderer
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and Tennenholtz [15] generalize this problem to a distributed setting, in which
there is some network G = (N,L), and the planner is a node on the network. Un-
like the standard setting, the planner may not be able to communicate directly
with all the players. Thus, players must pass messages to the planner through
other players. This means that the entire protocol (information-revelation and
message-passing) must be in a Nash equilibrium. Monderer and Tennenholtz
[15] show that this can be done if the network is connected enough. In Sec-
tion 3 we extend their results, and show that sometimes such a protocol can be
implemented even in the presence of faulty players.

Distributed Ex Post Implementation. We examine a model in which the players
are once again nodes on a network G = (N,L), but this time there is no planner
that participates in the computation. In fact, there is no planner at all, only a
centralized “bank” responsible for executing the result of the computation, such
as distributing the eventual payments. The players execute the protocol, and at
the end each player sends his computation to the bank. If all players agree on
the computation then the bank executes the payment distribution.

Research in algorithmic mechanism design has largely avoided making as-
sumptions on the distribution of players’ types and the knowledge players have
about this distribution. For direct-revelation mechanisms players’ types can be
arbitrary, and mechanisms should be strategyproof – this means that truth rev-
elation is an optimal strategy for every player regardless of others’ types. In the
distributed setting described above, the literature has converged to the notion
of ex post Nash as the correct solution concept. In an ex post Nash equilibrium
it is optimal for players to follow the protocol regardless of the other players’
types, but assuming that others do follow the protocol. In Section 4 we show
that sometimes we can get a fault tolerant ex post Nash equilibrium, in which
we can drop the assumption that all players follow the protocol (and allow up
to n/3 faulty players to act arbitrarily).

Related Work. Our results on Nash implementation are direct extensions to the
work of Monderer and Tennenholtz [15]. Also closely related is work done on the
implementation of mediators, most notably by Abraham et al. [2].

Our results on ex post implementation are motivated by the work of Shnei-
dman and Parkes [19]. There has been quite a bit of additional work in this
model, with various applications: For example, Feigenbaum et al. [7] and Shnei-
dman and Parkes [19] studied the interdomain routing problem, and Parkes and
Shneidman [17] and Petcu et al. [16] studied VCG mechanisms (see also Feigen-
baum et al. [8]). There are two main differences between our work and the other
work in this model. First, all previous work has concentrated on implementing
an ex post Nash equilibrium, and we show that it is actually possible to obtain a
fault tolerant version of this. Second, previous work has had an additional goal
of minimizing the network complexity, an issue that we completely ignore in the
current paper (in fact, combining fault tolerance with low network complexity
is a main open question that arises from this work).
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Notions of fault tolerance like those in this paper have appeared before in a
few centralized implementation frameworks. For example, Eliaz [5] shows how to
Nash implement a mechanism in a fault tolerant manner. Also, Aiyer et al. [1]
implement a protocol for a specific objective function in an asynchronous setting,
where the protocol is tolerant of Byzantine, altruistic, and rational behavior.

Finally, numerous researchers have expressed the need to incorporate faulty
or malicious behavior into distributed settings with rational players (see the
surveys of Halpern [12,13] and Feigenbaum and Shenker [9]).

2 Definitions

There is a set N of n players, and each player i has some private information
θi ∈ Θi called player i’s type. There is also a planner who wishes to implement
some function f(θ) ∈ O, where θ = (θ1, . . . , θn). We use the following standard
notation: for a set T ⊆ N , θT = (θi)i∈T . Also, θ−T : θ′T = (θ̂1, . . . , θ̂n), where
θ̂i = θ′i if i ∈ T and θ̂i = θi otherwise.

In a direct-revelation mechanism M = (f,Θ) players report types θ̂ ∈ Θ =
Θ1 × . . . × Θn to the planner, who then computes the outcome f(θ̂). Players
are modelled as rational utility maximizers, and so each player i has a utility
function ui : Θi ×O �→ R such that ui(θi, o1) > ui(θi, o2) if and only if player i
of type θi prefers outcome o1 to outcome o2. Generally, incentives are provided
so that players maximize their utilities by reporting θ̂ = θ in equilibrium.

There are numerous types of equilibria in which we may be interested. In the
following definition of a Nash equilibrium and a t-tolerant Nash equilibrium, we
assume that players’ types θ = (θ1, . . . , θn) are drawn from a commonly-known
prior product distribution Θ = Θ1× . . .×Θn. The expectations in the definition
are taken over this distribution.

Definition 1 (t-tolerant Nash equilibrium). A direct-revelation mechanism
M implements f in a t-tolerant Nash equilibrium if for every set T ⊂ N of size
|T | ≤ t, every strategy θ′T , every player i �∈ T , and every θi, θ′i ∈ Θi,

E
[
ui(θi, f(Θ−(T∪{i}) : θ′T , θi)

]
≥ E

[
ui(θi, f(Θ−(T∪{i}) : θ′T , θ

′
i))
]
.

M implements f in a Nash equilibrium if the above holds with t = 0.

There are other variants of Nash equilibria that handle faults and coalitions.
For example, in a t-strong Nash equilibrium (see Aumann [3]), no coalition of
players can increase the utility of all colluding players. In a t-coalitional Nash
equilibrium, no single player can corrupt a coalition of at most t others to increase
his own payoff. We note that our results apply to these notions as well – see
details in the full version [11].

A different notion of equilibrium which does not require assumptions about
the knowledge of players is that of a (weakly) dominant-strategy equilibrium, in
which truth revelation is a player’s optimal strategy regardless of other players’
strategies.
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Distributed Mechanisms. In a distributed setting, the mechanism is no longer a
one-shot game in which each player simply sends his type to the center. Instead,
the game may proceed in many stages, and information may also be transferred
between the players. A player’s strategy is no longer simply an act of revealing
some information, but rather a protocol specifying how to act in many possible
situations. There are several ways of formalizing this, and much of the notation
we use here is from Shneidman and Parkes [19].

Shneidman and Parkes [19] divide the kinds of moves players can make into
three categories: Information-revelation actions, in which players reveal some of
their own private information (which may be partial and untruthful), message-
passing actions, in which players pass on messages received from other players
to one or more of their neighbors, and computational actions, in which players
perform some computation that affects the outcome rule.

In a centralized protocol, the only relevant actions are information-revelation.
In such a setting players do not interact with one another but only with the
center, and so all messages are passed directly to the planner. Additionally,
the planner does all the computation and only requires knowledge of players’
types, and so the players themselves do not do any of the computation. In a
distributed setting, however, the latter two types of actions affect the outcome
of the protocol, and so players may desire to deviate from the protocol in an
attempt to increase their utility.

For player i of type θi, we denote a possible strategy in such a setting as
si(θi). Throughout the paper we often refer to such strategies as protocols that
players are encouraged to follow. Essentially, a strategy is a recommended action
(information-revelation, message-passing, or computational) for every situation
(e.g. as a response to any incoming message). Given a finite sequence of actions
specified by strategies s = (s1, . . . , sn), the final choice of an outcome is given by
a function g(s(θ)) = g(s1(θ1), . . . , sn(θn)) ∈ O. The function g can be viewed as
a protocol for the planner: he obtains some elements of the computation, applies
his protocol g to the computation, and hopefully g is such that g(s(θ)) = f(θ).

All the solution concepts above apply in a distributed setting as well. For ex-
ample, strategies for players in a distributed setting are a t-tolerant Nash equi-
librium if following the strategy is expected utility maximizing for every player
assuming all but t players follow the strategy, and t players play arbitrarily. A
different solution concept which has been widely adopted for distributed mech-
anisms is that of an ex post Nash equilibrium. In this solution concept we make
no assumptions on players’ prior distribution on types (as in dominant-strategy
equilibria), but we do assume players follow the protocol, given their true type.
This distinction between dominant-strategy equilibria and ex post Nash equi-
libria is not so clear in direct-revelation mechanisms, since in such mechanisms
the optimal strategy is to truthfully reveal the type. In distributed mechanisms,
however, this is an important difference.

Definition 2 (t-tolerant ex post Nash equilibrium). Strategies s∗ = (s∗1,
. . . , s∗n) implement f in a t-tolerant ex post Nash equilibrium if there exists a
function g satisfying g(s∗(θ)) = f(θ), such that for every set T ⊂ N of size
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|T | ≤ t, every player i �∈ T , every alternate strategies s′T and s′i, and every type
profile θ = (θ1, . . . , θn),

ui(θi, g(s∗(θ)−T : s′T (θT ))) ≥ ui(θi, g(s∗(θ)−(T∪{i}) : s′T (θT ), s′i(θi))).

s∗ implements f in an ex post Nash equilibrium if the above holds for t = 0.

We need two more definitions:

Definition 3 (network-oblivious strategy).Astrategy si is network-oblivious
if si does not depend on the structure of the network.

Definition 4 (k-connected network). A network G = (N,L) is k-connected
if for every two distinct nodes i, j ∈ N there exist at least k node-disjoint paths
from i to j in G.

3 Distributed Nash Implementation

Monderer and Tennenholtz [15] consider the following setting: there is some
network G = (N,L), and the planner is a node on the network. The planner
wishes to implement some function in a Nash equilibrium, but may not have di-
rect communication with all the players. Thus, players must pass messages to the
planner through other players. This means that the entire protocol (information-
revelation and message-passing) must be in a Nash equilibrium. Monderer and
Tennenholtz [15] prove the following theorem.

Theorem 1 ([15]). Let f be some Nash implementable objective function and
let G = (N,L) be a 2-connected network. Then there is a protocol s∗ that im-
plements f on G in a Nash equilibrium. If G is a ring (a connected network in
which each player has exactly two neighbors) and f is implementable in a strong
Nash equilibrium, then there is a protocol s∗ that implements f on G in a strong
Nash equilibrium. The lengths of messages in s∗ and s∗ are equal to the number
of bits needed to represent players’ prior distributions, and the number of rounds
is constant.

We prove the following theorem.

Theorem 2. Fix a nonnegative integer t. Let f be an objective function im-
plementable in a t-robust Nash equilibrium, where robust ∈ {tolerant, strong,
coalitional}. Let G = (N,L) be a (3t + 4)-connected network. Then there is a
protocol s∗ that implements f on G in a t-robust Nash equilibrium. The lengths of
messages in s∗ are poly(n,maxi log |Θi|), and the number of rounds is constant.

Note that for t = 0, we get a result on Nash implementation comparable to the
first part of Theorem 1: the message lengths can be shorter – and independent
of the prior probability distribution – at the cost of requiring 4-connectivity
rather than 2-connectivity of the underlying network. We note that it is actually
possible to reduce this to 3-connectivity if communication between the players
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and the planner can be bidirectional. Also, this result with t-strong Nash is
comparable to the second part of Theorem 1: we have to bound the size of
coalitions, but our result holds for a much more general class of networks (and
not just a ring).

Proof (Outline). Theorem 2 relies on protocols of Dolev et al. [4] for Secret
Message Transmission (SMT). Consider two entities, a sender S and a receiver
R, connected by w wires. S has a secret message m drawn from some finite set
which he wishes to send to R via the w wires. The problem is that some wires
may be controlled by various adversaries, and so the communication should
satisfy the following two properties: Secrecy – for all sets L of at most σ wires,
no party listening to all wires in L can learn anything about m – and Resiliency
– for all sets D of at most ρ wires, R learns m even if an adversary controls
and coordinates the behavior of wires in D. Dolev et al. [4] give a protocol for
(σ, ρ)-SMT as long as w ≥ σ + 2ρ + 1. They also show that such a bound is
necessary.

We now describe the protocol s∗i that player i should follow.

– Computation and information-revelation: Upon learning his type θi ∈ Θi,
player i:
1. Chooses 3t+ 4 node-disjoint paths from i to the planner.
2. Follows the protocol of [4] for (t + 1, t + 1)-SMT to transmit θi to the

planner via the chosen paths. Each message sent along a path contains
the list of nodes to be traversed along that path.

– Message-passing: Upon receiving a message m from a neighbor and a list of
nodes that the message should traverse, player i passes m on to the node
following i on the list.

The planner decodes the values sent to him (or assigns a default value if no
decoding is possible).

To see that this protocol is expected utility maximizing for player i even in
the presence of up to t faulty players, note the following. All other non-faulty
players will safely transmit their values to the planner regardless of the message-
passing actions of the faulty players or player i. Additionally, player i can not
learn anything about the values sent by the other non-faulty players, even if the
t faulty ones “accidentally” send him information. Thus, from his perspective,
the distribution over non-faulty players’ types sent to the planner is as it was
originally. Because f is a t-tolerant Nash equilibrium, his optimal strategy is to
also send his true type to the planner. See [11] for a more detailed proof.

Dominant-Strategy Equilibria. Suppose we wish to define a protocol for a dis-
tributed t-tolerant ex post implementation of a mechanism that has a dominant-
strategy implementation. Then we can actually do this in a network-oblivious
manner via the following SMT protocol, whose proof is deferred to [11].

Proposition 1. For any (2t + 1)-connected network G, there is a network-
oblivious protocol for communication between any two nodes with resiliency t.
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4 Distributed Ex Post Nash Implementation

In this section we examine a model studied by Parkes and Shneidman [19,17]
and Petcu et al. [16]. Once again the players are nodes on a network G = (N,L),
but this time there is a centralized “bank” responsible for executing the result of
the computation, such as distributing the eventual payments. The players follow
a protocol to share information and make computations, and then each player
sends his computation to the bank. If all players agree on the computation the
bank executes the payments. We assume that if the players do not agree, the
bank takes no action, and this is an undesirable outcome for the players. In the
presence of faulty players, it is clearly impossible to get all the players to agree on
the computation, so we allow the bank to execute the result of the computation
if a majority of the players agree.

Feigenbaum et al. [8] observe that it is impossible to have a dominant-strategy
equilibrium here – if all players but one send an incorrect (but identical) value
to the bank, then an optimal strategy for the one player is to lie as well (and
so this is not incentive compatible). Actually, the same argument shows that
it is impossible to have t-tolerant ex post Nash either, for any t ≥ n/2. It is
straightforward to see that t ≥ n/3 is also impossible, and this follows directly
from lower bounds on the resiliency of Byzantine Agreement protocols (see the
lower bounds of Pease et al. [18] and Karlin and Yao [14]).

We prove two theorems that provide solutions for the distributed ex post
implementation problem with a nearly optimal bound on the number of faulty
players. The protocol of Theorem 3 runs in fewer rounds, whereas the protocol
of Theorem 4 has the advantage of being network-oblivious.

Theorem 3. For any t < n/3 − 1, objective function f implementable with t
faults in dominant strategies, and (2t + 3)-connected network G there exists a
protocol s∗ that faithfully implements f in a t-tolerant ex post Nash on G. The
communication of s∗ is polynomial, and its expected number of rounds is O(1).

Theorem 4. For any constant ε > 0, t < n/(3 + ε), objective function f im-
plementable with t faults in dominant strategies, and (2t+ 3)-connected network
G there exists a network-oblivious protocol s∗ that faithfully implements f in a
t-tolerant ex post Nash on G. The communication of s∗ is polynomial, and its
expected number of rounds is O(log n).

Essentially, each player uses an SMT protocol to send his type to all others,
and then they all follow a Byzantine Agreement protocol (see Pease, Shostak
and Lamport [18]) to reach agreement among the non-faulty players. Theorem 3
uses the SMT protocol of [4] to emulate secret communication, followed by the
Byzantine Agreement protocol of Feldman and Micali [6] (which requires secret
communication). Theorem 4 uses the network-oblivious SMT protocol of Propo-
sition 1 followed by the Byzantine Agreement protocol of Goldwasser et al. [10]
(which works in the full-information model, without assuming secret communi-
cation). See the full version of this paper [11] for more details.
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Abstract. We study the concept of bargaining solutions, which has been
studied extensively in two-party settings, in a generalized setting involv-
ing arbitrary number of players and bilateral trade agreements over a
social network. We define bargaining solutions in this setting, and show
the existence of such solutions on all networks under some natural as-
sumptions on the utility functions of the players. We also investigate the
influence of network structure on equilibrium in our model, and note that
approximate solutions can be computed efficiently when the networks are
trees of bounded degree and the parties have nice utility functions.

1 Introduction

Bargaining has been studied extensively by economists and sociologists, and the
most studied setup consists of two parties A and B, with utility functions UA

and UB, negotiating a bilateral deal. The deal, if agreed to by both parties,
yields some fixed profit c. Such a scenario arises if two persons want to go into
some business as partners. A and B also have alternate options αA and αB

respectively, which is the amount of money they receive if the deal is not agreed
upon. The negotiation involves how the profit from this deal is divided between
the two parties. The final share that both parties agree to receive from the deal
constitutes a bargaining solution.

Several bargaining solutions, which are predictions of how the profit will be
shared, have been proposed by economists, the most well-known being the Nash
Bargaining Solution (NBS) [1], which states that the bargaining solution finally
adopted will be one that maximizes the product of the differential utilities of
this deal to each party. The differential utility of A from the deal is the utility
A receives by agreeing to the deal in excess of what it would receive without
agreeing to the deal, that is, UA(x) − UA(αA), where x is the share of profit A
gets from the deal. Similarly, the differential utility of B is UB(c− x)−UB(αb).
NBS seeks to maximize (UA(x)− UA(αA))(UB(c− x)− UB(αb)).

Another extensively studied bargaining solution concept, known as the Pro-
portional Bargaining Solution (PBS), seeks to maximize the minimum of the dif-
ferential utilities of the parties, that is, min{UA(x)−UA(αA),UB(c−x)−UB(αb)}.
There is a crucial axiomatic difference between the concepts of NBS and PBS
– in fact, they are representatives from two broad classes of bargaining solution
concepts that have been formulated and studied in literature (see Chapter 2 of
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[2] for a discussion). One of the major axioms satisfied by NBS is that the bar-
gaining solution should not be altered if the scale of the utility functions of the
parties are altered by arbitrary constant factors. In other words, NBS is based
on the axiom that utilities of different parties cannot be compared. However,
this axiom is highly debated and several solutions that neglect this axiom, and
instead choose to make interpersonal comparison of utility, have been proposed,
and PBS is one of the most extensively studied among these solutions.

In this paper, we consider a generalization of the above two-party setting to
a setting that involves arbitrary number of parties, but where the deals are still
bilateral, and the alternate options are all zero. The parties shall be represented
as vertices of a social network, where the edges represent bilateral deals that shall
be negotiated, and weights on the edges represent the total profits from each deal.
Thus the input to the problem, which we call the network bargaining problem, is
an undirected graph with weights on edges, and an efficiently computable utility
function for every vertex. Different deals may have different profits, which are
represented by weights on edges of the input graph. A solution to the network
bargaining problem is a prediction of how the profits on each edge is divided. We
will primarily be interested in studying the effects of network topology on the
solution, and so we shall often restrict our study to the case where the edges have
unit weight, and all vertices have the same utility function. Effects of network
topology on solutions of various network exchange models have been studied,
theoretically as well as through human subject experiments ([3,4,5,6]). Our goal
is to develop a bargaining solution concept for the network bargaining problem,
that will have a strong intuitive justification.

Braun and Gautschi [5] studied the network bargaining problem, and proposed
a solution. Their solution is a direct generalization of the weighted Nash Bar-
gaining Solution for bilateral deals. They assign a numerical bargaining power
to each vertex based solely on its degree and the degrees of its neighbors, and
also assume linear utility functions, and then negotiate each edge independently
according to the bargaining powers. Kleinberg and Tardos [6] studied a variant
of the network bargaining problem, which has the same input as our problem,
but the solution has a restriction that each vertex can agree to a deal with at
most one of its neighbors. They define an equilibrium-based solution, which they
call a balanced outcome, where the agreement on every deal is required to meet
a stability condition. The stability condition used for each edge in [6] is the NBS
in a two-party setting with intuitively defined alternate options and linear util-
ity functions. This model was also studied previously by Cook and Yamagishi
[7]. In contrast to the model of [5], this model allows the equilibrium conditions
and network topology to naturally exhibit bargaining power, instead of directly
assigning a value.

Inspired by the notion of balanced outcomes in [7,6], our solution for the
network bargaining problem is also an equilibrium-based concept. We propose
that the bargaining solution should be stable, and so no party should be keen
on renegotiating a deal. For an edge e = (u, v), we define the alternate options
of u and v to be the total profits received by u and v, respectively, from deals
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with their other neighbors. The differential utility of the deal on e to u and
v is now intuitively clear (see Section 2 for definition). Renegotiation occurs if
the current division does not satisfy a standard two-party bargaining solution.
In a bargaining state (specifying the division of profits on each edge), the deal
on an edge is stable if the division of profits satisfy the two-party bargaining
solution. We say that a state is an equilibrium if all edges are stable, and this is
our bargaining solution. Depending on the two-party bargaining solution used
for renegotiating edges, we have thus proposed two bargaining solutions, the
NBS equilibrium and PBS equilibrium. These bargaining solutions are formally
defined in Section 2.

A question crucial to the applicability of our model is to characterize struc-
tures (networks and utility functions) in which there exists an equilibrium. In
this paper, we completely characterize the PBS and NBS equilibria on every
social network when all the vertices of the network have linear utility functions
(functions with constant marginal utility). In this case, we show that there is a
unique PBS equilibrium and a unique NBS equilibrium in every social network,
and that the network topology has no influence on the solutions. We also show
that on any network, there exists a PBS equilibrium if all the utility functions
are increasing and continuous. Further, we show that on any network, there ex-
ists an NBS equilibrium if all the utility functions are increasing, concave and
twice differentiable.

The rest of this paper is organized as follows. Section 2 contains a formal in-
troduction to the model and some basic lemmas that are applicable to two-party
settings. Section 3 characterizes equilibria in our model when the utility functions
are linear. Section 4 contains the proof of existence of PBS and NBS equilibria
on all networks, for broad classes of utility functions. Section 5 provides some
results about the effect of network structure on NBS equilibrium. And finally,
Section 6 briefly describes an efficient algorithm to compute approximate PBS
equilibria on trees with bounded degree and a specific utility function log(1+x).

2 Preliminaries

The input to the network bargaining problem consists of an undirected graph
G(V,E) with n vertices and m weighted edges, where vertices represent peo-
ple and edges represent possible bilateral trade deals, and a utility function Uv

for each vertex v. The utility functions are all represented succintly and are
computable in polynomial time.

Let c(e) be the weight of an edge e in G. Let e1, e2 . . . em be an arbitrary
ordering of the edges in E(G). For every edge ei, we assign it an arbitrary
direction, and refer to its end-points as ui and vi, such that ei is directed from
ui to vi. A state of the bargaining model is described by the division of profits
on each edge of the graph. Let x(ui, ei) and x(vi, ei) denote the profits ui and
vi receive from the agreement on the edge ei, respectively. Note that x(vi, ei) =
c(ei) − x(ui, ei). We shall represent a state of the bargaining model as a vector
s = (s1, s2 . . . sm) ∈ Rm such that si = x(ui, ei). Note that s uniquely determines
the division of profits on all edges.
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Definition 1. Let s ∈ Rm be a state of the bargaining model for a graph G. For
any vertex u and any edge e incident on u, let γs(u) denote the total profit of
a vertex u from all its deals with its neighbors. Let xs(u, e) denote the profit u
gets from the agreement on edge e. Let αs(u, e) = γs(u) − xs(u, e) be the profit
u receives from all its deals except that on e.

If the current state of the bargaining model is s, and e = (u, v) is renegotiated,
then we say that αs(u, e) and αs(v, e) are the alternate options for u and v
respectively, that is, the amount they receive if no agreement is reached on the
deal on e. We shall drop the suffix s if we make a statement for any arbitrary
state, or if the state is clear from the context.

Definition 2. Let s be any state of the bargaining model. Let x be the profit of
u from the deal on e = (u, v). Then, the differential utility of u from this deal
is as(x) = Uu(αs(u, e) + x) − Uu(αs(u, e)), and the differential utility of v from
this deal is bs(x) = Uv(αs(v, e) + c(e)− x) − Uv(αs(v, e)).

Definition 3. Let s be any state of the bargaining model. Define ys(u, e) to be
the profit u would get on the edge e = (u, v) if it is renegotiated (according to
some two-party solution), the divisions on all other edges remaining unchanged.
Also define update(s, e) = |xs(u, e)− ys(u, e)|.

If e is renegotiated according to the Nash Bargaining Solution (NBS), then
ys(u, e) is a value 0 ≤ x ≤ c(e) such that the NBS condition is satisfied, that
is, the function WN (x) = as(x)bs(x) is maximized. Instead, if e is renegoti-
ated according to the Proportional Bargaining Solution (PBS), then ys(u, e) is
a value 0 ≤ x ≤ c(e) such that the PBS condition is satisfied, that is, function
WP (x) = min{as(x), bs(x)} is maximized.

The following lemmas give simpler equivalent conditions for PBS and NBS
under certain assumptions about the utility functions, and are also applicable
to the two-party setting.

Lemma 1. If the utility functions of all vertices are increasing and continuous,
then the PBS condition reduces to the condition as(x) = bs(x), and there is a
unique solution x satisfying this condition.

Lemma 2. Let the utility functions of all vertices be increasing, concave and
twice differentiable,. Moreover, let qs(x) = as(x)

a′
s(x) , and let rs(x) = − bs(x)

b′
s(x) . Then

the NBS condition reduces to qs(x) = rs(x), and there is a unique solution x
satisfying this condition.

Definition 4. We say that an edge e is stable in a state s if renegotiating e does
not change the division of profits on e, that is, update(s, e) = 0. We say that a
state s is an equilibrium if all edges are stable. We say that s is an ε-approximate
equilibrium if update(s, e) < ε for all edges e.

We refer to an equilibrium as an NBS equilibrium if the renegotiations satisfy
the NBS condition. We refer to the equilibrium as a PBS equilibrium if the
renegotiations satisfy the PBS condition.
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3 Linear Utility Functions: Characterizing All Equilibria

In this section, we characterize all possible NBS and PBS equilibria when all
vertices have linear increasing utility functions, for every vertex v. Braun and
Gautschi [5] make this assumption in their model, and so do Kleinberg and
Tardos [6].

We show that in our model, if we make this assumption, there is a unique
NBS equilibrium and a unique PBS equilibrium, and network topology has no
influence on the division of profits on the deals at equilibrium. The following two
theorems formalise these observations. Their proofs are simple, and are omitted
due to lack of space.

Theorem 1. Suppose all vertices have linear increasing utility functions. Then
there is a unique NBS equilibrium, in which the profit on every edge is divided
equally between its two end-points.

Theorem 2. Suppose all vertices have linear increasing utility functions. Let
Ui(x) = kix + li ∀i ∈ V (G). Then there is a unique PBS equilibrium, such that
for any edge e = (u, v), xs(u, e) = c(e) kv

ku+kv
.

4 Existence of Equilibrium for General Utility Functions

We now turn our focus towards non-linear utility functions. In this section, we
prove that PBS and NBS equilibria exist on all graphs, when the utility functions
satisfy some natural conditions. The proofs use the Brouwer fixed point theorem,
and is similar to the proof of existence of mixed Nash equilibrium in normal form
games.

Theorem 3. PBS equilibrium exists on any social network when all utility func-
tions are increasing and continuous. NBS equilibrium exists on any social net-
work when all utility functions are increasing, concave and twice differentiable.

Essentially, it is sufficient for the utility functions to satisfy the following general
condition of continuity:

Condition 1. Let s be any state of the bargaining model, and e = (u, v) be
an edge. For every ε > 0, there exists δ > 0 such that for any state t such
that |αt(u, e) − αs(u, e)| < δ and |αt(v, e) − αs(v, e)| < δ, we have |yt(u, e) −
ys(u, e)| < ε.

Note that ys(u, e) and yt(u, e) are influenced both by the utility functions as
well as the two-party solution concept that is used (NBS or PBS). Thus whether
Condition 1 holds will depend on whether the renegotiations follow the NBS or
the PBS condition, and also on the utility functions.

Lemma 3. If Condition 1 holds for the NBS solution concept or the PBS solu-
tion concept, then NBS or PBS equilibrium exists, respectively.
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Proof. We define a function f : [0, 1]m → [0, 1]m that maps every state s to
another state f(s). Given s, we can construct the unique solution t such that
the deal on an edge e = (u, v) in t is the renegotiated deal of e in s, that is,
xt(u, e) = ys(u, e). We define f(s) to be t. Thus, f(s) is the “best-response”
vector for s.

Clearly, s is an ε-approximate equilibrium if and only if ||s− f(s)||∞ < ε. In
particular, s is an equilibrium if and only if f(s) = s, that is, s is a fixed point
of f . Also, [0, 1]m is a closed, bounded and convex set. So if f were continuous,
then we can immediately use Brouwer fixed point theorem to deduce that the
equilibrium exists. Thus the following claim completes the proof. ��

Claim. f is continuous if and only if Condition 1 holds.

Proof. Suppose Condition 1 holds for some ε and δ. Thus, if ||s − t||∞ < δ/n,
then |αt(u, e) − αs(u, e)| < δ and |αt(v, e) − αs(v, e)| < δ, so, by Condition 1,
|yt(u, e)− ys(u, e)| < ε, and thus ||f(s)− f(t)||∞ < ε. Since there exists a δ for
every ε > 0, so f is continuous.

Now suppose f is continuous. Let ε > 0. Then there exists δ > 0 such that
for any solution t, if ||s− t||∞ < δ, then ||f(s)− f(t)||∞ < ε, which implies that
coordinatewise for every edge e, we have |yt(u, e) − ys(u, e)| < ε. Since this is
true for all ε > 0, Condition 1 holds. ��

Lemma 4. Condition 1 holds for all increasing, continuous utility functions
when renegotiations follow the PBS condition.

Proof. Let s be any state of the bargaining model and let e = (u, v) be any edge.
Here, Lemma 1 is applicable. Let h(s, x) = as(x)−bs(x). Also, let gs(x) = h(s, x)
be a function defined on a particular state s. Note that gs is an increasing,
continuous function on the domain [0, c(e)], gs(0) < 0 and gs(c(e)) > 0. The
renegotiated value ys(u, e) is the unique zero of gs(x) between 0 and c(e).

Let y = ys(u, e) be the zero of gs. Let η = max{|gs(y− ε)|, |gs(y+ ε)|}. Then,
since gs is increasing, η > 0, and for all x ∈ [0, c(e)] \ (y − ε, y + ε), |gs(x)| ≥ η.

Now, observe that h(s, x) is dependent on αs(u, e), αs(v, e) and x only, and is
continuous in all three of them when the utility functions are continuous. Thus,
there exists δ > 0 such that for any state t where |αs(u, e) − αt(u, e)| < δ and
|αs(v, e) − αt(v, e)| < δ, we have |h(s, x) − h(t, x)| < η ∀x ∈ [0, c(e)], that is
|gt(x)− gs(x)| < η. This implies that gt(x) �= 0 for all x ∈ [0, c(e)] \ (y− ε, y+ ε),
and so the zero of gt, which is yt(u, e), lies in the range (y − ε, y + ε). ��

Lemma 5. Condition 1 holds for all increasing, concave and twice differentiable
utility functions when renegotiations follow the NBS condition.

Proof. Let s be any state of the bargaining model and let e = (u, v) be any edge.
Here, Lemma 2 is applicable. Let h(s, x) = qs(x)−rs(x). Also, let gs(x) = h(s, x).
The rest of the proof identically follows that of Lemma 4. ��

Combining Lemmas 3, 4 and 5, we get Theorem 3.



554 T. Chakraborty and M. Kearns

5 Effect of Network Structure on NBS Equilibrium

In this section, we shall study the effect of network topology on NBS equilibrium.
In the rest of this section, we shall assume here that all vertices have the same
utility function U(x), and that the deal on every edge has unit profit, so that
the network topology is solely responsible for any variation in the distribution of
profits in the NBS equilibrium. We also assume some natural properties of the
utility function, and the following is our main result under these assumptions.

Theorem 4. Let U(x) be the utility function of every vertex, and let all edges
have unit weight. Let U(x) be increasing, twice differentiable and concave. Also,
suppose U(x)−U(0)

U ′(x) < Kx ∀x ∈ [0, 1] for some constant K, and |U ′′(x)| ≤
ε(x)U ′(x) for some decreasing function ε(x). Let s be any NBS equilibrium in
this network. Let e = (u, v) be an edge such that u and v have degree more than
(K + 1)d+ 1 for some positive integer d. Then, |xs(u, e)− 1

2 | < ε(d).

Note that the assumptions on the utility function guarantee the existence of
NBS equilibrium. Also note that the function U(x) = xp for some 0 < p < 1
satisfies the conditions of Theorem 4 with K = p−1 and ε(x) = (1 − p)/x. The
function U(x) = log(1 + x) satisfies the conditions of Theorem 4 as well, with
K = 2, since (1 +x) log(1 + x) < (1 + x)x ≤ 2x when x ∈ [0, 1], and ε(x) = 1

1+x .
To prove the above theorem, we will need the next two lemmas. Their proofs are
technical, and are omitted due to lack of space.

Lemma 6. Let U(x) be increasing, twice differentiable and concave. Also, sup-
pose U(x)−U(0)

U ′(x) < Kx ∀x ∈ [0, 1] Then at an NBS equilibrium s, for every edge
e = (u, v), xs(u, e) ≥ 1

K+1 and xs(v, e) ≥ 1
K+1 .

Lemma 7. Let U(x) be increasing, twice differentiable and concave. Let s be an
NBS equilibrium, e = (u, v) be any edge, and ε > 0. Also, let |U ′′(αs(u, e))| ≤
εU ′(αs(u, e)) and |U ′′(αs(v, e))| ≤ εU ′(αs(v, e)). Then, if u gets x on this agree-
ment at equilibrium (and v gets 1− x), then |x− 1

2 | < ε.

Proof (of Theorem 4). There are (K + 1)d edges incident on each vertex u and
v excluding (u, v), so Lemma 6 implies that at an NBS equilibrium, αs(u, e) >

1
K+1 (K + 1)d = d and αs(v, e) > 1

K+1(K + 1)d = d. Since |U ′′(x)| ≤ ε(x)U ′(x)
and ε(x) is decreasing, we put ε = ε(d) < min{ε(αs(u, e)), ε(αs(v, e))} in
Lemma 7 to obtain our result. ��

6 Computing Approximate PBS Equilibria on Trees of
Bounded Degree

In this section, as a first step towards settling the computational complexity of
finding an equilibrium in our model, we note that approximate PBS equilibria
can be computed efficiently when the networks are trees of bounded degree and
utility function is same for all vertices and is very specific, as follows.



Bargaining Solutions in a Social Network 555

Theorem 5. Suppose that the bargaining network is a tree with n vertices and
maximum degree k, and weights on all edges bounded by C, and where all vertices
have the same utility function U(x) = log(1+x). There is an algorithm that com-
putes an ε-approximate PBS equilibrium of this network in time n(Cε−1k)O(k).

Since this algorithm is not central to this paper, and due to lack of space, we
shall only provide its intuition and omit the details. Our algorithm is essentially
a modification of the TreeNash algorithm of Kearns et. al. [8]. It is a dynamic
programming technique on a rooted tree, where computation for the root u of
a subtree can be easily completed if the same computation has been already
completed for the children of u. The algorithm discretizes the division of profits
on each edge to the multiples of some fraction δ = ε/k, and then computes a
table for each subtree, under root u. A typical entry of the table stores whether
there exists an approximate equilibrium in the subtree, given the total profit of
u and its profit from the deal with its parent, and also the deals of u in at least
one such equilibrium, if it exists.

Lemma 8 below is crucial for the correctness of our algorithm. It implies
that the approximation factor achieved by the algorithm is proportional to the
discretization factor δ. The lemma follows quite easily from Lemma 9. Lemma 9
depends heavily on the fact that the utility function is log(1 + x). However,
similar results hold for many other utility functions, and our algorithm can be
modified to apply to any such utility function.

Lemma 8. Let s be an exact equilibrium on any graph of maximum degree at
most k, and let U(x) = log(1+x). Let t be any state with l∞(s, t) = maxm

i=1 |si−
s′i| < δ. Then, t is a kδ-approximate equilibrium.

Lemma 9. Let U(x) = log(1 + x). Let s and t be any two states, and e = (u, v)
be an edge, such that |αt(u, e) − αs(u, e)| < ε1 and |αt(v, e) − αs(v, e)| < ε2. If
we use PBS for renegotiations, then |yt(u, e)− ys(u, e)| < (ε1 + ε2)/2.
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Abstract. Online service providers generate much of their revenue by
monetizing user attention through online advertising. In this paper, we
investigate revenue sharing, where the user is rewarded with a portion of
the surplus generated from the advertising transaction, in a cost-per-
conversion advertising system. While revenue sharing can potentially
lead to an increased user base, and correspondingly larger revenues in the
long-term, we are interested in the effect of cashback in the short-term,
in particular for a single auction. We capture the effect of cashback on
the auction’s outcome via price-dependent conversion probabilities, de-
rived from a model of rational user behavior: this trades off the direct
loss in per-conversion revenue against an increase in conversion rate. We
analyze equilibrium behavior under two natural schemes for specifying
cashback: as a fraction of the search engine’s revenue per conversion,
and as a fraction of the posted item price. This leads to some interest-
ing conclusions: first, while there is an equivalence between the search
engine and the advertiser providing the cashback specified as a fraction
of search engine profit, this equivalence no longer holds when cashback
is specified as a fraction of item price. Second, cashback can indeed lead
to short-term increase in search engine revenue; however this depends
strongly on the scheme used for implementing cashback as a function
of the input. Specifically, given a particular set of input values (user
parameters and advertiser posted prices), one scheme can lead to an in-
crease in revenue for the search engine, while the others may not. Thus,
an accurate model of the marketplace and the target user population is
essential for implementing cashback.

1 Introduction

Advertising is the act of paying for consumers’ attention: advertisers pay a pub-
lisher or service provider to display their ad to a consumer, who has already
been engaged for another purpose, for example to read news, communicate, play
games, or search. Consumers pay attention and receive a service, but are typi-
cally not directly involved in the advertising transaction. Revenue sharing, where
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the consumer receives some portion of the surplus generated from the advertis-
ing transaction, is a method of involving the user that could potentially lead to
an increased user base for the service provider, albeit at the cost of a possible
decrease in short-term revenue.

In May 2008, Microsoft introduced cashback in LiveSearch, where users who
buy items using the LiveSearch engine receive cashback on their purchases. As in
Livesearch, revenue sharing is best implemented in a pay-per-conversion system,
where advertisers need to make a payment only when users actually purchase
items– since money must change hands to trigger an advertising payment and
a revenue share, the system is less susceptible to gaming by users as compared
to systems based on cost-per-impression (CPM) or cost-per-click (CPC). Since
revenue sharing in this setting corresponds directly to price discounts on items
purchased, this gives users a direct incentive to engage with the advertisements
on the page. Thus, there is in fact a potential for short-term revenue benefits to
the search engine in the form of increased conversion probabilities, in addition
to the possibility of an increased user base in the long term.

In this paper, we present a model to study the effect of revenue sharing on
search engine revenues, and advertiser and user welfare in a single auction (specif-
ically, we do not model long-term effects). We model the impact of cashback on
the user via a price dependent conversion probability, and investigate equilib-
rium behavior in an auction framework. There are multiple natural schemes for
revenue sharing: should cashback be specified as a fraction of the item price, or as
a fraction of the search engine’s profit from each transaction? Since advertisers
might also potentially benefit from cashback in the form of increased sales, should
the burden of providing cashback be the advertiser’s or the search engine’s? Since
advertising slots are sold by auction, the choice of scheme (which includes the
ranking and pricing functions for the auction) influences the strategic behavior
of advertisers, and therefore the final outcome in terms of the winning adver-
tiser, his payment and the final price to the user. As we will see, these different
methods of revenue sharing essentially reduce to creating a means for sellers to
price discriminate between online and offline consumer segments (or different
online consumer segments): the difference in outcomes arises due to differences
in the nature and extent of price discrimination allowed by these revenue-sharing
schemes.

The analysis, while technically straightforward, leads to some interesting re-
sults, even for the simplest case of an auction for a single slot. First, search
engines may earn higher advertising revenue when sharing part of that revenue
with consumers rather than keeping all revenue to themselves, even ignoring the
effect of the policy on overall user growth. (This is because providing cash back to
consumers can increase their likelihood of purchasing items, thereby increasing
the probability of an advertising payment.)

However, whether, and how much, revenue increases depends strongly on the
scheme used for implementing cashback as a function of the input: that is, given a
particular set of input values (user parameters and advertiser prices), one scheme
can lead to an increase in revenue for the search engine, while the others may not.



558 Y. Chen et al.

Further, while one might expect an equivalence between cashback being provided
by the search engine and the advertiser (since advertisers can choose their bids
strategically in the auction), this is true when the cashback is a fraction of the
search engine’s profit but not when it is a fraction of the item price. Finally,
the effect on advertiser or user welfare is also not obvious: depending on the
particular scheme being used, it is possible to construct examples where the final,
effective, price faced by the user might actually increase with cashback, owing
to increased competition amongst advertisers. Thus the problem of cashback
is not a straightforward one, and none of these schemes always dominates the
others: understanding the marketplace and target user population is essential
for effective implementation of revenue sharing.

Related work. The most relevant prior research is that of Jain ([5]), mak-
ing the case that search engines should share the surplus generated by online
advertising with users. In contrast, we take a completely neutral approach to
revenue-sharing, and provide a model for analyzing its effects on search engine
revenue, and user and advertiser welfare.

In some advertising systems, a portion of advertisers’ payments go to con-
sumers in the form of coupons, cash back incentives, or membership rewards,
either directly from the advertiser or indirectly through an affiliate marketer or
other third party lead generator. Several large online affiliate marketing aggre-
gators, for example ebates.com, mypoints.com, and jellyfish.com, function this
way, collecting from advertisers on every sale and allocating a portion of their
revenue back to the consumer. The main distinction in our work is that the cash-
back mechanism is embedded in an auction model: advertisers are competing for
a sales channel, and the search engine’s revenue is determined by the ranking
and pricing function used, as well as by the discount offered. We build on the
work on equilibrium in sponsored search auctions [7,4].

Goel et al. [1] explore revenue sharing in a ranking or reputation system, de-
scribing an ingenious method to incentivize users to fix an incorrect ranking.
There is a large body of empirical work on the effect of price discounts and sales
on purchases of items, and the impact of different methods of specifying the
discount; see, for example, [2,6]. Researchers have examined consumers’ percep-
tions of search and shopping intentions, at different levels of discounts across
two shopping enviroments, one online and the other offline, showing that the
shopping intention of the consumers differ at varying discount levels in the two
environments [3].

2 Model

We model the simplest instance of revenue sharing, where n sellers, each sell-
ing an item with posted price pi, compete for a single advertising slot in a
cost-per-conversion system (i.e., the winning advertiser makes a payment only
when a user buys the item). The search engine, which auctions off this ad slot
amongst the sellers, controls the ranking and pricing functions for the auction,
and can choose whether and how to include cashback in the mechanism. The key
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element in our model capturing the effect of revenue sharing is a price-dependent
conversion probability, gi(p), which is a decreasing function of p: this introduces
a trade-off since decreasing the final price to the user increases the probability
of a conversion, which may lead to higher expected revenue. This conversion
probability function is derived from the following user model: a user is a rational
buyer, whose value for item i, vi, is drawn i.i.d. from a distribution with CDF
Fi(vi). The user buys the item only if the price pi ≤ vi, which has probability
1 − Fi(p). Since the user’s probability of purchasing item i need not solely be
determined by price (it might depend, for instance, on the reputation of seller
i, or the relevance of product i to the user), we introduce a price-independent
multiplier xi (0 < xi ≤ 1). Thus, the final probability of purchase given price p
is gi(p) = xi (1− F (p)), which is a decreasing function of p1.

Associated with seller i, in addition to the posted price pi and the conversion
probability (function) gi(p), is a production cost ci, so that a seller’s net profit
when he sells an item at a price p is p − ci. We assume that posted prices
pi’s and the functions gi are common knowledge to both the search engine and
advertisers (this assumption is discussed later); the costs ci are private to the
advertisers. We investigate the trade-off between cashback and expected revenue
to the search engine in a single auction; we clarify again that we do not model
and study long-term effects of cashback on search engine revenues in this paper.

3 Schemes for Revenue Sharing

We describe and analyze four variants of natural revenue-sharing schemes that
the search engine could use when selling a single advertising slot through an
auction. For each scheme, we analyze the equilibrium behavior of advertisers,
and where possible, state the conditions under which cashback leads to an in-
crease in revenue for the search engine. (Our focus is on search engine revenue
since decrease in revenue is the primary argument for a search engine against
implementing cashback.) Finally, we compare the schemes against each other.
Due to space constraints, all proofs and examples can be found in the full version
of this paper.

3.1 Cashback as a Fraction of Posted Price

Specifying cashback as a fraction of the posted price of an item is most mean-
ingful to the user, since he can now compute the exact final price of an item.
We consider three natural variants, and specify their equilibria, in order to per-
form a revenue comparison. Note that the ranking, and therefore the winning
advertiser and welfares, are a function of the variants and can also depend on
the cashback fraction.

1 For example, if the density fi is uniform on [0, Wi], gi(p) = xi(1 − 1
Wi

p) is a linear
function; if fi is exponential with parameter λi, the resulting g function is exponential
as well.
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1. Cashback as a fixed fraction of posted price paid by advertiser.
We first consider the scheme where the auction mechanism also dictates the
winning advertiser to pay a fixed fraction α of its posted price as cashback
to users for every conversion. The fraction α is determined by the search
engine ahead of time and is known to all advertisers. In such an auction,
advertisers submit a bid bi which is the maximum amount they are willing to
pay the search engine per conversion. The search engine ranks advertisers by
expected value per conversion including the effect of cashback on conversion
probability, i.e., by gi(pi − αpi)bi (note bi is the bid and pi is the posted
price). For every conversion, the winning advertiser must pay the search
engine the minimum amount he would need to bid to still win the auction;
he also pays the cashback to the consumer.

In such an auction, an advertiser’s dominant strategy is to bid so that his
maximum payment to the search engine plus the revenue share to the user
equals his profit, in order to maximize his chance of winning the slot. The
following describes the equilibrium of the auction.

Proposition 1. (Equilibrium behavior) At the dominant strategy equilib-
rium, advertisers bid bIi = max(0, (1− α) pi − ci) and are ranked by the
mechanism according to zIi = max (0, gi (pi (1− α)) ((1− α)pi − ci)). Let σI
be the ranking of advertisers. The winning advertiser, σI{1} pays

pIc =
zIσI{2}

gσI{1}
(
pσI{1} (1− α)

) (1)

for every conversion. The search engine’s expected revenue equals the second
highest expected value after cashback,

RI = gσI{1}
(
pσI{1} (1− α)

)
pIc = zIσI{2}. (2)

Note that the ranking σI is a function of α. For different values of α, different
advertisers may win the auction and the advertisers’ bids also change.

Even though it is the advertiser who pays the cash-back, it is not always
beneficial for the search engine to choose a non-zero fractional cashback, i.e.,
α > 0. We present some sufficient conditions for cashback to be (or not to
be) revenue-improving in this case.

Theorem 1. Suppose gi is such that (p − ci)gi(p) is continuous and dif-
ferentiable with respect to p, and has a unique maximum at some price p∗i .
Let σ0 be the ranking of advertisers when there is no cash-back. If (pσ0{1} −
cσ0{1})gσ0{1}(pσ0{1}) > (pσ0{2}−cσ0{2})gσ0{2}(pσ0{2}) and pσ0{2} > p

∗
2, there

exists α > 0 that increases the search engine’s revenue. Conversely, if all
advertisers’ posted prices satisfy pi ≤ p∗i , revenue is maximized by setting
α = 0.

Theorem 1 implies that cash-back may be beneficial to the search engine
when the original product prices are “too high”, i.e. higher than the optimal
prices. The natural question to ask is why any advertiser would want to set
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a price higher than his optimal price. This relates to the assumption that
each advertiser keeps a universal price across all markets (buyer segments or
sales channels). Buyers in each market can have a different price sensitivity
function gi. Thus, the universal price can be the optimal price in other
markets but higher than the optimal price in the market that the advertiser
attempts to reach through the search engine. (It is possible, for instance, that
shoppers typically look for deals online, or would want to pay lower prices
online than in stores due to uncertainty in product quality or condition.)
Example 1 in Appendix B in the full version of the paper illustrates the
increase of expected revenue for search engine by choosing a positive α.

2. Search engine pays cashback as a fixed fraction of posted price.
Next we consider the scheme where the search engine pays a fixed fraction β
of the winning advertiser’s posted price as cashback for every conversion. β
is determined by the search engine and is known to all advertisers. Naturally,
the search engine will only choose values of β so that pc, the payment per
conversion received by the search engine, is greater than or equal to βpi.
Advertisers submit bids bi. The search engine ranks advertisers by their final
(post-cash-back) conversion rate multiplied by their bid, i.e., gi(pi − βpi)bi.
An advertiser’s dominant strategy is to bid so as to maximize his chances of
winning the slot without incurring loss:

Proposition 2. (Equilibrium behavior) Advertisers bid bIIi = pi−ci and are
ranked by zIIi = gi (pi (1− β)) (pi − ci) at the dominant strategy equilibrium.
Let σII be the ranking of advertisers. The winning advertiser, σII{1}, pays

pIIc =
zIIσII{2}

gσII{1}
(
pσII{1} (1− β)

) . (3)

for every conversion. The search engine’s expected revenue is

RII = gσII{1}
(
pσII{1} (1− β)

) (
pIIc − βpσII{1}

)
= zIIσII{2} − βpσII{1}gσII{1}

(
pσII{1} (1− β)

)
. (4)

In this case also, the search engine may increase its expected revenue when
using this scheme. Suppose gi(pi) = 1 − 0.1pi. Three advertisers A, B, and
C participate in the auction. They have prices pA = 6, pB = 9, and pC = 10
respectively; c = 0 for all advertisers. Then, by setting β = 0.4737 the search
engine increases its expected revenue from 0.9 to 2.4931 and the final price
faced by the user drops from 6 to 4.74.

3. Advertiser chooses amount of cashback and pays it.
More expressiveness is provided to the advertisers if they are allowed to bid
both on the fractional discount they offer, as well as their per-conversion
payment to the search engine. Both of these are then used in the ranking
function. The search engine runs an auction that does not specify the fraction
of revenue share required. Instead, the auction rule requires the advertiser to
submit both a bid bi and a fraction γi (0 ≤ γi ≤ 1). Advertisers are ranked by
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conversion rate (including cashback) multiplied by bid, i.e. gi (pi(1− γi)) bi.
The payment of the winning advertiser is as follows: his net payment is
γipi +pc, where pc is the minimum amount he needs to bid, keeping γi fixed,
to win the auction. The dominant strategy for all advertisers is to choose
γi to maximize their values, and for the choice of γi, to bid their true value
after the effect of cashback.

Proposition 3. At the dominant strategy equilibrium, advertisers select γ∗i =
arg max

0≤γi≤1
xigi ((1− γi) pi) ((1− γi)pi − ci), bid bIIIi = (1− γ∗i ) pi − ci, and

are ranked by zIIIi = gi (pi (1− γ∗i )) ((1− γ∗i )pi − ci). Let σIII be the ranking
of advertisers. The winning advertiser, σIII{1}, pays the search engine

pIIIc =
zIIIσIII{2}

gσIII{1}

(
pσIII{1}

(
1− γ∗σIII{1}

)) (5)

and pays the user γ∗σIII{1}pσIII{1} per conversion. The search engine’s expected
revenue is

RIII = gσIII{1}

(
pσIII{1}

(
1− γ∗σIII{1}

))
pIIIc = zIIIσIII{2}. (6)

Note that allowing the advertiser to choose γi as well as bi essentially allows
them to choose an effective new “price”. Consequently, if possible the adver-
tiser selects γi so that the new price equals his optimal price. For pi > p∗i ,
this γ∗i is such that (1 − γ∗i )pi = p∗i , where p∗i is the price that maximizes
the function (p− ci)gi(p). The following theorem shows that in this scheme,
the search engine’s expected revenue is always weakly larger than without
cashback.

Theorem 2. Let R0 denote search engine’s expected revenue without cash-
back. For the same set of advertisers, RIII ≥ R0.

Example 2, Appendix B in the full version of this paper illustrates the increase
of search engine’s expected revenue with this scheme.

3.2 Cashback as a Fraction of Search Engine Revenue

Another natural way to specify a revenue share is to describe it as a fraction α of
the search engine’s revenue, i.e., the payment per conversion; this corresponds to
the search engine sharing its surplus with the user, who is an essential component
of the revenue generation process. Unless the search engine charges a fixed price
per conversion, it is hard to include post-cashback conversion rates to determine
the ranking, since the amount of cashback depends on the ranking. Thus, we
use the conversion rate before cashback to rank advertisers. In this scheme,
advertisers are ranked according to gi(pi)bi, where bi is the per-conversion bid
submitted by advertiser i, and search engine pays a fixed fraction δ of its revenue
per conversion as cashback. Again, it is a dominant strategy for advertisers to
bid their true value:
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Proposition 4. Advertisers bid bIVi = pi−ci and are ranked by zIVi = gi(pi)(pi−
ci) at the dominant strategy equilibrium. Let σIV be the ranking of advertisers.
The winning advertiser, σIV{1}, pays

pIVc =
gσIV{2}(pσIV{2})(pσIV{2} − cσIV{2})

gσIV{1}(pσIV{1})
(7)

per conversion. The revenue of the search engine with cashback is

RIV = gσIV{1}(pσIV{1} − δpIVc )
zσIV{2}

gσIV{1}(pσIV{1})
pIVc (1− δ). (8)

Note that this ranking is independent of the value of δ, the cashback fraction:
σIV is the same as σ0, the ranking without cashback.

It is also possible to request the advertiser to pay the cashback that is specified
as a fixed fraction of the search engine’s revenue. We show that it is equivalent
to the case that the search engine pays the cashback.

Theorem 3. The scheme where search engine pays δ fraction of its revenue
per conversion as cashback is equivalent to the scheme where the advertiser pays
δ/(1 − δ) fraction of the search engine’s revenue per conversion as cashback,
regarding to the utilities of the user, the advertisers, and the search engine.

Note that when revenue share is specified as a fraction of search engine revenue,
the search engine may choose the optimal fraction δ after advertisers submit
their bids. This will not change the equilibrium bidding behavior of advertisers,
in contrast to the case where advertisers pay the cashback. Since the optimal
cashback δ might be 0, choosing δ after collecting bids ensures that the search
engine’s revenue never decreases because of cashback.

Whether or not the search engine can increase its revenue by giving cash-back
depends on the posted prices of the top two advertisers and their g functions.

Theorem 4. If there exists δ > 0 such that gσIV{1}(pσIV{1} − αpc)(1 − δ) ≥
gσIV{1}(pσIV{1}), revenue sharing with parameter δ increases the expected revenue
of the search engine. For linear gi = xi(1 − kpi) and ci = 0, δ > 0 when
pσIV{1} + pIVc > 1/k.

3.3 Comparison between Schemes

The first three schemes described above all specify revenue share as a fraction of
posted price, while the fourth scheme specifies revenue share as a fraction of the
search engine revenue. The following results characterize the choice of mechanism
to maximize the search engine’s revenue, when revenue share is expressed as a
fraction of posted price.

Theorem 5. Given a set of advertisers, RIII ≥ RI for all α.

Theorem 6. Given a set of advertisers, RI ≥ RII if α = β and the ranking
according to pi ∗ g(pi(1− β)) is the same as the ranking according to (pi − ci) ∗
g(pi(1− β)).
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This gives us a result on maximizing revenue when cashback is specified as a
fraction of the posted prices for the special cases below.

Corollary 1. When ci = 0, or ci = µpi for all i, RIII ≥ RI ≥ RII. Thus revenue
is maximized when the search engine allows advertisers to choose and pay the
fraction γi of their posted prices.

When revenue share is expressed as a fraction of the posted price, allowing
advertisers to choose the fraction of revenue share (the third scheme) can lead
to the highest revenue for the search engine in many cases. Thus, we compare
it with the case when revenue share is specified as a fraction of the advertising
revenue (the fourth scheme). We have the following result.

Proposition 5. Neither the revenue-maximizing cashback scheme with cashback
as a fraction of posted price, nor the revenue-maximizing scheme with cashback
as a fraction of search engine revenue, always dominates the other in terms of
generating higher expected revenue for the search engine.

Thus, depending on the set of posted prices, the expected revenue of the search
engine in either the third or the fourth scheme can be higher. Both schemes,
however, are always weakly revenue improving: in the third scheme where ad-
vertisers specify the cashback amount, the search engine needs to make no choice
and, according to Theorem 2, the search engine’s revenue is at least as large as
that without cashback. In the fourth scheme also, the search engine can choose
the optimal fraction after the bids have been submitted, ensuring that cashback
never leads to loss in revenue.

We note that whether cashback can increase search engine revenue or not also
depends on the revenue sharing schemes. Given a set of advertiser prices, it is
possible that one scheme can increase the revenue of search engine by providing
positive cashback, while the other scheme is better off not giving cashback at
all. Examples 3 and 4 in Appendix B in the full version of the paper support
this with two specific instances.

4 Conclusion

We model revenue sharing with users in the context of online advertising auc-
tions in a cost-per-conversion system, in which the winning advertiser pays the
search engine only in the event of a conversion. The conversion probability of a
user is modeled as a decreasing function of the final product price that the user
faces. Thus, sharing revenue with the user may increase the conversion proba-
bility sufficiently to lead to a short-term increase in the search engine’s expected
revenue, despite the fact that the per-conversion revenue decreases.

We study four schemes for a search engine to specify the revenue share in
the auction setting. When the revenue share is expressed as a fraction of the
winning advertiser’s posted price, we have (1) advertiser pays cashback as a
fixed fraction of posted price; (2) search engine pays cashback as a fixed fraction
of posted price; and (3) advertiser determines and pays cashback. If the revenue
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share is specified as a fraction of the advertiser’s revenue per conversion, we
consider (4) the search engine pays cashback as a fixed fraction of its revenue.
We analyze the equilibrium of the auction for the four schemes and show that
for all four schemes there are situations in which search engine can increase its
short-term expected revenue by allowing revenue sharing. Scheme (3) dominates
scheme (1) and (2) in many situations in terms of maximizing search engine
revenue. However, neither scheme (3) nor scheme (4) are universally better for
generating higher search engine revenue. We note that although revenue sharing
often leads to lower final prices to users, this need not always be the case: there
exist advertiser prices under which the revenue maximizing cashback fraction
leads to increased final price to the user, as shown in Example 1, Appendix B
in the full version of this paper.

The properties of these revenue sharing mechanisms rely strongly on the as-
sumption that advertisers keep a universal price across all sales channels, which
is often the case in reality. If advertisers can or are willing to charge channel-
specific-prices, they will select an optimal price to participate in the advertising
auction. In return, the search engine no longer needs to, or will not find it prof-
itable to share revenue with the user. In fact, revenue sharing with users is an
indirect way, controlled by the search engine, to achieve price discriminations
across different sales channels.
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Abstract. We consider the budget-constrained bidding optimization
problem for sponsored search auctions, and model it as an online
(multiple-choice) knapsack problem. We design both deterministic and
randomized algorithms for the online (multiple-choice) knapsack prob-
lems achieving a provably optimal competitive ratio. This translates back
to fully automatic bidding strategies maximizing either profit or revenue
for the budget-constrained advertiser. Our bidding strategy for revenue
maximization is oblivious (i.e., without knowledge) of other bidders’
prices and/or clickthrough-rates for those positions. We evaluate our
bidding algorithms using both synthetic data and real bidding data gath-
ered manually, and also discuss a sniping heuristic that strictly improves
bidding performance. With sniping and parameter tuning enabled, our
bidding algorithms can achieve a performance ratio above 90% against
the optimum by the omniscient bidder.

1 Introduction

Sponsored search auction is an effective way of monetizing search query activites
for search engine providers, while shifting the burden to advertisers/bidders to
figure out how to automate and optimize the keyword bidding process. In this
work we focus on the bid optimization problem under the budget constraint.
Formally, given an advertiser with a fixed budget over a fixed time horizon,
and a set of keywords that he is interested to bid on, we try to design bidding
strategies to address the following problem: For each keyword and each time
period, how much should the advertiser bid to obtain which position, so as to
maximize return on investment (ROI) of these auctions?

Keyword Bidding Models. For simplicity, assume that the default advertiser
has a budget B over a fixed time horizon, discretized into time periods 1, . . . , T .
He is interested in a single keyword with expected value-per-click V . The model
can be easily extend to the multiple-keyword case.
� Work was done while the author were at HP Labs.
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There are bidders {1, · · · , N} at time t for this keyword and their bids are
sorted in decreasing order b1(t) > . . . > bN (t). There are S ad slots, and are
assigned to the top-S bids as follows: bidder s gets slot s; for each user click on
his ad, bidder s is charged a price bs+1, if s < S or a minimum fee bmin (e.g.
10¢). Each slot s has a clickthrough-rate (CTR), denoted α(s), which is defined
as the total number of clicks on an ad divided by the total number of impressions
(displays). Assuming other bidders have their bids fixed, the default advertiser
can obtain slot s by bidding slightly over bs(t); for each user click, he incurs a
cost of bs(t), obtains an expected revenue V and profit V − bs(t).
Online Knapsack Problems. Fix a keyword with positions 1, . . . , S. At time
t, X(t) is the number of clicks at period t, while bs(t) is the maximum bid
corresponding to position s. Winning position s at time t costs the advertiser
ws(t) and earns him a profit of vs(t) where

ws(t) ≡ bs(t)X(t)α(s), vs(t) ≡ (V − bs(t))X(t)α(s). (1)

For revenue maximization, vs(t) = V X(t)α(s). Let N(t) = {(ws(t), vs(t))|s =
1, . . . , S}, then winning position s at time t correspondes to selecting item
(ws(t), vs(t)) ∈ Nt. Since the default bidder has to decide either overbidding
bs(t) or not at time t, thus keyword bidding corresponds to the online multipe-
choice knapsack problem (Online-MCKP). The multiple-choice knapsack prob-
lem is a generalization of the classic knapsack problem, where there are multiple
item-sets and you can select at most one item from each item-set; the multiple-
choice constraint of MCKP corresponds to the sponsored search auction policy
where each advertiser can select to win at most one ad slot for each keyword at
each time.

Our Assumptions. We use competitive analysis to evaluate our bidding strate-
gies, comparing our result with the maximum profit attainable by the omniscient
bidder who knows the bids of all the other users ahead of time. In general, no
online algorithm can achieve any non-trivial competitive ratio (the ratio between
the output of the given algorithm and the offline optimum) for Online-KP [4].
Fortunately, in our setting, we make two reasonable assumptions on the knap-
sack items, which allow us to develop interesting online algorithms. These two
assumptions are:

(i)ws(t)0 B; (ii)L ≤ vs(t)
ws(t)

≤ U, ∀t, ∀s. (2)

2 Results

In this work we model budget-constrained bidding optimization as variants of
online knapsack problems. In Section 3, we design a determinstic algorithm for
the online knapsack problem with two assumptions given above. The algorithm
has a competitive ratio ln(U/L)+1, and is robust again any adaptive adversary.
We also show a matching lower bound in section 3.1. Therefore our algorithm is
provably optimal in the worst-case sense. We also give a (ln(U/L)+2)-competitive
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online algorithm for the multiple-choice knapsack problem (MCKP), the classic
generalization of the knapsack problem which corresponds to the general bidding
optimization problem with multiple slots per keyword.

In Section 4, we translate the algorithms for online knapsack problems into
bidding strategies for sponsored search auctions, for both profit and revenue
maximization. For single-slot auctions, the corresponding strategies are oblivi-
ous, and thus work even if other bidders’ bids were not known. It also implies
that the strategy is an approximate dominant strategy in the sense that it is an
approximate best response to any bid profile of other bidders. For the multiple-
slot case, we translate the algorithm for Online-MCKP to bidding strategies for
both profit and revenue-maximizing bidding strategies. The profit maximizing
strategy is not oblivious and requires knowledge of other players’ bids and also
the CTRs of all slots. The revenue-maximizing strategy remains oblivious.

In Section 5, we report experimental results evaluating our bidding strategies
using both synthetic bidding data and real bidding data collected manually. We
modify our strategy by adding a sniping heuristic, and it performs much better
empirically while maintaining the same theoretical bounds. Our limited exper-
imental evaluation also suggests that parameter tuning helps to improve the
performance of our bidding algorithms. With both sniping and parameter tun-
ing enabled, our bidding algorithms (for both profit and revenue maximization)
achieve an output value which is consistently more than 90% of the optimum by
the omniscient bidder.

2.1 Related Work

Due to page limit as well as the vast amount of research literature in sponsored
search auctions, knapsack problems, and online algorithms, we will only discuss
previous work most relavant to ours.

Keyword Bidding. Sponsored search auctions have attracted a lot of attention,
for both auctioneer revenue maximization and advertiser bidding optimization.
Among all these work, Mehta etc al. [5] studied the auctioneer revenue maxi-
mization with budget-constrained bidders, using a trade-off function Ψ (compare
it to our threshold function) to grant queries to bidders, and the technique they
use is probably most similar to the threshold function we use.

Online Algorithms. Awerbuch et al. [2] studied the online call routing which
generalizes the online classical knapsack problem. More recently, Buchbinder
et al. [3] designed online algorithms for fractional versions of general packing
problems which imply an O(ln(U/L))-competitive algorithm for the online knap-
sack problem.

3 Online Knapsack Problems

Consider the online version of the classic 0/1 knapsack problem. The input se-
quence consists of a knapsack of capacity B and a stream of T items where item
t has value v(t) and weight w(t). We call the value-to-weight ratio v(t)/w(t) of
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item t its efficiency. The goal is to choose these items in an online fashion, i.e.,
making a decision as an item arrives and not revoking them later, so as to max-
imize the total value of selected items. For the online multiple-choice knapsack
problem, at each step a set of items Nt arrives and we need to choose at most
one item from each set.

We say that an online algorithm A has competitive ratio γ (or equivalently is
γ-competitive) if for any input sequence σ, we have OPT(σ) ≤ γ · A(σ), where
A(σ) is the (expected, if A is randomized) value obtained by A given σ, and
OPT(σ) is the maximum value which can be obtained by any offline algorithm
with the knowledge of σ.
We now give a deterministic algorithm for the online knapsack problem achiev-

ing the optimal bound of ln(U/L) + 1. In the remainder of the paper, e denotes
the base of the natural logarithm.

Algorithm. Online-KP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
At time t, let z(t) be the fraction of capacity filled, pick element t iff

v(t)
w(t)

≥ Ψ(z(t)).

Observe that for z ∈ [0, c] where c ≡ 1/(1 + ln(U/L)), Ψ(z) ≤ L, thus the al-
gorithm will pick all items available until c fraction of the knapsack is filled. In
fact, we will assume henceforth Ψ(z) = L for z ∈ [0, c]. When z = 1, Ψ(z) = U ,
and since Ψ is strictly increasing, the algorithm will never over-fill the knapsack.

Theorem 1. Online-KP-Threshold has a competitive ratio of ln(U/L) + 1.

Proof. Fix an input sequence σ. Let the algorithm terminate filling Z fraction of
the knapsack and obtaining a value of A(σ). Let S and S∗ respectively be the set
of items picked by the Algorithm Online-KP-Threshold and the optimum.
Denote the weight and the value of the common items by W = w(S ∩ S∗) and
P = v(S ∩ S∗). For each item t not picked by the algorithm, its efficiency is
< Ψ(z(t)) ≤ Ψ(Z) since Ψ(z) is a monotone increasing function of z. Thus,

OPT(σ) ≤ P + Ψ(Z)(B−W)

Since A(σ) = P + v(S \ S∗), the above inequality implies that

OPT(σ)
A(σ)

≤ P + Ψ(Z)(B −W )
P + v(S \ S∗)

. (3)

Since each item j picked in S must have efficiency at least Ψ(zj) where zj is
the fraction of the knapsack filled at that instant, we have

P ≥
∑

j∈S∩S∗

Ψ(zj)wj =: P1, (4)
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v(S \ S∗) ≥
∑

j∈S\S∗

Ψ(zj)wj =: P2. (5)

Since OPT(σ) ≥ A(σ), inequality (3) implies

OPT(σ)
A(σ)

≤ P + Ψ(Z)(B −W )
P + v(S \ S∗)

≤ P1 + Ψ(Z)(B −W )
P1 + v(S \ S∗)

(6)

Since P1 ≤ Ψ(Z)w(S ∩ S∗) = Ψ(Z)W , plugging in the values of P1 and P2,
we get

OPT(σ)
A(σ)

≤ Ψ(Z)∑
j∈S Ψ(zj)∆zj

(7)

where ∆zj = zj+1 − zj = wj/B for all j.
Based on the assumption that the weights are much smaller than B, we can

approximate the summation via an integration (refer to the remark following
the proof). Thus,

∑
j∈S

Ψ(zj)∆zj ≈
∫ Z

0
Ψ(z)dz =

∫ c

0
Ldz +

∫ Z

c

Ψ(z)dz

= cL+
L

e

(Ue/L)Z − (Ue/L)c

ln(Ue/L)

=
L

e

(Ue/L)Z

ln(Ue/L)
=

Ψ(Z)
ln(U/L) + 1

.

Along with inequality (7), this completes the proof.

Remark: We can make the approximation made above precise. Since Ψ(z) is an
increasing function of z, we obtain

∑
j∈S Ψ(zj)∆zj ≥ (1 − ε0)

∫ Z

0 Ψ(z)dz where
ε0 = (maxj wj)/B is small constant. Thus, to be precise, the competitive ratio is
actually ln(Ue/L)· 1

1−ε0
. For simplicity, we ignore the factor 1−ε0 for subsequent

analysis.
Extension to Online-MCKP. One can extend the above algorithm to multi-
ple choice knapsack problems in the following way – at each step t, let Et ⊆ Nt

denote the items with efficiency at least Ψ(z(t)). Pick the item in Et with the
highest profit. Call this algorithm Online-MCKP-Threshold. The following
theorem can be proved similarly as above and we omit it from the extended
abstract.

Theorem 2. Online-MCKP-Threshold has a competitive ratio of (ln
(U/L) + 2).

3.1 A Matching Lower Bound

Theorem 3. The competitive ratio of any (possibly randomized) online algo-
rithm for the online knapsack problem is at least ln(U/L) + 1.
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Proof (Sketch). The proof constructs a distribution of input sequences and shows
that any deterministic algorithm against this distribution achieves a competitive
ratio at most ln(U/L) + 1. Based on Yao’s minimax lemma [6], the lower bound
is obtained. We describe the distribution here and defer the analysis to our
technical report.

Fix a parameter η > 0. Letkbe an integer such that (1+η)k = U/L, i.e., k =
ln(U/L)
ln(1+η) .The supportof the inputdistributionconsists of the instances I0, I1, · · · , Ik,
where I0 is a stream of B identical items each with weight 1 and value L. I1 is I0
followed by a stream of B identical items each with weight 1 and value (1 + η)L,
and in general Ij+1 is Ij followed by B items with weight 1 and value (1 + η)j+1L.
The distributionD is specified by giving probability pj to instance Ij where

pk :=
1 + η

(k + 1)η + 1
, pj :=

η

(k + 1)η + 1
, ∀ 0 ≤ j < k.

The ratio is obtained as η → 0.

4 Bidding Strategies for Keyword Auctions

In this section, we construct bidding strategies for either profit maximization or
revenue maximization. The difference in the two are in the parameter settings.
For simplicity and brevity, we start with the single-slot case and extend to the
multiple-slot case.

For profit maximization, recall that outbidding b(t) at time t gives an
efficiency of v(t)

w(t) = V
b(t) − 1 while for revenue maximization its V

b(t) . Thus, the
parameters U and L for revenue maximization strategies are: Ur := V

bmin
and

Lr := 1 respectively. For profit maximization Up = Ur − 1, though Lp could be
0. To take care of this, we introduce another parameter ε, such that we bid only
when the efficiency is bigger than ε. This makes Lp = ε but leads to an additive
loss in the performance guarantee.

The strategies are derived from the online algorithms: Bidder 0 outbids only
if the efficiency is bigger than the threshold. Since the threshold does not depend
on anything other than the fraction of knapsack filled, the strategies also depend
only on the fraction of budget spent. The strategies are formally stated as follows:

Bidding Strategy: Profit-Maximizing Single-Slot

Let Ψ(z) ≡ (Upe/ε)z(ε/e).
At time t, if fraction of budget spent is z(t), then bid b0(t) = V

1+Ψ(z(t)) .

Bidding Strategy: Revenue-Maximizing Single-Slot

Let Ψ(z) ≡ (Ure)z(1/e).
At time t, if fraction of budget spent is z(t), then bid b0(t) = V

1+Ψ(z(t))

Notice that both strategies only need the fraction of budget spent and are thus
oblivious to the other parameters of the auction. We use Profit and Revenue to
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denote the profit and revenue earned by the above strategies respectively, and
OPTp and OPTr to denote the profit and revenue of an omniscient bidder. Then
we have the following theorem:

Theorem 4. (i) For single-slot profit maximization, for any ε > 0,

OPTp ≤ εB +
(

ln
(

(V − bmin)
εbmin

)
+ 1
)

Profit.

(ii) For single-slot revenue maximization, assuming that OPT does not overbid
at time t where b(t) > V ,

OPT ≤
(

ln
(

V
bmin

)
+ 1
)

Revenue.

The proof of Theorem 4(i) follows from Theorem 1 and the fact that all items with
efficiency ≤ ε has total value at most εB. Theorem 4 also suggests that different
ε values give different guarantees for Profit, thus we can choose ε appropriately
to maximize the guaranteed value of Profit. In practice, it turns out we can treat
L, the lower bound of all items’ efficiency, as a tunable parameter (essentially ig-
noring all items with efficiency less than L), and significantly improve the perfor-
mance of the bidding algorithm. We will dicuss this in Section 5.2. The proof of
Theorem 4(ii) follows from Theorem 1 setting L = 1. The assumption is valid if
the budget B is not exceedingly large. In practice, even if the advertiser wants to
maximize revenue, rarely is he willing to buy unprofitable keyword positions.

4.1 Multiple-Slot Bidding Strategies

For multiple-slot auctions we consider both profit-maximizing and revenue- max-
imizing cases. At each time period, bidder 0 has to decide which slot should
he outbid to win. The algorithm suggests bidding so as to get maximum profit
(revenue) while having a minimum efficiency. Unfortunately, bidding to get max-
imum profit requires knowledge of other bidders bids. On the other hand, as-
suming that clickthrough rates increase as we move up the slots, bidding higher
would only give a higher revenue.

The profit-maximizing bidding strategy is presented below. The parameters
are the same as in the single-slot case. Notice that the bidding strategy is still
oblivious of X(t), however now requires knowing the bids bs(t) and also α(s).

Bidding Strategy. Profit-Maximizing Multiple-Slot

Fix ε > 0. Let Ψ(z) ≡ (Ue/ε)z(ε/e).
At time t, let z(t) be fraction of budget spent,

Et ≡
{
s | bs(t) ≤

V

1 + Ψ(z(t))

}
,

bid bs(t) where
s = argmaxs∈Et

(V − bs(t))α(s).
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For revenue maximization, we can actually find the slot s in time t to maximize
the revenue. This is because, the revenue obtained on bidding bs(t) is V X(t)α(s).
Given that α(s) is a decreasing function, maximizing V X(t)α(s) is equivalent
to minimize s, i.e., to find the rank s as low as possible. Since the efficiency
condition imposes that the slot we win have bs(t) ≤ V

Ψ(z(t)) , our bid should be
exactly that. Thus we have a bidding strategy for revenue-maximizing multiple-
slot auctions which is exactly the same as that for single-slot auctions and has
the desirable property of obliviousness.

Similar to the performance guarantee of the single-slot bidding strategies in
Theorem 4, the above bidding strategies have performance guarantees, stated as
the following theorem:

Theorem 5. (i) For multiple-slot profit maximization, for any ε > 0,

OPTp ≤ εB +
(

ln
(

V
εbmin

)
+ 2
)
· Profit.

(ii) For multiple-slot revenue maximization,

OPTr ≤
(

ln
(

V
bmin

)
+ 2
)
·Revenue .

5 Experimental Exploration

In this section, we evaluate our bidding algorithms using both synthetic and real-
world data, and discuss two useful heuristics: sniping and parameter tuning.

5.1 Simulation and the Sniping Heuristic

We now discuss an experiment for single-slot auctions that points out a weakness
of the bidding strategy. We then modify the strategy which, although having
the same theoretical guarantee, performs much better empirically. As a negative,
the strategy does not remain oblivious any more: it requires knowledge of X(t),
the traffic function and also α, the clickthrough-rate of the slot.

Figure 1 shows the performance of our algorithm in a simulation against
bidders whose bids are random variables. The budget of the bidder is $1000
and value V = $8.00. Figure 1 shows our strategy obtains around 40% of that
obtained by the omniscient bidder (the theoretical bound is around 13%). The
advertiser stops overbidding very early, at around t = 200, and has an unspent
budget of $425.

At time t, suppose the fraction of budget remaining is y(t) = 1−z(t). Moreover
assume we know future click traffic X(τ)α for t < τ ≤ T . Thus the maximum
number of clicks in the remaining time is

∫ T

t
X(τ)α · dτ , and bidding at most

y(t)·B�
T
t

X(τ)α·dτ
from time t to T would avoid exhausting the budget. This suggests

the following modified strategy which in the toy example of Figure 1 almost
doubles the profit.
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Fig. 1. Performance comparison of various bidding strategies in presence of one other
bidder who bids a price uniform random in [4, 6]

Bidding Strategy: Profit-Maximizing Single-Slot with Sniping

Fix ε > 0. Let Ψ(z) ≡ (Ue/ε)z(ε/e).
At time t, if fraction of budget spent is z(t), bid

max

{
V

1 + Ψ(z(t))
,

(1− z(t)) ·B∫ T

t X(τ)α · dτ

}
.

The following theorem shows that the sniping does not affect the worst-case
behavior of the strategies.

Theorem 6. The modified bidding strategy using sniping always obtains at least
as much profit as the original bidding strategy.

The above sniping heuristic can be generalized to the multiple-slot case as well.

Bidding Strategy: Multiple-Slot with Sniping

At time t, let z(t) denote fraction of budget spent, ρ = Ψ(z(t))
For each slot s, if ρ > vs(t)

ws(t) & bs(t) ≤ (1−z(t))B
α(s)

� T
t

X(τ)dτ
:

ρ = vs(t)
ws(t)

Et = {s | vs(t)
ws(t) ) ≥ ρ}

bid bs(t) where s = argmaxs∈Et
vs(t)
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5.2 Evaluation Using Real Bidding Data

Parameter Tunning. If the lower bound L in the online knapsack problem
is too small, we can replace it with a larger value L′ > L for the threshold
function Ψ . This essentially discards items with very low efficiency, and the loss is
minimal if the optimal solution consists of items with relatively high efficiency . It
turns out tuning the parameter L makes a significant performance improvement
empirically. If we choose L = 0.1 for profit maximization, we get less than 50%
performance without sniping and about 70% with sniping. However, with L
tuned and fixed for the non-sniping case, we get much better results.

Next we report some experimental results on evaluating bidding algorithms
for multiple-slot auctions using real bidding data. We scraped bidding data
from the now defunct Overture webpage [1] with continous crawling for about
two weeks, for one of the most dynamic and expensive keyword “auto insurance.”
There are totally T = 1842 distinct time periods in our collected data, and most
top-5 bids are larger than $10. For the experiments, we use B = 1000, and
three different values V = 8, 10, 12. We evaluated both the profit-maximizing
and revenue-maximizing strategies with and without sniping. For all these ex-
periments, we use U = V/bmin − 1 for profit maximization and U = V/bmin
for revenue maximization, and bmin = 0.9. The lower bound L is optimized
for each instance without sniping, and it remains the same for the sniping
version.

We summarize the experimental results in Table 5.2. For all the examples we
run, sniping improves the bidding performance significantly while exhausting the
budget. Table 5.2 seems to tell us, for almost all values, with parameter tuning
of L, the performance ratio (ALG/OPT) is around 70%-75% without sniping,
and 90%-95% with sniping.

Profit-Maximization Bidding Performance
V OPT ALG ALG/ budget ALG ALG/

OPT left (sniping) OPT
8 3779 2751 73% 225.5 3541 94%

10 4974 4059 82% 116.1 4607 93%
12 6169 4463 72% 240.8 5842 95%

6 Concluding Remarks

The algorithms in the paper can be extended to the general case where there
are multiple keywords and each keyword has multiple positions. The competitive
ratio would now have V replaced by Vmax, where Vmax is the maximum valuation
for all keywords. As an open problem, there is a gap of additive constant 1
between the lower and upper bounds for the competitive ratio of Online-MCKP,
and it will be nice to close the gap.
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Abstract. Position auctions such as the Generalized Second Price (GSP)
auction are in wide use for sponsored search, e.g., by Yahoo! and Google.
We now have an understanding of the equilibria of these auctions, via
game-theoretic concepts like Generalized English Auctions and the “lo-
cally envy-free” property, as well as through a relationship to the well-
known, truthful Vickrey-Clarke-Groves (VCG) mechanism. In practice,
however, position auctions are implemented with additional constraints,
in particular, bidder-specific minimum prices are enforced by all major
search engines. The minimum prices are used to control the quality of the
ads that appear on the page.

We study the effect of bidder-specific minimum prices in position auc-
tions with an emphasis on GSP. Some properties proved for standard
GSP no longer hold in this setting. For example, we show that the GSP
allocation is now not always efficient (in terms of advertiser value). Also,
the property of “envy-locality” enjoyed by GSP—which is essential in the
prior analysis of strategies and equilibria—no longer holds. Our main re-
sult is to show that despite losing envy locality, GSP with bidder-specific
minimum prices still has an envy-free equilibrium. We conclude by study-
ing the effect of bidder-specific minimum prices on VCG auctions.

1 Introduction

The Internet economy has been revolutionized by the introduction of sponsored
search links. Sponsored links are a small number of advertisements (ads, hence-
forth) that the search engine displays in addition to the standard search results.
These ads are arranged in positions top to bottom, typically on the side. Nor-
mally, the advertiser pays only when the user clicks on the link. It is a difficult
task to set a fixed price for each position because the search queries vary widely
and with them the value of the positions. Hence, typically, auctions are used
to determine the prices, and these are called position auctions. A major task
for the search engine is to determine the rules of the position auction, and to
select, rank and price the ads that will be displayed to the user, according to
that auction.

Today, both Google and Yahoo! use a position auction called the generalized
second price auction (GSP). The GSP auction ranks the ads by the product of
� School of Computer Science, Tel Aviv University.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 577–584, 2008.
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the advertiser’s bid with a quality score, which is often abstracted as the click-
through rate (ctr)—the probability that the user will click on the advertisement.
Then, the ad in position i is charged based on the bid of the ad on position i+1.

There is a great need to understand the behavior of these auctions since they
are part of everyday life of many, with hundreds of millions being run each day,
worldwide. Decades of research in economic, game and auction theories provide
the tools to design and understand auctions. However, position auctions—and
GSP in particular—have needed new specific methods such as the recent results
of [10] and [4]. Specifically, they developed the notion of Generalized English
Auctions to study GSP, introduced a new notion of “locally envy-free” equi-
librium to characterize GSP, and related such equilibria of GSP to that of the
well-known Vickrey-Clarke-Groves (VCG) mechanism (as applied to a position
auction). In particular, the “locally envy-free” property captures the dynam-
ics of advertisers trying to move up or down the list of positions and plays a
crucial role in understanding the equilibrium properties of GSP. (An excellent
introduction can be found in [9].)

The departure in our work from prior research begins with the observation
that while Google and Yahoo! do implement GSP, they add other features. In
particular, they are driven by the need to present high quality ads, and as a
result, include features that encourage advertisers to make high-quality ads.
One important such feature is the use of advertiser-specific factors for setting
minimum prices.1 Beyond the standard use of advertisers’ bids and quality scores
as in GSP, the search engines force the bid and price per click of advertiser i
to be at least a minimum price Ri. Minimum prices are motivated by revenue
concerns, but perhaps more importantly in this setting by ad quality control.2

Indeed it is well-known from the work of Myerson [8] and others that minimum
prices are important for revenue; however optimizing only for short-term revenue
ignores the effect of low-quality ads on the quality of service felt by the user, and
therefore the future revenue of the search engine. The exact formulation of this
problem is very subtle (see [1] for an example). Yet most mechanisms that will
try to address this subtlety are likely to enforce bidder specific minimum prices.

The immediate impact of minimum prices is not only that advertisers may
pay more than what is determined by GSP, but more importantly for sponsored
search, because the “heavy tail” of infrequent keywords often has only a few
advertisers per query, the minimum price determines whether or not the ad will
appear for that query. So, advertiser-specific minimum prices have a profound
effect on advertisers, users and search engines in practice.

This motivates the question that is the focus of this paper: What are the
strategic changes in the outcome of GSP—and more generally, other position
auctions—in presence of advertiser-specific minimum prices? For example, while
the introduction of minimum prices looks innocuous, does it affect truthfulness

1 See https://adwords.google.com/support/bin/answer.py?answer=49177 and http://help.yahoo.

com/help/l/us/yahoo/ysm/sps/start/overview qualityindex.html
2 Therefore, they are not just a side effect of charging advertisers per click and maxi-

mizing revenue per impression.

 https://adwords.google.com/support/bin/answer.py?answer=49177
http://help.yahoo.com/help/l/us/yahoo/ysm/sps/start/overview_qualityindex.html
http://help.yahoo.com/help/l/us/yahoo/ysm/sps/start/overview_qualityindex.html
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or equilibrium properties of position auctions? A quick sanity check is to study
VCG, and doing so reveals that a näıve post-VCG enforcement of bidder-specific
minimum bid prices can break the truthfulness property. Being more careful, we
can show suitably modified allocation and pricing that is a truthful variant of
VCG; this modification shows the impact of minimum prices for VCG.

We primarily study GSP. Since GSP is not truthful to begin with, we study
the effect of bidder-specific minimum prices on the equilibria. A simple example
with just two bidders shows that minimum prices can cause a loss of efficiency.
Furthermore, we see that an important property enjoyed by basic GSP no longer
holds: namely, “envy locality.” This property says that if a bidder in position
i is in a state where she does not envy the bidders in adjacent positions (i − 1
and i + 1), then she does not envy any other bidders either. Envy locality is a
strong property on its own, as it makes equilibrium discovery simpler for the
bidder [4,10]. It is also essential in the existing proofs that there is an envy-free
equilibrium of GSP.

Our main result, which was also the most technically challenging one, is to
show that despite losing envy locality, GSP with bidder-specific minimum prices
still has an envy-free equilibrium. To derive the prices of this equilibrium, we
define a specialized Tâtonnement process that takes a global view of the best-
response relationship between bidders and positions. This global view was unnec-
essary in the basic GSP analysis such as in [4] because of envy locality. We prove
that the process converges to a set of prices from which an envy-free equilibrium
set of bids is derived.

Demange et al. [3] consider a multi-item auction in which every buyer is
interested in bundles of size at most one; using a Tâtonnement process similar
to ours they show how to compute equilibrium prices (but without bidder-specific
minima which is our concern). However in the context of position auctions, their
technique is somewhat appropriate for position-specific reserve prices, see [5].

Remark. The proofs of the theorems appear in the full version of the paper.

2 Model

A position auction is defined by a tuple (N,K, v, α, β). The set N = {1, . . . n}
is the set of bidders and the set K = {1, . . . , n} is the set of positions. Each
bidder i ∈ N is associated with two values, vi which is its valuation for a click
and αi which is its click trough rate (ctr). Each position � ∈ K is associated
with a click through multiplier β�. As a convention, β� > β�+1, β1 = 1 and
βk+1 = · · · = βn = 0 (therefore, effectively we have k positions).

We use the standard assumption that the actual click through rate of bidder i
in position j is the product of the bidder’s ctr αi and the position click through
multiplier βj , i.e., if bidder i is placed at position j then she receives a click with
probability αiβj . We assume that the value of vi is known only to bidder i while
all the other parameters are publicly known.
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In a position auction mechanism, each bidder i submits a bid bi. Given all
the bids b and the public information (N,K,α, β), the mechanism assigns each
bidder i to a position loc(i) and charges it a price Ploc(i)(b, α, β) per click. The
utility of bidder i at position j is: ui(j) = αiβj(vi−pj), where pj = Pj(b, α, β) is
the price per click. The mechanism assigns to each position exactly one bidder,
and therefore we have an inverse function loc−1(j) that returns the bidder that
was assigned to position j. We call such an assignment loc a legal assignment.

The two most studied position auction mechanisms are GSP [10,4] and VCG
[11,2,6]. The VCG mechanism ranks the bidders by biαi, which can be thought
of as the expected advertiser value if bi = vi. Therefore, the VCG allocation
maximizes the social welfare, which is the sum of the bidders’ expected value, i.e.,∑

i∈N viαiβloc(i). The VCG mechanism charges each bidder i the total value lost
by other bidders that is caused by i’s presence in the auction; it has the property
that each bidder’s dominant strategy is to bid her true value, i.e., bi = vi.

The GSP mechanism ranks the bidders by biαi.3 Again, without loss of gen-
erality, assume that bidder i is assigned to position i. The price that the bidder
at position i pays per click is bi+1αi+1/αi. It was shown by [10,4] that for any
position auction, there exists an envy-free equilibrium (defined below) such that
both the allocation and the payments of the GSP and the VCG mechanism are
identical.

While so far we have described the traditional theoretical model, the position
auctions used in practice contain an additional important feature, namely bidder-
specific minimum prices. The minimum prices imply that each bidder i has a
minimum price Ri, which is known to the bidder. If bidder i submits a bid bi
that is smaller than Ri then it will not participate in the auction (and have a
zero utility). For simplicity we will assume that for each bidder i the bid bi is at
least Ri. Therefore, the price per click of bidder i is at least Ri, i.e., its price per
click at position j = loc(i) is max{Ri, Pj(b, α, β)} = max{Ri, bi+1αi+1/αi}. The
focus of our work is to study the effect of bidder-specific minimum prices. We will
show that this small modification to the auction mechanism can dramatically
influence the behavior of the bidders.

3 Generalized Second Price (GSP) Auctions

Since GSP is not a truthful mechanism, our main focus is to show that there
exists an equilibrium. In fact we will show a stronger result, that there are envy-
free prices for GSP.

The existence of envy-free prices for GSP with no minimum bids (or a uniform
minimum bid which is identical for all the bidders) was shown in [4,10]. Along
the way, these analyses show a few interesting properties of GSP. The first is
that there are envy-free prices that result in an efficient allocation (i.e., maxi-
mize the sum of bidders valuations). The second is the fact that local envy-free
prices imply (global) envy-free prices. In the full version of the paper we show
that both of those properties do not hold once bidder-specific minimum prices
3 One can derive the “rank by bid” mechanism by setting αi = 1 for all i ∈ N .
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are introduced. We also discuss in the full version the effect of bidder specific
minimum prices on the revenue and extend the results to unequal CTR.

For the proof of the existence of envy-free prices we use a specific Tâtonnement
process. Our process increases prices while ensuring that certain properties of
the allocation are maintained. The remainder of the section will be devoted to
sketching our main theorem, extending the existence of envy-free equilibria to
the case of bidder-specific minimum prices:

Theorem 1. The GSP mechanism with bidder-specific minimum prices has an
envy-free prices equilibrium.

The proof technique that we will use to show Theorem 1 is to define a specific
Tâtonnement process, and show that it converges to a set of envy-free prices.

Best Response Graph. We will define the Tâtonnement process on a par-
ticular graph that models the envy relation between bidders and positions. Let
K ′ = {1, . . . , k} be the set of positions with non-zero multiplier, i.e., βi > 0.
Given a price vector P for any subset of bidders B ⊂ N and subset of positions
S ⊆ K ′ we define the best response graph, G(P,B, S) = (B,S,E). The graph
G(P,B, S) is a bipartite graph where (b, s) ∈ E if and only if position s ∈ S
is a best response for bidder b ∈ B. We say that positions i ∈ S and j ∈ S
are connected if there exists a path between i and j in G(P,B, S). We denote
by νG(v) the neighbors of a node v in G = G(P,B, S). We use the notation
P ′ = (P, ε, j) to denote a price update of position j by ε, i.e., p′i = pi for every
i �= j and p′j = pj + ε. We also let SNE(P ) ⊆ K ′ be the set of positions that are a
best response for at least one bidder at the prices P ; equivalently SNE(P ) is the
set of position nodes s ∈ K ′ in G = G(P,N,K ′) with at least one incident edge,
i.e., |νG(s)| ≥ 1. We say that a set S ⊆ K ′ is matched in G = G(P,N, S) if there
is a perfect matching in G(P,B, S) for some B ⊆ N . To simplify our notation,
whenever P , B, S or G are clear from the context we might omit them. We will
also assume that all αi’s are equal and that all vis are different; the extension
to the general case appears in the full version.

The Tâtonnement process. The Tâtonnement process is described formally in
the figure, and here we provide some useful intuition. The Tâtonnement process
begins with a set of prices P1 such that the first k bidders all prefer the first
position; i.e., SNE(P1) = {1}, B1 = {1, . . . , k} and G(P1, B1,K

′) is a star graph
where each bidder i ∈ B1 has exactly one edge to the node for position 1. The
Tâtonnement process gradually increases prices, increasing the price of only one
position during each update. While increasing the prices the algorithm preserves
two invariants: (1) At each step, with prices Pt, the set of positions St = SNE(Pt)
that are the best response for some bidder can only grow; i.e., St ⊆ St+1, and
(2) There is a matching of the positions St, such that every position in St can
be matched to a unique bidder in G(Pt).

Both invariants are preserved by maintaining the conditions of Hall’s theorem
[7] on every subset of St = SNE(Pt), i.e., for every subset S′ ⊂ St we require
that |S′| ≤ |ν(S′)| which is a sufficient and necessary condition for a matching
by Hall’s theorem.
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Tâtonnement process TP
Initialize P1 such that pj = vk+1 for j ≤ k and pj = 0 for j ≥ k + 1;
Let t = 1 and S1 = {1};
while ∃ε > 0, j ∈ St: MATCH(Pt, ε, j) = TRUE and St �= K′ do

For each j ∈ St let εj = max{ε : MATCH(Pt, ε, j)};
st = arg maxj∈St εj ; εt = εst ;Pt+1 = (Pt, εt, st);St+1 = SNE(Pt+1); t = t + 1;

end
Output the set of price Pt and the allocation is a matching in G(Pt, N, K).

MATCH(P, ε, j) = TRUE iff there is a matching for S′ = SNE(P ′) ∪ {j} in
G(P ′, N, S′), where P ′ = (P, ε, j).

We first show that the Tâtonnement process TP cannot loop indefinitely if
all numbers are rational. This is done by showing that there exists εmin, which
is a function of v1, . . . , vn, R1, . . . , Rn, β1, . . . , βk, and α1, . . . , αn, where every
increase will be at least εmin.

Lemma 1. The Tâtonnement process TP always terminates.

Now we would like to prove a few facts on how TP makes progress, until it termi-
nates. Specifically, we would like to show that the set St increases monotonically
and furthermore, each time it changes it adds the least position that is not
in St. Therefore, initially we have S1 = {1}, and at any time t we will have
St = {1, . . . , j} for some j ∈ K ′. The following two lemmas establish this prop-
erty.

The following observation shows the effect of a price increase at position j,
which is the basic step of the Tâtonnement process TP.

Lemma 2. Let P ′ = (P, ε, j), (N,K ′, E) = G(P,N,K ′) and (N,K ′, E′) =
G(P ′, N,K ′). Then every edge (b, i) ∈ E − E′ is incident to j; i.e., i = j.
Also, if there is an edge (b, s) ∈ E′ − E then the edge (b, j) is in E.

The following lemma shows that we preserve the invariant that St monotonically
grows. Furthermore, since the positions have a strict preference order which is
shared by all the bidders, the sets St are prefixes of [1, . . . , k] and can grow by
at most one position each time step.

Lemma 3. Let St = SNE(Pt) at time t. Then, for every time t′ > t we have
St ⊆ St′ . In addition, if j ∈ St then any i ≤ j has i ∈ St, and if St �= St+1 then
|St+1 − St| = 1.

We have shown that the Tâtonnement process terminates, and maintains the key
invariants mentioned. Since we are maintaining a matching for the set St, we
essentially just need to show that when the Tâtonnement process TP terminates,
we have St = K ′. By Lemma 3 it is sufficient to show that at some time St = K ′,
since St is monotone. Thus the remaining lemmas are steps to show that if
St �= K ′ then some price can be increased, and therefore the Tâtonnement
process does not terminate.
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First, consider the case that there is a bidder who has only one position as
a best response. We show that in this case we increase the prices and thus the
Tâtonnement process TP cannot terminate.

Lemma 4. Let G = G(Pt, N, St) be a best response graph such that St �= K ′.
If for some bidder b ∈ N we have νG(b) = {j}, then there exists an ε > 0 such
that MATCH(Pt, ε, j) = TRUE.

We say that prices P induce equal payments if for any position s ∈ SNE(P )
and any two bidders i, i′ for which s is a best response, then max{Ri, ps} =
max{Ri′ , ps}. For the process it is important to distinguish between prices which
induce equal payments and ones which do not. The next lemma claims that in
certain subgraphs if Pt do not induce equal payments then they can be increased.

Lemma 5. Let Pt be prices which do not induce equal payments, and G =
G(Pt, N, St) be a best response graph, where St �= K ′. If in G every subset S′ of
St satisfies |S′| ≤ |νG(S′)| − 1, |St| ≥ 2 and G is connected then there exists a
position j ∈ St and ε > 0 such that MATCH(Pt, ε, j) = TRUE.

Next we claim that if the prices induce equal payments, then two bidder can
have at most one position in the intersection of their best response sets.

Lemma 6. LetPt be prices which induce equal payments, and letG = G(Pt, N, St)
be a best response graph. For any bidders i, i′ ∈ N we have |νG(i) ∩ νG(i′)| ≤ 1.

The next lemma shows that if in a subgraph every subset of positions has some
slack with respect to the Hall’s theorem condition, i.e., each subset of positions
has strictly more bidders connected to in the graph, then there exists a price we
can increase without violating the matching constraint.

Lemma 7. Let G = G(Pt, B, St) be a best response graph. If in G every non-
empty subset S′ of St satisfies |S′| ≤ |νG(P )(S′)| −1, |S| ≥ 2 and G is connected
then there exists some j ∈ St and ε > 0 such that MATCH(Pt, ε, j) = TRUE.

By combining the above lemmas we prove Theorem 1. We remark that in the
Tâtonnement process TP we do not necessarily terminate with a price vector
Pt that induces equal payments. We might terminate with prices Pt that do not
induce equal payments, since we already reached a state in which St = K ′. Our
proof technique only shows that as long as St �= K ′ we can increase the price of
some position.

4 VCG Auctions

The VCG mechanism gives a general methodology to implement truthful mech-
anisms. The mechanism is aimed at maximizing a social welfare function which
is the sum of the bidders’ utilities. The basic idea of the mechanism is that each
bidder pays its marginal influence on the social welfare function of other bidders.
In the full version of the paper we investigate three possible modifications to the
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VCG payments, with the goal of incorporating bidder-specific minimum prices
while still maintaining the desirable properties of the mechanism (being truthful
and efficient):

(i) Näıve implementation of VCG: The most natural implementation of
VCG when minimum prices are enforced is to first compute the VCG prices, and
then the price for bidder i is the maximum of its VCG price and its minimum
price. Unfortunately, we show that the resulting mechanism is not truthful.
(ii) Virtual Values: Since the näıve approach to incorporating bidder-specific
minimum prices fails, we would like to explore another approach. We first make
the observation that if for some bidder i, every other bidder i′ with loc(i′) <
loc(i) had bi′αi′ ≥ Riαi, then the (unmodified) VCG price for i would be at least
Ri. This observation motivates introduction of bidder-specific “virtual values”:
When computing the price for bidder i we use max{bi′αi′ , Riαi} as a substitute
for bi′αi′ for all applicable i′. This implies that the bid of a bidder i′ is interpreted
differently when computing prices of different bidders. We show that the resulting
mechanism is efficient and truthful.
(iii) Offsetting Bid by Minimum Price: A generic approach of incorporating
minimum prices is to subtract from the original bid the bidder’s minimum price,
run a truthful auction, and add the minimum price at the end (see also [1]). We
show that the resulting mechanism is efficient and truthful.

Acknowledgments. We thank Hal Varian and Martin Pál for useful discussions.
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Abstract. One of the most important yet insufficiently studied issues
in online advertising is the externality effect among ads: the value of an
ad impression on a page is affected not just by the location that the ad
is placed in, but also by the set of other ads displayed on the page. For
instance, a high quality competing ad can detract users from another
ad, while a low quality ad could cause the viewer to abandon the page
altogether.

In this paper, we propose and analyze a model for externalities in
sponsored search ads. Our model is based on the assumption that users
will visually scan the list of ads from the top to the bottom. After each ad,
they make independent random decisions with ad-specific probabilities
on whether to continue scanning. We then generalize the model in two
ways: allowing for multiple separate blocks of ads, and allowing click
probabilities to explicitly depend on ad positions as well. For the most
basic model, we present a polynomial-time incentive-compatible auction
mechanism for allocating and pricing ad slots. For the generalizations,
we give approximation algorithms for the allocation of ads.

1 Introduction

Online advertising auctions are run with the goal of assigning advertising slots
to bidders in such a way as to maximize social welfare or the revenue of the
auctioneer. The common setup is as follows: k slots are available for ads, and
may be assigned to (some of) n bidders. When users click on an advertiser’s ad,
this will sometimes lead to a purchase and thus revenue for the advertiser. In
other words, in the type of auctions we consider here, only clicks are of interest
to the bidders, as opposed to impressions, which would matter if the goal were
to increase product awareness.

The key quantity an advertiser a is interested in with respect to slot i is the
click-through rate, the probability that ad a, if placed in slot i, will be clicked. The
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larger the click-through rate, the larger the expected revenue of the advertiser.
Hence, any auction aiming to maximize social welfare will need to be based on
a model of click-through rates of combinations of ads and slots.

Traditional models are based on the assumption that the click-through rate
depends solely on the relevance of the ad and the prominence of the slot on the
page. In fact, the most commonly used model makes the even stronger assump-
tion that it is the product of the two quantities. The model thus completely
discounts the effects of other ads shown on the same page. Intuition suggests
that a high-quality relevant ad placed more prominently can detract from an-
other ad, or a very low-quality ad may cause the viewer to completely disregard
the other ads.

In economics jargon, this effect is called an externality of an ad. Ghosh and
Mahdian [9] initiated the study of externalities in online advertising. They pro-
posed several models primarily in the context of lead generation advertising, i.e.,
when the publisher must select an unordered set of advertisers. The main model
in [9] is based on a rational choice model for the advertising audience. However,
for most of these models, the allocation problem is intractable.

In this paper, we focus exclusively on the case of sponsored search ads. Here,
the publisher needs to select ads to be placed in a number of slots on a web
page. We study the allocation problem and the design of incentive-compatible
mechanisms under a simple and intuitive model called the Cascade Model. Our
model generalizes the Cascade Model recently proposed by Craswell et al. [6]
in the context of click-through rates of organic search results. (The same model
was proposed independently and simultaneously by Aggarwal et al. in the 4th
Workshop on Ad Auctions [1].) The basic Cascade Model (defined formally in
Section 2) assumes that the users scan through the ads in order. For each ad a,
users decide probabilistically whether to click (with some ad-specific probability
qa), as well as whether to continue the scanning process, with a possibly different
ad-specific probability ca. The probabilistic continuation allows us to model the
externality of prematurely terminating the scanning process as a result of either
a very irrelevant ad, or a very high-quality web site leading to a purchase.

Craswell et al. [6] considered the special case of the Cascade Model where
qa = ca for all a, in the context of organic search results. Their work is motivated
by the work of Joachims et al. [11], which provides limited experimental evidence
for the hypothesis that the click-through rate of a search result depends on
surrounding results. Craswell et al. compare the Cascade Model with four other
models, including the commonly used model of separable click-through rates.
They show that the Cascade Model provides the best fit to click logs of a large
search engine. Since the click-through rates in organic search results and ads
appear to be of a similar nature (and so far the same models have been used for
both), this provides evidence that the Cascade Model can achieve a significant
improvement over the currently used model of separable click-through rates.

We show that under the Cascade Model we define, the optimum allocation
can be computed in polynomial time, and priced so as to lead to an incentive-
compatible mechanism. We subsequently consider several generalizations of the
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Cascade Model. The first generalization concerns the placement of multiple sep-
arate columns or slates of ads. While each slate is scanned from top to bottom,
different types of users have different orders among the slates. We show (in
Section 4) that the allocation problem for this model admits a polynomial-time
approximation scheme (PTAS). The second generalization (in Section 5) is a
common generalization of the Cascade Model and the separable click-through
rate model, which augments the Cascade Model by slot-specific click probabili-
ties. For the allocation problem in this model, we give a simple 4-approximation
algorithm as well as a quasi polynomial-time approximation scheme.

1.1 Related Work

Ad Auctions in general have received a lot of recent attention (see, e.g.,
[2,4,12,14,15]). Many of the core theoretical results (e.g., [8,16,2,13]) are based on
the simplifying assumption of separable click-through rates. That is, the proba-
bility of ad a being clicked in position i is the product qaλi of an ad-specific term
and a position-dependent one. This assumption has been made mostly for sim-
plicity; experimental studies find that there is very little evidence that separable
click-through rates constitute an adequate model [11,6,18].

As a result, several recent papers have proposed more general models for
ad auctions, including some that model externalities. In addition to the work
by Craswell et al. [6] on organic search results, a paper by Aggarwal et al. [1]
independently and simultaneously proposes the same Cascade Model as this
paper for ads. They derive the same dynamic programming algorithm to solve
the allocation problem in the basic Cascade Model, and then focus on improving
the running time and proving monotonicity properties of this algorithm, while
our focus is on solving the allocation problem for generalizations of the Cascade
Model that take position-dependent effects or multiple slates of ads into account.
A paper by Das et al. [7] studies a different model of externalities. In their
model, the click-through probabilities are essentially the same as in the standard
separable model. However, the authors model externalities in the conversion of
clicks, in that users will purchase from at most one of the sites they visited.

Athey and Ellison [3] model the consumer search behavior when the consumer
is unaware of the quality of the advertisers, and uses the ranking given by the
search engine as a signal of the quality. Their model is similar to ours in that the
consumer starts scanning the ads from the top, and continues until her need is
met or until she decides that the probability that the next ad meets her need is
so low as to not be worth the cost of a click. They analyze the equilibria of the
generalized second price mechanism under strong assumptions about the distri-
butions of user costs and bids, whereas in this paper, we design new allocation
mechanisms for arbitrary parameter settings to improve the efficiency.

While there has been a huge body of work in advertising on the effects of
ad placement, size, etc. on readers’ attention and recall, there appears to be,
surprisingly, no study of the externalities between ads even in traditional media
such as printed advertising or TV. Thus, a comparison between the Cascade
Model and traditional models for externalities in advertising is not possible.
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2 Click-through Models and Allocations

A publisher needs to choose ads from a set of n ads to display in k slots on a
page, numbered sequentially from 1 to k. Each advertiser a specifies an amount
ba: how much they are willing to pay for each click on their ads. In order to
optimize either his revenue or the social welfare, the publisher therefore needs
to predict the probability that an ad is clicked, and take these predictions into
account when allocating the slots to ads.

The click-through rate (CTR) of an ad is the probability that it receives a
click. In principle, this probability could depend on everything on the page,
including the ad itself, the position where it is placed, other ads placed in other
slots, as well as seemingly less relevant other content. Since a model with so
many parameters will not be useful for designing a prediction and allocation
algorithm, the models currently used simplify the dependence of click-through
rates on the information on the page.

The simplest model, which is currently widely used in the industry and also
is the basis for most theoretical work in the area (e.g., [8,16,2,13]), is based on
separable click-through rates. It assumes that the CTR of an ad a ∈ {1, . . . , n}
placed in position i ∈ {1, . . . , k} is the product qaλi. Here, qa measures the
intrinsic quality or relevance of ad a, the probability that a user, seeing ad a, will
actually click on it. λi measures the prominence of slot i, and is the probability
that the user will see slot i. It is commonly assumed that λi is monotonically non-
increasing in i. The main advantage of this model is its simplicity. Among others,
simply sorting the advertisers by decreasing baqa yields an optimal allocation of
the ad space.

2.1 The Cascade Model

In the basic Cascade Model, each ad a, in addition to the intrinsic quality qa, has
a second parameter ca, called its continuation probability. The model assumes
that the user behaves as follows:

1. Start with the ad a1 in slot 1.
2. When looking at the ad ai in slot i, click on it with probability qai .
3. Independently of whether ad ai was clicked or not, continue to slot i+1 with

probability cai ; otherwise, terminate the scanning process.
4. Terminate the scanning process also once no more ads remain.

For notational convenience, we denote empty slots by ⊥, with the understanding
that q⊥ = 0 and c⊥ = 1. Under this model, assuming ads a1, . . . , ak are in slots
1, . . . , k, the user will see a particular slot i with probability Ci =

∏i−1
j=1 caj , and

the click-through rate of ad ai is therefore

rai = qai · Ci = qai ·
∏i−1

j=1 caj . (1)

Remark 1. Our model subsumes an apparently more natural generalization with
two different conditional probabilities c+a , c

−
a . If c+a is the continuation probability
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if ad a is clicked, and c−a the continuation probability if a is not clicked, then by
setting ca = qac

+
a + (1− qa)c−a , it is easy to see that the resulting click-through

rates remain the same for each position.

As we mentioned above, a simpler version of the Cascade Model has been pro-
posed recently by Craswell et al. [6] in the context of organic search results. They
assume that ca = qa for all ads a.

2.2 Generalized Cascade Models

Multiple Ad Slates. Many search engines present sponsored search ads in
multiple different slates, e.g., some preceding the organic search results and some
on the right-hand side. As a result, different users may have different orders in
which they scan the ads. We will define the corresponding Slated Cascade Model
as a special case of a very general (and likely intractable) Permuted Cascade
Model.

In the Permuted Cascade Model, for each permutation π of {1, . . . , k}, a frac-
tion fπ of users will scan the ads in the order π(1), . . . , π(k). Then, the probability
that a user with scanning order π will look at slot i is C(π)

i =
∏π−1(i)−1

j=1 caπ(j) ,
and the overall CTR of ad ai in slot i under the distribution f is

r
(f)
ai =

∑
π qaifπC

(π)
i =

∑
π qaifπ ·

∏π−1(i)−1
j=1 caπ(j) . (2)

We are particularly interested in the special case of the Slated Cascade Model,
in which there is a constant number s of slates. Slate i has ki slots; (j, i) denotes
the ith slot of the jth slate, and aj,i the ad in slot (j, i). Each user scans each
slate from top to bottom (until stopping the scan). However, different users
might have different orders over the slates. Formally, the only permutations π
with non-zero frequencies fπ are those defined in terms of a permutation ψ on
the slates {1, . . . , s} of the slates, which induces the permutation π placing all
kψ(j) slots of slate ψ(j), in their natural order, before all kψ(j+1) slots of slate
ψ(j + 1), for each j.

In the Slated Cascade Model, we write Cj,i =
∏i−1

h=1 caj,h
for the probability

of reaching slot i, given that slate j is entered, Cj =
∏

i:aj,i �=⊥ caj,i for the
probability of moving on to the next slate given that slate j is entered, and

Ĉj,i =
∑

ψ fψ · Cj,i ·
∏ψ−1(j)−1

h=1 Ch

for the overall probability of a random user seeing slot (j, i).

Position-Dependent Multipliers. In the Cascade Model with Position-
Dependent Multipliers(CMPDM), each slot i also has a position-dependent mul-
tiplier λi, the slot-specific probability of reading an ad in that slot, subject to
scanning all the way to the slot1.
1 The λi can model the fact that users appear to have been conditioned to assume

that results listed in higher positions may be more relevant. The model of Athey
and Ellison [3] provides a rational justification for this behavior.
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In accordance with most of the literature on position auctions, we assume
that λ1 ≥ λ2 ≥ · · · ≥ λk. The expression (1) for the click-through rate is now

r′ai
= λiqai ·

∏i−1
j=1 caj . (3)

The CMPDM is a common generalization of both the Cascade Model (with all
λi = 1) and the separable click-through rate model (with all ca = 1), and is
therefore more expressive than both. We will study the allocation problem for
this model in Section 5.

2.3 Slot Allocation and Incentive-Compatibility

In the basic Cascade Model, the publisher needs to solve the following optimiza-
tion problem in order to maximize the value. Assume, without loss of generality,
that n ≥ k. The objective is to select � ≤ k distinct ads a1, . . . , a� to maximize∑�

i=1 baiqai ·
∏i−1

j=1 caj . (4)

In the next section, we will describe an efficient algorithm for solving this op-
timization problem. However, solving the optimization problem requires knowl-
edge of the parameters ba, qa, ca for each bidder a. While the probabilities qa
and ca can be learned from click-through histories, the willingness to pay is the
valuation va which an advertiser assigns to clicks, and thus intrinsically pri-
vate information. In particular, utility-maximizing advertisers may submit bids
ba �= va if doing so stands to improve their utilities.

In order to extract truthful bids from the advertisers, i.e., entice them to
submit ba = va, the publisher can charge them prices pa per click, which may
differ from the submitted bids. If charged pa, an advertiser’s utility is ra(va−pa),
where ra is the click-through rate for advertiser a, and may depend on the entire
assignment. A mechanism consists of both an allocation rule and a payment rule,
giving the payments pa per click. It is truthful or incentive compatible if the best
strategy of each advertiser a, independent of the strategies of other advertisers,
is to bid ba = va. We will discuss truthful mechanisms in the Cascade Model
below.

3 Winner Determination in the Cascade Model

In this section, we show that the optimal allocation for the simple Cascade Model
can be computed by a dynamic program. The key tool for deriving this program
is a lemma showing that whichever ads are shown must follow a simple ordering.
The results of this section were obtained independently and simultaneously by
Aggarwal et al. [1].

Lemma 1. Assume that the optimal solution places ad ai in position i. Then,
w.l.o.g.,

ba1qa1
1−ca1

≥ ba2qa2
1−ca2

≥ · · · ≥ bak
qak

1−cak

. (5)
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Proof. The proof of this lemma relies on an exchange argument similar to the
types of arguments in the analysis of greedy scheduling algorithms. Assume that
there is a position i < k such that bai

qai

1−cai
<

bai+1qai+1
1−cai+1

. Let a = ai, a
′ = ai+1 be

the two ads in those positions, and consider the alternative ordering placing a in
position i + 1, and a′ in position i, while leaving all other ads in the same slots
as before. By Equation (1), the click-through rates for all positions j /∈ {i, i + 1}
remain the same. Recalling that Ci =

∏i−1
j=1 caj , the new click-through rates for

ads a and a′ are r′a = qaca′ ·Ci and r′a′ = qa′ ·Ci. Thus, the total change in value is

r′aba + r′a′ba′ − (raba + ra′ba′) = Ci(ba′qa′(1− ca)− baqa(1− ca′))
≥ Ci(baqa(1− ca′)− baqa(1− ca′)) = 0,

Hence, swapping a and a′ will not decrease the value, and repeating such swaps
until the ads are ordered according to (5) proves the lemma.

We can now use dynamic programming to design a polynomial-time algorithm
for the winner determination problem. First, all ads are sorted according to
(5). We then fill out a dynamic programming table An×k, whose entry A[a, i]
contains the optimum value that can be obtained from ads a, . . . , n in positions
i, . . . , k, conditioned on the ad in slot i being read. Once this table is filled out,
the solution of the problem is contained in the entry A[1, 1]. To fill this table,
we use the following recurrence:

A[a, i] = max(A[a+ 1, i], baqa + caA[a+ 1, i+ 1]).

If ad a is placed in position i, then its conditional expected value is baqa, and
the reader will continue to slot i + 1 with probability ca. Thus, the expected
conditional value obtained from slots i + 1, . . . , k is caA[a + 1, i + 1], since the
ads in slots i+1, . . . , k will be chosen optimally as well. Summing up, we obtain
the following theorem.

Theorem 1. There is an algorithm with a running time of O(n logn+nk) which
computes the optimal placement of n ads in k slots in the simple Cascade Model.

3.1 Incentive-Compatible Mechanism Design

To turn the above algorithm into an incentive compatible mechanism, we can use
a pricing scheme based on the classical Vickrey-Clarke-Groves (VCG) mechanism
[17,5,10]. The VCG payment scheme charges each bidder a an amount equal to
the externality this bidder imposes on other bidders. The externality can be cal-
culated by removing a from the set of advertisers, running the algorithm again,
and computing the total utility of all advertisers in the resulting solution. The
VCG payment is then the difference between the value of all advertisers in this
new solution, and the value of all advertisers except a in the original optimum.
It is well known that this payment scheme gives an incentive-compatible, effi-
cient mechanism for allocating and pricing ads in the simple Cascade Model.
Computing the prices can be accomplished with k separate invocations of the
dynamic program described above, for a total running time of O(n log n+ nk2).
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4 Multiple Ad Slates

In this section, we give a polynomial-time approximation scheme (PTAS) for
the allocation problem in the Slated Cascade Model. The NP-hardness of this
problem remains an open question.

The algorithm first discretizes some of the parameters. It then exhaustively
searches over all possible aggregate continuation probabilities in each slate, and
then runs a dynamic program to assign ads to slots. By conditioning on the
aggregate continuation probabilities of slates, the choices for slates become de
facto independent. Throughout, we let δ be a suitably small constant whose
precise value will be determined below.

4.1 Ignoring Small Probabilities

In order to show that we can ignore, at the cost of only a small loss in approxi-
mation guarantee, any ads that will be seen only with small probability, we first
prove the following lemma. We prove it in a fairly general form with position
dependent multipliers and multiple slates, since it will also be a key building
block for our approximation algorithms in Section 5.

Lemma 2. Let the position dependent multipliers of slate j be λj,1 ≥ λj,2 ≥
· · · ≥ λj,kj . Let ψ be any distribution over permutations of slates, and OPT the
value of the optimum solution.

For any δ > 0, there is a solution (possibly leaving some slots empty) of value
at least (1− δ) ·OPT such that for all non-empty slots j, we have Cj,i ≥ δ. That
is, each non-empty slot is reached with probability at least δ, given that its slate
is entered in the first place.

Proof. Let (aj,i)j,i be an optimal solution of value OPT. For every slate j, let
rj ≤ kj be the last slot containing an ad, and �j the largest index such thatCj,�j ≥
δ. Consider the solution that is obtained by moving the ads aj,�+1, . . . , aj,rj to slots
(j, 1), . . . , (j, rj − �j), for all j simultaneously, while leaving the remaining slots
empty.

Let C′
j,i be the new probability of seeing slot (j, i) after the change, given that

slate j is scanned. By the choice of �j , we immediately obtain that C′
j,i−�j

≥ 1
δCj,i

for all i ≥ �j +1. That is, the ad formerly in position (j, i) for i ≥ �j +1 is now at
least 1

δ times as likely to be reached, given that slate j is scanned. Furthermore,
because we only removed ads from slates, we immediately have that C

′
j ≥ Cj

for all slates j, i.e., it only becomes more likely that scanning of any slate j will
finish. Thus, with Ĉ′

j,i denoting the new overall probability of seeing slot (j, i),
we obtain that Ĉ′

j,i−�j
≥ 1

δ Ĉj,i, i.e., each remaining ad is at least 1
δ times as

likely to be seen after the change.
Each such ad is now in a slot (j, i) whose position dependent multiplier λj,i is

at least as large as the original one, by the sorting of the multipliers. The value
of the new solution is thus∑

j

∑rj−�j

i=1 λj,iĈ
′
j,iqaj,i+�j

baj,i+�j
≥ 1

δ

∑
j

∑rj

i=�j+1 λj,iĈj,iqaj,ibaj,i ,
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where we used the above argument as well as the fact that the λj,i are sorted.
Because the new solution cannot be better than OPT, we obtain that∑

j

∑rj

i=�j+1 λj,iĈj,iqaj,ibaj,i ≤ δ ·OPT,

and thus ∑
j

∑�j

i=1 λj,iĈj,iqaj,ibaj,i ≥ (1− δ) ·OPT.

In other words, removing the ads in positions �j + 1, . . . , rj cannot decrease
the value by more than δ · OPT, and ensures that Cj,i ≥ δ for all non-empty
slots (j, i) by construction.

4.2 Description of the Algorithm

We are now ready to describe and analyze the steps of the algorithm in detail:

1. Ignoring small continuation probabilities. First, we round any contin-
uation probability ca that is less than δ/(s + 1) down to zero. Effectively,
this ignores the value of any ad that comes after an ad with such small ca,
in the same slate j. It also changes the probability of leaving slate j to 0.
We argue that this decreases the value of the solution by at most δ · OPT.
By Lemma 2, there is a solution of value at least (1− δ

s+1 ) ·OPT such that
no ad follows any such low-probability ad in the same slate. For this altered
solution, changing the continuation probability of caj,i to 0 does not affect
the value of slate j.

Now consider the impact of the modified probabilities Cj of leaving slates
j = 1, . . . , s. That is, for some slates, we replace Cj ≤ δ

s+1 by C
′
j = 0. For

each slate j, the probability of reaching it decreases by at most δ
s+1 . Let Vj

be the expected value of slate j, conditioned on reaching it in the scanning
process. By leaving all other slates empty, we could make sure to reach slate j
with probability 1, and since the optimum solution must be at least as good,
we obtain that Vj ≤ OPT. Summing up over all slates, the total expected
value decreases by at most

∑
j

δ
s+1Vj ≤ sδ

s+1 ·OPT. Thus, in total, the value
decreased by at most δ ·OPT.

2. Rounding continuation probabilities. Next, we round down each non-
zero continuation probability to the nearest power of (1− δ/k). For any slot
(j, i), the resulting probability of reaching (j, i) is not changed by more than
a factor of (1−δ/k)k ≥ 1−δ. Therefore, this stage decreases the value of the
optimal solution by at most δ ·OPT. Then, the product of the continuation
probabilities of any subset of at most k ads is one of the O(k2) values

{0, 1, (1− δ/k)1, . . . , (1− δ/k)k�log(1−δ/k)(δ/(s+1))�}.

Denote this set of values by C.
3. Enumerating over all slate probabilities. The algorithm exhaustively

enumerates all combinations of probabilities Cs ∈ C for slates s. We call such
an s-tuple (C1, . . . , Cs) a configuration. Notice that there are only O(k2s),
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i.e., polynomially many, configurations. So long as for each slate s, the prod-
uct of the continuation probabilities is exactly Cs, this enumeration makes
it possible to evaluate precisely the click-through rate of any ad in any po-
sition. In particular, we use γs to denote the overall probability of entering
slate s. Notice that all γs can be computed efficiently from the distribution
fψ over permutations and the Cs values.

4. Dynamic programming solution. For each configuration (C1, . . . , Cs),
we find the optimal solution consistent with that configurations using dy-
namic programming. By Lemma 1, the advertisers in each slate must be
ordered in decreasing order of their ratios baqa

1−ca
. The dynamic programming

idea is essentially an s-dimensional Knapsack program. First sort the ads
such that b1q1

1−c1
≥ b2q2

1−c2
≥ · · · ≥ bnqn

1−cn
. The dynamic programming table has

entries A[a, i1, . . . , is, y1, . . . , ys] for all 1 ≤ a ≤ n, 0 ≤ ij ≤ kj , yj ∈ C, and
Cj ≤ yj ≤ 1 for every slate j. This entry contains the optimal total value
that can be obtained from the last ij slots of each slate j = 1, . . . , s, where all
ads are from the set a, . . . , n, assuming that the product of the continuation
probabilities of the first kj − ij slots of slate j is yj .

This entry of the dynamic programming table can be computed by con-
sidering all options for ad a. By Lemma 1, ad a is either not used at all, or is
placed at the first “empty” slot of one of the slates. If ad a is not used at all,
then the optimum value is just A[a+1, i1, . . . , is, y1, . . . , ys]. Otherwise, if ad
a is used in slate j (which is possible only if ij > 0), the optimum value is
A[a+1, i1, . . . , ij − 1, . . . , is, y1, . . . , yj · ca, . . . , ys]+ γjyjbaqa. The optimum
is then simply the maximum over these s+ 1 different options, and can be
computed in constant time O(s). Overall, the dynamic program then takes
time O(nk3s).

The rounding stages in the above algorithm lose at most 2δ ·OPT of the value
of the optimal solution. The last two stages use O(k2s) invocations of a dynamic
program, each taking time O(nk3s), to compute the optimal solution for the
rounded instance. Hence, by taking δ = ε/2, we obtain

Theorem 2. For every constant ε > 0, there is a polynomial time algorithm
for the winner determination problem in the Slated Cascade Model which always
outputs a solution of value at least (1− ε) ·OPT.

5 Position-Dependent Multipliers

The main difficulty in designing an algorithm for the winner determination prob-
lem in the CMPDM is that the equivalent of Lemma 1 no longer holds. Intu-
itively, high continuation probabilities are much less important if subsequent
slots have very low slot-specific λi values. Thus, there can be no simple sorting
criterion based solely on properties of the ads themselves. In this section, we
present a simple 4-approximation algorithm based on a reduction to the Knap-

sack problem, as well as the sketch of a quasi-polynomial-time approximation
scheme.
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A 4-approximation algorithm. First, by applying Lemma 2 with δ = 1
2

(and just one slate), we can restrict our attention to solutions where Ci ≥ 1
2

for all i, so long as we are willing to lose a factor 2 in the approximation guar-
antee. For such solutions, the objective function (4) can be 2-approximated by∑

i λibaiqai . Therefore, the solution to the winner determination problem can be
4-approximated by the optimal solution to the following Knapsack-like prob-
lem: select � ≤ k distinct ads a1, . . . , a� to maximize

∑�
i=1 λibaiqai subject to∏�−1

i=1 cai ≥ 1
2 .

To solve this problem, we first exhaustively try all ads â which will occupy
the last assigned slot �. The ad â is the only one with no restrictions on its con-
tinuation probability câ. Since λi’s are non-increasing, the remaining ads must
satisfy ba1qa1 ≥ ba2qa2 ≥ · · · ≥ ba�−1qa�−1 . The optimization problem is thus
to select a1, . . . , a�−1 to maximize

∑�−1
i=1 λibaiqai + λ�bâqâ, subject to the con-

straints
∑�−1

i=1 log2
1

cai
≤ 1 and � ≤ k. This problem can be solved using a simple

generalization of the classical fully polynomial-time approximation scheme for
Knapsack, thus giving a (4 + ε) approximation for the ad allocation problem,
for any ε > 0.

A quasi-PTAS. To obtain a quasi-PTAS for the winner determination problem,
we can build on the ideas from Section 4. The key idea is to round the λi

values to O(log k) powers (1 − δ)i. This results in O(log k) segments of slots
with now identical position-dependent multipliers. Similar to the PTAS from
Section 4, we also round continuation probabilities, and exhaustively search over
all probabilities of entering each segment. Given these probabilities, the optimum
solution can then be found with a Dynamic Program akin to multi-dimensional
Knapsack. Due to space constraints, the details and analysis of the algorithm
are deferred to the full version of this paper.

6 Discussion and Future Research Directions

In this paper, we studied a model for externalities in sponsored search based on
a probabilistic model of user behavior. One shortcoming of our model is that it
does not address situations where the search term is ambiguous (e.g., “Apple”
which can be matched to ads on Apple computers and on the fruit). In such cases,
the set of candidate ads consists of multiple classes with significantly different
“inter-class” and “intra-class” externalities. However, such situations are rare
and likely to become more so with the advance of new search technologies aimed
at modeling intent.

As for future research, one of the important problems we are currently inves-
tigating is to develop CTR-learning algorithms that can learn the parameters
of our model, and pursue an exploration-exploitation strategy that converges to
the optimal solution over time. It would also be desirable to determine the com-
plexity of computing an exact solution in the Slated Cascade Model or in the
Cascade Model with Position-Dependent Multipliers. While we presented ap-
proximation schemes for these models, we do not currently know whether they
are NP-hard to solve optimally.
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Abstract. The original analysis of sponsored search auctions by Varian
and independently by Aggarwal et al. did not take into account the no-
tion of reserve prices, which are common across all major search engines.
We investigate this further and show that the separability assumption
derived by Aggarwal et al. is not sufficient for aligning the greedy al-
location employed by GSP and the efficient allocation in the presence
of reserve prices. We extend separability and derive the condition under
which the greedy ranking allocation is an efficient truthful mechanism.
We call this generalization the extended separability condition.

To complement the analysis of the extended separability condition
we present an extension of the laddered auction in the presence of re-
serve prices, which we call the bi-laddered auction. We show that the
bi-laddered auction is the unique truthful auction for advertisers that
provides a price vector support for an extended GSP SNE scheme. Nev-
ertheless the bi-laddered auction is shown to allow a budget deficit.

Building on our model of reserve prices we continue by depicting ad-
vertising networks as double sided sponsored search markets with ad-
vertisers on one side, syndicators on the other, and the search engine as
the market maker. For the latter model we provide a truthful scheme
for the seller and show that by assuming separability one can design a
SNE, individually rational, and nearly efficient syndicated market that
allows the market maker (search engine) to run the market with a sur-
plus/budget balance. The uniqueness of our bi-laddered auction scheme
implies that without the separability condition no truthful syndicated
market can run without a deficit.

1 Introduction

Sponsored search auctions are the primary way that companies like Google and
Yahoo! monetize their search engines. They allow advertisers to bid on partic-
ular queries, thereby ensuring the relevance of the advertisement to the user,
and increasing the conversion rate. Sponsored search is a very large business,
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projected to grow to many billions of dollars in the next few years; it is not sur-
prising that the analysis of the precise way the auctions are run has generated
research interest in the past few years, (i.e, [8,4,19,9,3,11,12,7]).

The auctions have a very simple framework1. Each advertiser specifies the
query she is looking to advertise on, and submits a bid, representing the max-
imum amount she is willing to pay. When a user enters a query, the system
collects all of the advertisers bidding for the query, and runs a generalized sec-
ond price auction to determine both the winners, and the prices that each would
be charged. There are usually multiple winners, as there are multiple advertiser
slots on the search result page, with higher slots being more valuable since they
are seen by more users. Finally, the advertiser is charged only in the event of a
user click on the ad, otherwise no money changes hands, the so-called pay per
click scheme.

Separability. In one of the first analyses of these auctions, Aggarwal et al. [1]
showed that, not withstanding the claims made by Google, the auctions were not
truthful. The authors showed that the greedy ranking employed by Google agrees
with the efficient allocation only when the clickthrough rates are separable, that
is, they are the product of the function of the advertiser quality and the position
in which the advertisement appeared. The separability property has since been
used as a simplifying assumption in other work i.e., [8,11,12,7]2.

The separability assumption is also implicitly present in the work of Varian
[20]. Varian assumes that each slot s has a click-through rate xs but advertisers
have a quality score of 1 for their ad, meaning that an advertiser a’s click-through
at slot s equals 1·xs. Varian’s work presents a mechanism in an equilibrium state;
following the revelation principle it is not surprising that his Symmetric Nash
Equilibrium (SNE) supporting prices are essentially the Aggarwal et al.’s truthful
prices.

GSP Enhancements. While the basic principles of the Generalized Second Price
(GSP) auction are now well understood, the auctions that are run in prac-
tice have evolved beyond this bare-bones model. Some of the most pertinent
extensions include advertiser budgets, exploration in learning advertisers click
through rates, broad (as opposed to exact) matches of keywords and reserve
prices. Not surprisingly, each engineering enhancement has unintended economic
consequences, and may potentially wreak havoc on the equilibrium achieved by
the players.

While these extensions are now widely acknowledged (see for instance the
footnote in [7]) and used in practice, for the most part their precise effect on
the equilibria has not been analyzed. In this work we tackle the notion of slot
specific reserve prices, and detail the changes that this condition brings to the
auctions and the equilibria. Independently of our work, Even-Dar et al. [7] have

1 In practice the situation is much more complex - e.g. advertisers specify maximum
daily budgets, there is fuzzy matching on the queries, etc. We do not consider these
problems in this work.

2 [8] used separability earlier than [1].
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recently investigated the effect of bidder specific reserve prices. Not surprisingly,
they show that many näıve modifications lead to non truthful behaviors.

1.1 Our Contribution

While the results of Aggarwal et al. and Varian provide an initial analysis of
the sponsored search auctions, they fail to take into account reserve prices that
search engines usually set for many of the queries. In this work we explore the ef-
fect of reserve prices, and show that the separability assumption derived by [1] is
not sufficient for aligning the greedy allocation produced by the ranking function
and the efficient allocation. Thus, if we are to follow the allocation produced by
the ranking function, Clarke-Groves prices would not result in a truthful mecha-
nism. Instead we present the extended separability condition which provides the
necessary and sufficient condition for a ranking function to be truthful under the
VCG prices and modify the laddered auction of [1] (which we call the bi-laddered
auction) to derive a mechanism that is truthful in the presence of reserve prices.
The bi-laddered scheme is shown to be a supporting price vector for a SNE cre-
ated by the new extended generalized second price scheme that is used to replace
the GSP in the presence of reserve prices.

We then turn our attention to the sellers. In the sponsored search auction
where the ads are presented alongside the search results, it is the search engine
that controls the placement and the reserve prices for each of the slots. Currently
the sponsored search auction is evolving into an advertising network motivated
by Google’s acquisition of DoubleClick and Yahoo! buying RightMedia. In the
advertising network there are advertisers and publishers and the search engines’
role is that of market makers. In such a network it is easy to imagine a syndicate
situation, where a publisher (e.g. LinkedIn) offers to place advertisements along
its content pages, but has a set of reserve prices for these slots – as it encounters
cost, such as user satisfaction decrease, in placing the ads. In this case, we
describe a pricing scheme that is truthful for the seller. Motivated to design
an advertising network in SNE we show that the greedy allocation without the
separability assumption and with cost on the slots has a unique truthful pricing
scheme that does not allow for budget balance or surplus for the marker maker
(the search engine). Thus such a design would be unreasonable in practice.

We then tackle the problem of devising a market that would be budget bal-
anced (or carry a budget surplus), while at the same time eliciting truthful
behavior from both the buyers and the sellers simultaneously. It is easy to see
that in this scenario we must relax one of the conditions to avoid the impossibil-
ity result of Myerson-Satterthwaite [18]. We present one such mechanism, that
sacrifices some of the efficiency and prove its properties of maintaining SNE and
budget balance/surplus under the separability condition.

Independently of our work Even-Dar et al. [7] analyzed the notion of bidder
specific reserve prices. Our work differs in two major aspects. First, [7] explicitly
assumes that the separability condition holds. While, this assumption has been
made before, it has recently been called into question. See for example the results
of [6] and the model introduced in [2,15]. In our work we showcase the Extended
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Separability Condition and prove that the condition is necessary in order to align
the greedy allocation with the efficient allocation. Second, the major contribution
of [7] is the proof that GSP has an envy-free equilibrium with bidder specific
reserve prices. We present an extended GSP pricing scheme for the slot specific
reserve prices model which is shown to maintain SNE. Furthermore, while we
provide a truthful auction in the presence of reserve prices, a major point of
our work is the exploration of the strategies of the sellers (publishers in case
of syndication), and the wider question of a SNE in double sided markets that
carry a budget surplus.

Finally, let us define the notation that we will use for the rest of the exposition.
In general there are n advertisers = {i1, . . . , in}, who bid for k slots {j1, . . . , jk}.
Denote by bi the bid of advertiser (buyer i), by cj the reserve price (cost) of slot j,
and finally, by λi,j the clickthrough rate of advertiser iwhen she is placed in slot j.

2 The Extended Separability Condition

In this section we present and analyze the extended separability condition that
is required to guarantee the existence of a truthful efficient mechanism for the
greedy allocation ranking auction of sponsored search with reserve prices.

Aggarwal et al. [1] showed that for sponsored search auctions with no reserve
prices on slot, for all possible ranking functions R = (w1, . . . , wn) a truthful
solution exists only if for every two buyers i, i′ and slots j, j + 1 the condition

λi,j

λi,j+1
= λi′,j

λi′,j+1
holds. Below we show that not only must the clickthrough rates

be separable, but in any case where the same two buyers can be matched to
two different slots, the costs of those slots must be equal. In other words, the
only time when the allocation provided by the ranking function agrees with the
socially efficient allocation (maximizing the total gain from trade), is when either
such an allocation is straightforward, or many of the reserve costs are identical.
We now state this formally:

Theorem 1. For the sponsored search auction with reserve prices a truthful
efficient mechanism for the greedy allocation ranking auction exists only if the
following condition holds on the click through rates of the buyers and the cost of
the slots. For every rank function R = (w1, . . . , wn) and any two buyers i and
i′ ranked to slots j and j′ in R there exists a set of VCG[21,5,13] weights that
always yield the same ranking as R only if:

λi,j

λi,j+1
=

λi′,j

λi′,j+1

and either cj = cj+1 or λi,j+1 = λi′,j+1.

Proof. The proof follows the basic structure of the proof of the separability
condition in [1]. See [14] for full details.

It is important to note that unlike the Aggarwal et al. model where every adver-
tiser can potentially be allocated in every possible slot, our model might limit the
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allowed ranking functions as an advertiser i cannot be allocated to slot j where
bi < cj . In other words if for some ranking function R i and i′ are allocated to j
and j′ respectively it is not necessarily true that there exist a ranking function
R′ in which i and i′ are allocated to j′ and j respectively; and it is precisely
in these situations that a seller can charge different reserve prices for different
slots, and still have the allocation specified by R to be efficient.

3 Auctions with Reserve Prices

Aggarwal et al. [1] presented an auction that preserves and realizes an allocation
consistent with a ranking function R = (w1, . . . , wn) with a laddered pricing
scheme; and proved that the laddered price auction is truthful. Following a sim-
ilar assumption of separability Varian proved that there exists a SNE in an
auction that maintains a ranking function R = (w1, . . . , wn) where all wi = 1.
The laddered pricing scheme in Aggarwal et al. is the lower bound supporting
price vector for the Varian SNE. Both authors’ results do not take into ac-
count reserve prices (although they often occur in practice) and therefore do not
consider equilibria in the presence of reserve prices. In the previous section we
focused our attention on the condition required to maintain a truthful mecha-
nism that is aligned with the efficient allocation in a ranking based auction with
costs assigned to the slots. In this section we provide a pricing scheme to sup-
port a ranking based allocation with costs assigned to slots and prove that the
pricing scheme is truthful for the advertisers. Our pricing scheme also provides
a support price vector for a SNE in this extended model.

3.1 The Modified Laddered Auction

Recall, we are given n advertisers (buyers) with bid vector b = (b1, . . . , bn), a
ranking function R = (w1, . . . , wn), and k slots (sellers) with associated costs
c = (c1 ≥ c2 ≥ . . . ≥ ck). To assign buyers to sellers we first rank the buyers
by the product biwi. For the sake of exposition, reindex the buyers so that
b1w1 ≥ b2w2 ≥ . . . ≥ bnwn. If the first buyer can afford the top slot, assign
her to that slot, and repeat. Otherwise, leave slot the top slot unassigned, and
recurse on the remaining slots. Observe that this allocation rule maintains the
following two invariants:

1. If buyer i is assigned to a slot j and i′ is assigned to slot j′ with j < j′ then
biwi ≥ bi′wi′ .

2. If buyer i is assigned to slot j then bi ≥ cj .

It remains to describe the prices charged. We proceed similar to the laddered
auction [1] but add the effect of the reserve prices.

pi =
k∑

j=i

(
λi,j − λi,j+1

λi,i

)
max

(
wj+1bj+1

wi
, cj

)
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Theorem 2. The auction presented above is truthful.

Proof. Consider a buyer i, similar to the proof of [1], let x be the position of
i in the allocation above, and r be the closest preferred position of i, holding
everybody else’s bids constant. We show that there exists a rank closer to than
r to x, establishing a contradiction. Let py be the price charged to i if she ends
up in in position y. If r > x, i.e. the merchant prefers to be lower, then the total
change in her utility by moving to rank r − 1 is:

λi,r−1(vi−pr−1)−λi,r(vi − pr)=vi(λi,r−1 − λi,r)− (λi,r−1pr−1 − λi,rpr)

=vi(λi,r−1 − λi,r)−(λi,r−1 − λi,r)max(
wrbr
wi

, cj)

=(λi,r−1 − λi,r)(vi −max(
wrbr
wi

, cj))

≥ 0,

Where the last line follows from the two invariants we demonstrated above and
the fact that click through rates decrease with position. Since the utility gain is
non-negative, r cannot be the closest preferred rank. In the case that r < x the
proof is similar.

While the auction above is truthful, the reserve prices are not always met: it is
easy to construct examples where the average per click price paid by the buyer
is lower than the reserve price for that particular slot. In effect, the pricing
scheme ensures that the buyer pays at least the reserve price for slot j only for
those clicks that she is getting at j that she would not get at j − 1. While a
limitation, as the following theorem shows this is a direct consequence of the
ranking used by this widely employed mechanism. (In Section 6 we will explore
budget balanced/surplus mechanisms for this problem.)

Theorem 3. The auction defined above is the unique truthful auction that ranks
buyers according to decreasing wibi.

Proof. The proof parallels the uniqueness proof shown in [1]. We omit it here
for space reasons.

4 The Symmetric Nash Equilibrium with Reserve Prices

In the previous sections we showed that the bi-laddered pricing scheme conducts
a truthful sponsored search auction with reserve prices. In this section we present
a new extended Generalized Second Price auction for sponsored search auction
with reserve prices that conducts a Symmetric Nash Equilibrium. As expected
a price vector that is shown to support the SNE presented is the bi-laddered
prices.

For simplicity of presentation and similarly to Varian’s paper [20] we will show
the SNE of the sponsored search auction with reserve prices assuming that the
weight wi for all advertiser i is 1. Denote by pj the price charged for a click at
slot j.recall that we assume α ≤ 1.
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Definition 1. ([20]) A symmetric Nash equilibrium set of prices satisfies

(vi − pj)λi,j ≥ (vi − p′j)λi,j′

for all i, j and j′.

Let bm(j+1) be the bid of the advertiser in slot j+1, where m(j+1) is the index
of the advertiser placed in slot j + 1.

The GSP pricing scheme in [20] is defined to be pj = bm(j+1). Consider the
following extended GSP scheme for sponsored search auction with reserve prices
as pj = max (bm(j+1), cj). Though our greedy ranking scheme may not maintain
efficiency (some slots may be left unallocated) our allocation still maintains the
same key properties as were shown in [20] that allow for a SNE to exist with
the presence of reserve prices. The allocation is individual rational (it has non-
negative surplus), monotone in values and prices, the SNE is included in the NE
(SNE ⊂ NE) and a local SNE implies global SNE. These facts allow us to provide
an explicit characterization of equilibrium prices and bids. For the proof below we
make one more technical assumption, namely that in the greedy ranking among
all advertisers that can afford a particular slot, the one with higher click-through
rate will be ranked higher. Formally, we assume that λm(j+1),j

λm(j),j
= α ≤ 1.

Since advertiser i in slot j (indexed m(j)) does not want to move down one
slot it follows that

(vi − pj)λm(j),j ≥ (vi − pj+1)λm(j),j+1

or, equivalently

vm(j)(λm(j),j − λm(j),j+1) + pj+1λm(j),j+1 ≥ pjλm(j),j .

Similarly since advertiser z in slot j + 1 does not want to move up one slot it
follows that

(vz − pj+1)λm(j+1),j+1 ≥ (vz − pj)λm(j+1),j

or that

pjλm(j+1),j ≥vm(j+1)(λm(j+1),j − λm(j+1),j+1) + pj+1λm(j+1),j+1.

As we have assumed that λm(j+1),j

λm(j),j
= α ≤ 1, it follows that when combining the

above two formulas we get:

vm(j)(λm(j),j − λm(j),j+1) + pj+1λm(j),j+1 ≥ pjλm(j),j ≥
≥ pjλm(j+1),j ≥ vm(j+1)(λm(j+1),j − λm(j+1),j+1) + pj+1λm(j+1),j+1.

Since pj = max (bm(j+1), cj) it follows that

vm(j−1)(λm(j−1),j−1 − λm(j−1),j) + max (bm(j+1), cj)λm(j−1),j ≥
≥ max (bm(j), cj−1)λm(j−1),j−1

≥ max (bm(j), cj−1)λm(j),j−1

≥ vm(j)(λm(j),j−1 − λm(j),j) + max (bm(j+1), cj)λm(j),j
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We can then write down the upper and lower bounds on the bids:

max (bUm(j), cj−1)λm(j−1),j−1 =

vm(j−1)(λm(j−1),j−1 − λm(j−1),j) + max (bm(j+1), cj)λm(j−1),j

max (bLm(j), cj−1)λm(j−1),j−1 =

vm(j)(λm(j),j−1 − λm(j),j) + max (bm(j+1), cj)λm(j),j

The solution to the recursions is:

bLm(j)λm(j−1),j−1 =
∑
t≥j

vm(t)(λm(t),t−1 − λm(t),t)

bUm(j)λm(j−1),j−1 =
∑
t≥j

vm(t−1)(λm(t−1),t−1 − λm(t−1),t)

Note that since cj−1 ≤ vm(j−1) even in the slots where max (bm(j), cj−1) = cj−1
our bi-laddered scheme is bounded by bUm(j) from above. Since max (bm(j), cj−1) ≥
bm(j) our bi-laddered scheme is bounded by bLm(j) from below.

5 A Truthful Scheme for the Seller

In the previous section we discussed the truthful scheme for the advertisers, i.e.,
the buyers. In this section we will present a pricing scheme for the seller of k
slots and prove that the scheme is truthful for the seller.

One can imagine that the advertising space might be managed by a third
party such as a syndicator (i.e., LinkedIn) and therefore we would like to design
a pricing scheme that motivates the slot seller to report his true costs for the
advertising slots.

First let us consider the sponsored search setting in which the syndicator, i.e.,
the seller is interested in selling k slots of advertising. Each slot of advertising it has
an associated cost, stemming from the impact of advertising on users, opportunity
cost of utilizing the space for other results (or content), etc. We will assume that
the higher the advertising slot, the higher the cost inflicted on the publisher.

The seller has to determine a set of reserve prices, reporting a cost cj for every
slot j to the market maker (search engine in this case). By our assumption, the
costs are decreasing in j, i.e. cj > cj+1.

The pricing scheme for the seller is the double-sided auction extension of the
laddered scheme provided in Aggarwal et al. [1] for the buyer. Unlike the buyers’
side, the seller’s side of our double-sided auction has only a single seller. The
above fact simplifies significantly the formula for the seller’s pricing scheme. Let
A be the set of all the allocated slots’ indexes in the optimal efficient allocation,
and denote by m(j) the buyer assigned to slot j. Then the pricing scheme is as
follows: For all j ∈ A, set the price per click paid to the seller for allocated slot
j, to bm(j)λm(j),j . So overall,

pseller =
∑
j∈A

bm(j)λm(j),j

λj,j
(1)
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The intuition behind the pricing scheme is simple as there is only a single
seller, in every slot there will be no trade without him.

Theorem 4. The pricing scheme in equation 1 is truthful with respect to the
seller.

Proof. We omit the proof here for space reasons.The full proof can be found in [14].

6 The Syndicated Sponsored Search

In the previous sections we showed two pricing schemes one for the seller and
one for the buyers. One scheme allows the buyers to be truthful and the other
allows the seller to be truthful. As the sponsored search market evolves into
networks of advertisers and syndicators a natural question arises: is it possible
to conduct a market where all parties, i.e., the buyers and the seller are mo-
tivated to tell the truth simultaneously. We can consider the results from the
previous sections. We already saw that the bi-laddered auction, while truthful
for the buyers, leads us to charge prices that may be below the reserve prices
for particular slots (and this is inevitable given the ranking function). A similar
problem plagues us in the seller’s case - since the allocation is efficient, following
the Myerson-Satterthwaite result [18], the market maker will potentially sustain
a budget deficit. As the market maker in the desired syndicated market is the
search engine it is unreasonable to expect the market maker to carry a loss.
One way to overcome the impossibility of Myerson-Satterthwaite is to give up
some of the efficiency and maintain the other properties of individual rational-
ity (no player losses by participating in the market), truthfulness and budget
balance/surplus.

Of course other properties, e.g. truthfulness, can be sacrificed in order to
avoid the budget deficit. Nevertheless as we investigate the design of a market in
equilibrium (such as the SNE) if the requirement for a truthful market is relaxed
then following the revelation principle there will not exist a SNE in the designed
market.

The question that this section tries to answer is under what condition is it
possible to create a syndicated sponsored search market that operates without
a loss (i.e. budget balanced/surplus), while maintaining the desired properties
of SNE, individual rationality and minimal loss of efficiency.

Interestingly the question of maintaining budget balance in a truthful syndi-
cated sponsored search market ties back to the separability condition and the
extended separability condition. While under separability it is possible to create
a truthful budget balanced/surplus syndicated sponsored search market, and a
SNE budget balanced/surplus syndicated sponsored search market, we could not
show a similar result for the case were separability does not hold. Moreover the
uniqueness of the bi-laddered truthful pricing scheme and the fact that it does
not maintain budget balance indicates that no truthful budget balanced/surplus
syndicated sponsored search market exists for the general case.
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6.1 Separable Budget Balanced Syndicated Market

Consider a syndicator sponsored search double sided auction with buyers (ad-
vertisers) and seller of multiple slots (syndicator) and denote that auction by S.
We assume that S is separable: for every buyer i and slot j, λi,j = xi · yj where
xi is advertiser i’s click through rate and yj is slot j’s click through rate. Now
let D be a double sided auction where every buyer with a valuation vi in S is
represented by a buyer with valuation vi ·xi in D; and every slot with cost cj in
S is a slot with cost cj ·yj in D. The efficient allocation that maximizes gain from
trade in D is the following standard double sided auction allocation: order the
buyers according to decreasing valuations and the slots according to increasing
costs and consider for allocation all the buyer-slot pairs that have positive gain
from trade. The difference between the efficient allocation of S and the efficient
allocation of D is that after determining which buyers and slots made it into
the allocation(D’s or S’s), S orders the slots in the allocation in descending or-
der and matches to the buyers that made it into the allocation also ordered in
descending order.

Since D is a standard double sided auction it is well known (e.g. [17,10]) that
there exist a budget balanced solution which is truthful, individually rational,
and gives up at most one trade of the efficient allocation. Thus it is reasonable to
expect that there should exist a mechanism that gives up at most one buyer and
one slot, such that S is budget balanced, has a SNE and individually rational.
And indeed the following mechanism produces the desirable properties:

The BB SS Syndicator double-sided auction mechanism:

1. Let A be the efficient allocation for a Syndicator double-sided auction.
2. remove from A buyer i ∈ A such that vi · xi is minimal
3. unmatch in A slot j ∈ A such that cj · yj is maximal
4. rematch buyers and slots that remain in A according to buyers ordered in

descending order and slots ordered in descending order.
5. charge buyer i pi = max{bi+1, ce(i)} where ce(i) is the cost of the slot matched

with buyer i in the efficient allocation.
6. charge the seller for slot j pj = be(j) where be(j) is the bid of the buyer

matched with slot j in the efficient allocation.

Lemma 1. The BB SS Syndicator double-sided auction mechanism is budget
balanced, SNE, and individually rational.

Proof. The mechanism is individually rational for every buyer as his price is
always less than the buyer’s bid, i.e., max{bi+1, ce(i)} ≤ bi. It is also individually
rational for the seller as be(j) ≥ cj for every j.

The mechanism is a SNE as the pricing scheme for every allocated buyer is
identical to the efficient mechanism pricing scheme in SNE (see section 4) and
since all of the allocated buyers after the trade reduction did not change their
relative ranking, no one has a new incentive to move in the rankings. Similarly,
for every slot that is allocated, the seller is payed the truthful price from the
efficient allocation. Thus he also has no incentive to deviate from the truthful
strategy.
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The mechanism is budget balanced as the trade reduced allocation shifted every
buyer by one slot down and therefore for every buyer i that is matched with seller
j in the efficient allocation, buyer i’s price in the trade reduced allocation is pi =
max{bi+1, cj} and the seller expects to be payed for every allocated slot j in the
trade reduced allocation pj = bi+1. Thus pi ≤ pj+1, ensuring budget balance.
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Abstract. We introduce and study share-averse auctions, a class of auc-
tions with allocation externalities, in which items can be allocated to
arbitrarily many bidders, but the valuation of each individual bidder de-
creases as the items get allocated to more other bidders. For single-item
auctions where players have incomplete information about each others’
valuation, we characterize the truthful mechanism that maximizes the
auctioneer’s revenue, and analyze it for some interesting cases.

We then move beyond single-item auctions, and analyze single-minded
combinatorial auctions. We derive sufficient conditions for a truthful al-
location in this setting. We also obtain a

√
m-approximation algorithm

for maximizing social welfare, which is essentially tight unless P=NP.

1 Introduction

Consider the problem of selling a piece of technological or financial advice. In
principle, such information can be sold to all participating bidders at no mar-
ginal cost to the seller. However, in reality, the value of the information to each
individual bidder decreases the more other bidders receive the information, since
the winner(s) of the auction will not obtain as strong a technological or financial
advantage over the losers as they would have otherwise. A similar scenario can
arise for physical items: for instance, the value a shared network infrastructure,
a road, or a park decreases in the number of others who have access to it.

The preceding examples motivate the study of auctions for share-averse buyers
(share-averse auctions for brevity): auctions in which items can in principle
be allocated to arbitrarily many bidders, but the valuation of each individual
bidder decreases as the items get allocated to more other bidders. Share-averse
auctions fall broadly in the scenario of auctions with allocation externalities
[10,2,8]. They differ in that the externalities take on a simpler form: we assume
that agents care only about the number of other players sharing items with
them, but not about their identity, or the allocation of items which the player
does not share. Furthermore, traditional models [10,2,8] for externalities use
additive terms, whereas in the share-averseness model, multiplicative decreases
appear more appropriate.

Our main results in this paper are twofold. First, we extend the seminal work
of Myerson [14] and characterize optimal auctions for share-averse bidders if only
a single item is auctioned off. We then focus on the case where all bidders have the

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 609–620, 2008.
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same share-averseness response function f , and derive a partial characterization
of the optimal allocation rule in those cases. As a special case, we recover a
result by Maskin and Riley [13] on revenue maximization for multi-unit auctions
if bidders are unit-demand, i.e., they need at most one copy of an item.

Second, we consider the case of allocating bundles to share-averse single-
minded bidders in a combinatorial auction. In our model, the value ascribed
to the bundle by such a bidder depends on the maximum number of other
bidders she shares any item with. For this problem, we characterize sufficient
conditions for a truthful mechanism in the spirit of [12], and provide a (tight)√
m approximation mechanism.

2 Related Work

Share-averseness is a negative allocation externality among the winners. Auc-
tions with externalities [9,8,10,2] are often studied in economics both for revenue
maximization and efficiency. Many of these scenarios have externalities affect-
ing the loser of auctions, whereas our results are based in a reduction in utility
for the winners. Jehiel et al. [9,8] study both informational and allocative type-
independent externalities. Brocas [2] looks at the extension where externalities
depend on the types of both the winner and loser of the good. Recently, Ghosh
et al. [4] looked at the computational challenges of allocation with externali-
ties and showed inapproximability results for general case. In their result, the
utility depends not only on the number of bidders sharing the item, but also
on the identity of the winner set. This makes the problem significantly more
complex.

Our work also relates to the problem of allocating public goods or clubs subject
to congestion [3]. Public goods are defined as being shared by more than one
agent. Congestion describes the decrease in utility to the individuals as a result
of the sharing. Much of the work on clubs and public goods focuses on the issues
of cost sharing and incentive compatibility (see, e.g., [7]). While there has been
some work on equilibria in games between different clubs trying to maximize
profits (e.g., [15]), these tend to focus on the competition between multiple clubs
vying for customers rather than an optimal auction for membership in one club
with given size.

Approximation algorithms and truthful mechanisms for combinatorial auc-
tions [16] have recently received a lot of attention. Much of the focus has been on
the single-minded case. Withm denoting the number of items, Lehman et al. [12]
were the first to show that a simple greedy algorithm gives a

√
m-approximation

(which is best possible unless P=NP). Gonen et al. [6,5] use linear program-
ming to extend the results to the more general case of Packing Integer Programs
(PIPs), where multiple copies of each item are available. Later, Briest et al. [1]
improve their result to a truthful m1/b approximation algorithm, where b is the
minimum of the multiplicities of all items. We will use both algorithms as a black
box in deriving our approximation result for single-minded bidders.
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3 Single-Item Auctions with a Prior

In this section, we focus on the special case of selling a single item to risk-neutral
bidders. The set of all n bidders is denoted by N := {1, . . . , n}. Each bidder i
has a private valuation vi, if she is allocated the item exclusively. If she shares
the item with k other bidders, her valuation decreases to vi · fi(k). We call fi

the share-averseness function of bidder i, and require that fi(0) = 1 and fi

is monotonically non-increasing. We assume that share-averseness functions are
common knowledge, as opposed to valuations, which are private.

Following standard convention (e.g., [14]), we assume that each bidder’s val-
uation is drawn independently from some distribution gi : [�i, ri] → R+ over
a finite interval [�i, ri], and that all bidders share this belief. We denote the
cumulative distribution function (CDF) of gi by Gi(v) =

∫ v

�i
gi(t)dt. We let

V = [�1, r1]× · · ·× [�n, rn] denote the set of all possible combinations of bidders’
values, and V−i = ×j∈N,j �=i[�j, rj ] the set of possible values of bidders other
than bidder i. The joint distribution on valuation vectors v = (v1, . . . , vn) is
g(v) =

∏
i∈N gi(vi). Likewise, we define v−i = (v1, . . . , vi−1, vi+1, . . . , vn) and

g−i(v−i) =
∏

j∈N,j �=i gj(vj).
In this setting, we want to derive a truthful mechanism maximizing the auc-

tioneer’s revenue. Such a mechanism can be described by functions ai : V → [0, 1]
and pi : V → R+ for each agent i. We denote the vector of all of these functions
by a and p, respectively. For each vector v of valuations, ai(v) is the fraction of
the item assigned to bidder i (corresponding to the visitation rate in club good
theory [3]), and pi(v) the expected payment of agent i. Given that we allow
fractional assignments of items, we need to define the notion of share-averseness
more precisely. We set wi(v) =

∑
j∈N,j �=i aj(v) to be the total fractional sharing

of bidder i. One way to interpret wi(v) is as the expected number of bidders
that i is sharing with if each bidder j receives the item with probability aj(v).

We also need to extend the share-averse function fi to fractional values now.
We define f ′i(t) as the convex combination (�t�−t)·fi(�t�)+(1−(�t�−t))·fi(�t�).
This definition ensures monotonicity of f ′i . Henceforth, whenever the distinction
is clear from the context, we will use fi to refer to the extension of the function
to fractional values.

Remark 1. It may appear natural to explicitly consider the aj(v) values as proba-
bilities, and assign the item to each bidder independently with probability aj(v).
The disadvantage of this approach is that the expected utility of bidder i now
depends not only on wi(v), but also on the exact fractional assignments of each
other agent, violating our framework of share-averseness.

There is a natural interpretation of the function f ′i defined above. If the item is
shared over a period of time, then standard network flow techniques can be used
to efficiently find an assignment over time in which each bidder i shares the item
with �w� other bidders for a 1− (�w� −w) fraction of time, and with �w� other
bidders for the remaining �w� − w fraction. (Here, w = wi(v).) From this flow
argument, we can also derive an actual distribution letting us interpret the ai(v)
as probabilities. After finding a period of time with corresponding assignments,
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simply define a distribution over allocations by drawing a uniformly random
point in time, and then taking the allocation at that time.

The utility of player i under valuations v is then ai(v) · vi · fi(wi(v)) − pi(v).
Therefore, the expected utility of player i with valuation vi is

ui(vi) =
∫

V−i
(ai(v) · vi · fi(wi(v)) − pi(v)) · g−i(v−i)dv−i,

where v = (vi,v−i), and dv−i = dv1 · · · dvi−1dvi+1 · · · dvn. The expected utility
of the seller from this auction is

û =
∫

V

∑
i∈N pi(v)g(v)dv.

In order to ensure that the auction mechanism is feasible and truthful, the
payments and allocated fractions will have to satisfy voluntary participation and
incentive compatibility (truthfulness), as captured by the following two condi-
tions for each bidder i:

ui(vi) ≥ 0 (1)

ui(vi) ≥
∫

V−i

(ai(v̂,v−i) · vi · fi(wi(v̂,v−i))− pi(v̂,v−i)) · g−i(v−i)dv−i∀v̂.(2)

An auction mechanism is specified by the functions determining the (frac-
tional) assignments and the payments of each bidder i, i.e., by the pair (a,p).
To simplify subsequent notation, we define

Qi(v) =
∫

V−i
ai(v,v−i) · fi(wi(v,v−i)) · g−i(v−i)dv−i

to be the expected conditional fraction of the original valuation bidder i ex-
pects having valuation v. We are now ready to characterize feasible truthful and
individually rational mechanisms (a,p).

Lemma 1. The following conditions are necessary and sufficient for (a,p) to
be feasible, truthful, and individually rational.

1. Monotonicity: For each bidder i, if v ≤ v′, then Qi(v) ≤ Qi(v′).
2. Individual Rationality: For each bidder i and valuation v, ui(v) ≥ 0.
3. (Extended) Incentive Compatibility (EIC): The expected utility function of

each bidder i satisfies ui(v) = ui(�i) +
∫ v

�i
Qi(t)dt.

Proof. The proof is similar to Lemma 2 from [14]. We only sketch it here due
to space constraints. The utility of agent i with true valuation vi, but reporting
a different valuation v̂, is∫

V−i

(ai(v̂,v−i) · vi · fi(wi(v̂,v−i))− pi(v̂,v−i)) · g−i(v−i)dv−i

=
∫

V−i
(ai(v̂,v−i) · (v̂ + (vi − v̂)) · fi(wi(v̂,v−i))− pi(v̂,v−i)) · g−i(v−i)dv−i

= ui(v̂) + (vi − v̂)Qi(v̂).
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Thus, incentive compatibility for bidder i is equivalent to requiring that

ui(vi) ≥ ui(v̂) + (vi − v̂)Qi(v̂), (3)

for all vi, v̂ ∈ [�i, ri]. The rest of the proof is nearly identical to [14].

The next theorem captures the notion that a mechanism is truthful if and only
if the allocation rule for each bidder is monotone, and the prices are defined
appropriately. The proof is similar to the proof of Lemma 3 by Myerson [14],
and due to space constraints, we defer it to the full version of this paper.

Theorem 1. Given the allocation functions a1, . . . , an, let payment functions p̂i

be defined as p̂i(v) = ai(v)vifi(wi(v)) −
∫ vi

�i
ai(t,v−i)fi(wi(t,v−i))dt for valua-

tions v = (v1, . . . , vn). Then, a share-averse auction is truthful if and only if the
allocation functions ai satisfy the monotonicity condition Qi(v) ≤ Qi(v′) when
v ≤ v′. Furthermore, the revenue-maximizing auction maximizes∫

V

∑
i∈N

(
vi − 1−Gi(vi)

gi(vi)

)
· ai(v)f(wi(v))g(v)dv. (4)

Remark 2. Note that we focus here only on the revenue maximization problem.
The problem of maximizing social welfare is much simpler in the single-item
case. The following mechanism can be easily seen to maximize social welfare
and be truthful.

For each k, let Sk be a set of at most k elements maximizing
∑

i∈S vifi(k−1),
with an arbitrary tie breaking rule consistent over all k. Given k, one can compute
Sk with simple sorting. The welfare maximizing mechanism simply picks the set
Sk with the largest social welfare. The proof uses a simple exchange argument
both to show that the optimum uses an integral allocation and picks Sk. To make
the mechanism truthful, one can simply charge each bidder the VCG payments,
and standard arguments prove incentive compatibility.

3.1 Regular Auctions

The term vi− 1−Gi(vi)
gi(vi)

in Theorem 1 is traditionally called the virtual valuation

(or effective bid) of agent i. The function ci(x) = x− 1−Gi(x)
gi(x) is called the virtual

valuation function. If all virtual valuation functions ci are strictly increasing, the
auction is called regular. Regularity is a standard assumption in auction theory,
and for the rest of this section, we will focus on regular auctions. We also make
the further assumption that all bidders have the same share-averseness function,
i.e., fi = f for all i.

In terms of the virtual valuations, we can state the auctioneer’s objective as
maximizing

∫
V

∑
i∈N ci(vi) ·ai(v)f(wi(v))g(v)dv. Without loss of generality, we

will assume for the remainder of this section that bidders are sorted by virtual
valuations, i.e., c1(v1) ≥ c2(v2) ≥ · · · ≥ cn(vn).

Theorem 2. Without loss of generality, the optimal mechanism for general
share-averse bidders has the following properties:
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1. The allocations are monotone non-increasing, i.e., ai(v) ≥ ai+1(v) for all i.
2. If ci(vi) < 0, then ai(v) = 0.
3. For every index i with ai+1(v) > 0, we have ai(v) + ai+1(v) ≥ 1.

Notice that the theorem implies that there can be at most one bidder i with
allocation 0 < ai(v) < 1

2 .

Proof (Sketch). An easy calculation using the monotonicity of f shows that
swapping the allocations of j and j+1 cannot decrease the utility of the auction-
eer. Therefore, the optimal allocation is monotone non-increasing using a simple
exchange argument. (Details are deferred to the full version.)

If there is a bidder with negative virtual valuation who has a (fractional)
allocation, it is easy to see that the auctioneer’s revenue strictly increases by
taking away that bidder’s allocation.

If there is a j such that aj(v)+aj+1(v) ≤ 1, then consider the new assignment
giving bidder j an allocation of aj(v) + aj+1(v), and bidder j + 1 an allocation
of 0. We obtain that

ûOPT −
∫

V

∑
i�=j,j+1

ci(vi)ai(v)f(wi(v))

=
∫

V
cj(vj)aj(v)f(wj(v)) + cj+1(vj+1)aj+1(v)f(wj+1(v))g(v)dv

≤
∫

V +cj(vj) · (aj(v) + aj+1(v)) · f(wj(v) − aj+1(v))g(v)dv

= ûOPT′
−
∫

V

∑
i�=j,j+1 ci(vi)ai(v)f(wi(v)),

and can therefore repeatedly perform such alterations until the third condition
is satisfied.

3.2 Convex Share-Averseness Functions

A very natural further restriction on f is that it is convex over its entire support.
Intuitively, this corresponds to bidders losing their sensitivity to more and more
other bidders sharing the item: the addition of the 100th bidder causes less
marginal loss in utility than the addition of the second bidder. If f is convex,
we can derive stronger conditions on the allocated fractions than Theorem 2.

Theorem 3. Under the optimal mechanism for convex share-averse bidders, at
most one bidder j will obtain a fractional allocation 0 < aj(v) < 1.

Proof. By Theorem 2, the allocations in OPT are sorted, and no bidder with
negative virtual valuation obtains an allocation. Suppose that in OPT, there
is a j such that 1 > aj(v) ≥ aj+1(v) > 0. By Theorem 2, we know that
aj(v) + aj+1(v) ≥ 1. We construct an alternate solution, where bidder j’s new
allocation is 1, and bidder (j + 1)’s is aj(v) + aj+1(v) − 1.

Define W :=
∑

i�=j,j+1 ai(v). We can then see that aj(v) ≥ aj+1(v) implies

wj(v) = W + aj+1(v) ≤W + aj(v) = wj+1(v),
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and because f is monotone non-increasing, f(wj(v)) ≥ f(wj+1(v)). There-
fore, the convexity of f implies that f(wj(v) − δ) − f(wj(v)) ≥ f(wj+1(v)) −
f(wj+1(v) + δ), for any δ ≥ 0. In other words, since agent j is currently not
sharing as much as agent j + 1, reducing her load by δ gives a larger increase
than the decrease of agent j+1 by increasing her load by δ. Setting δ = 1−aj(v),
we can now use the above reasoning to derive

ûOPT −
∫

V

∑
i�=j,j+1

ci(vi)ai(v)f(wi(v))

=
∫

V cj(vj)aj(v)f(wj(v)) + cj+1(vj+1)aj+1(v)f(wj+1(v))g(v)dv

≤
∫

V
cj(vj)aj(v)f(wj(v) − δ) + cj+1(vj+1)aj+1(v)f(wj+1(v) + δ)g(v)dv

<
∫

V cj(vj)f(wj(v) − δ) + cj+1(vj+1) · (aj+1(v) − δ) · f(wj+1(v) + δ)g(v)dv

= ûOPT′
−
∫

V

∑
i�=j,j+1 ci(vi)ai(v)f(wi(v)).

The first inequality used the convexity observation along with the fact that
cj(vj)aj(v) ≥ cj+1(vj+1)aj+1(v) by the sorting. The second inequality used
monotonicity of f and the sorting cj(vj) > cj+1(vj+1). By repeating such real-
locations, we derive an allocation with at most one fractional aj(v).

Remark 3. A proof similar to Theorem 3 derives the optimal mechanism for
multi-unit auctions with regular virtual valuations. It thus recovers Proposition
4 of Maskin and Riley [13]. A multi-unit auction with k items can be modeled by
bidders with the share-averseness function f(x) = 1 for x ≤ k− 1, and f(x) = 0
for x > k − 1. An easy calculation using Theorem 2 shows that the optimal
mechanism assigns the item fully to the first min(j, k) bidders, and not at all to
the remaining ones, where j ≤ n is the largest index such that cj(vj) ≥ 0. The
payment of a winning agent i can then be easily derived to be the threshold bid,
the lowest bid with which agent i could have been assigned the item.

4 Single-Minded Combinatorial Auctions

In this section, we extend the study of share-averse auctions to the combinatorial
setting in which there is more than one item. The set of all items is M :=
{1, . . . ,m}. Bidders are single-minded. That is, for each bidder i, there exists a
set Si such that v∗i (S) = v∗i (Si) for all S ⊇ Si, and v∗i (S) = 0 otherwise. These
are the bidders’ valuations if they do not share any items in S.

An assignment B = (B1, B2, . . . , Bn) of items Bi ⊆ M to bidders need not
have disjoint bundles. (However, we restrict our focus to mechanisms that as-
sign items only integrally.) We now use wi(B) = maxj∈Bi(ni,j) to denote the
maximum number of other bidders that i shares any of her items with, where
ni,j = |{i′ �= i | j ∈ Bi′}| is the number of users sharing item j with bidder i.
The valuation of bidder i is vi(B) = v∗i (Bi) · f(wi(B)). Notice that we assume
in this section that all bidders have the same share-averseness function f .

Remark 4. Naturally, the maximum number of other bidders is not the only
possible measure of sharing. One could instead consider a (weighted) average,
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for example. The maximum number appears natural in settings where the items
are combined in a physical way, and limited access to any single item causes a
bottleneck. An investigation of other aggregations is left for future work.

A bid bi comprises a pair (S, v). Since both Si and v∗i (Si) are private information,
bidders can be strategic both about the set and the valuation they declare. The
vector of the bids of all bidders is denoted by b. The bids of all bidders except
bidder i are denoted by b−i.

4.1 A Sufficient Condition for a Truthful Mechanism

Lehmann et al. [12] proved that an allocation rule for single-minded combinato-
rial auctions gives rise to a truthful mechanism if the allocation rule is monotone
and exact, in the sense that each bidder i is either allocated her desired set Si or
the empty set, and increasing one’s bid can never result in moving from receiving
Si to receiving the empty set. We extend these conditions as follows:

1. Exactness: For each bidder i, either Bi(b) = Si or Bi(b) = ∅.
2. Allocation Monotonicity: If S′ ⊆ S and v′ ≥ v, and Bi(b) �= ∅ with bi =

(S, v), then wi(b) ≥ wi((S′, v′),b−i). The is, by requesting a smaller set and
bidding higher, a bidder can only share with fewer other bidders.

Given arbitrary (but fixed) bids b−i by all bidders except i, and a fixed set
S, we define the jth critical bid τ i

j of bidder i to be the infimum of all v such
that Bi((S, v),b−i) = S and wi((S, v)) ≤ j. It then follows immediately from
allocation monotonicity that τ i

1 ≥ τ i
2 ≥ · · · ≥ τ i

m−1, and that if bidder i bids
less than τ i

m−1, she does not receive any items. Based on the critical values, we
define the following payment structure:

πi
j =

⎧⎪⎪⎨⎪⎪⎩
0 if j = m

f(m− 1)τ i
m−1 if j = m− 1

(f(j)− f(j + 1))τ i
j + πi

j+1 if j < m− 1.

Expanding the recursive formula gives πi
j = f(j)τ i

j +
∑m−1

k=j+1 f(k)(τk− τk−1).
Given an allocation scheme, we will charge bidder i the amount πi

j for the unique
index j such that vi ∈ (τ i

j , τ
i
j−1]. (If vi > τ

i
m−1, then we define j = m.) Note that

this payment does not depend on the amount of the agent’s bid, but only on the
interval which the bid falls into. In the sequel, we assume that the bidder i is
fixed, and omit it from the notation where it is clear. The following proposition
follows fairly directly from the definition of the payment scheme:

Proposition 1. If bidder i’s bid is denied, her utility is 0. If bidder i bids truth-
fully, her utility is non-negative.

The main result of this section is the following theorem:

Theorem 4. If the allocation rule satisfies Exactness and Monotonicity, then
the payment scheme πi

j yields a truthful implementation.
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Proof. Assume that bidder i desires set S with valuation v, and submits a
bid b′ = (S′, v′). By Proposition 1, b′ must lead to winning S′, and S′ ⊇ S.
By Lemma 3 below, bidding (S, v′) gives at least the same utility. In turn, by
Lemma 2, the utility of bidding (S, v) is at least that of bidding (S, v′). Hence,
it is a dominant strategy to declare (S, v).

Lemma 2. If bidder i desires set S with valuation v, declaring (S, v) dominates
declaring (S, v′) for all v′.

Proof (Sketch). Due to space constraints, the proof is deferred to the full
version of the paper. The idea is to distinguish several cases. The easy cases are
when either (S, v) or (S, v′) are losing bids. In those cases, it is easy to show
that the utility of the truthful bid dominates the other one. If both bids lead
to receiving the set S, then we distinguish whether v or v′ leads to more shar-
ing. In both cases, somewhat involved calculations show that the non-truthful
declaration cannot lead to higher utility.

Lemma 3. If bidder i desires set S with valuation v, declaring (S, v) dominates
declaring (S′, v) for all S′.

Proof. If S′ �⊇ S, then bidder i can obtain valuation at most 0. Let ν =
wi((S, v),b−i) and ν′ = wi((S′, v),b−i). Note that ui((S, v),b−i) = f(ν)(v −
τν)+

∑m−1
k=ν+1 f(k)(τk−τk−1), and ui((S′, v),b−i) = f(ν′)(v−τν′ )+

∑m−1
k=ν′+1 f(k)

(τk−τk−1), where ν ≤ ν′ by monotonicity. Define φ(S, v) = f(j) if τj < v < τj−1
for j < m and 0 otherwise. Note that by definition ui((S, v),b−i) =

∫ v

0 φ(S, v).
Similarly, ui((S′, v),b−i) =

∫ v

0 φ(S
′, v).

We show that φ(S′, x) ≤ φ(S, x) for all x ∈ [0, v]. This immediately implies
ui((S′, v),b−i) ≤ ui((S, v),b−i). If (S, x) is a losing bid, then ui((S′, v),b−i) =
ui((S, v),b−i) = 0. Otherwise, (S, x) is a winning bid sharing with nx other
winners. By monotonicity, the bid (S′, x) would not have been granted with
n′x < nx bidders, so x ≤ τnx−1, and φ(S′, v) ≤ f(nx) = φ(S, v).

4.2 A
√

m-Approximation Algorithm

In this section, we present a mechanism approximating the social welfare of the
assignment A, V (A) =

∑
i∈N vi(Bi(b)). We will achieve a

√
m approximation.

Since the problem contains the Set Packing problem as a special case (with
share averseness function f(x) = 1 for x = 0 and f(x) = 0 for x > 0), it is
NP-hard to approximate the problem to within a factor m

1
2−ε for any ε > 0.

Consider the modified problem (which we denote by Pa,b), in which we modify
the share-averseness function as follows: fa,b(x) = f(a) for x ≤ a, fa,b(x) = f(x)
for a ≤ x ≤ b, and fa,b(x) = 0 for x > b. Then, in the optimum solution, w.l.o.g.,
each item is shared between a and b times. This modified problem Pa,b can be
reasonably well approximated, so long as a and b are chosen “close enough”.

Lemma 4. Pa,b can be approximated within a factor min(
√
m,m

1
b ) f(b)

f(a) .
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Proof. Consider the following set packing problem. The sets are exactly the
desired sets Si, with valuations vi. We impose a hard constraint that each item
can be shared at most b times. Thus, we obtain a packing problem with a uniform
upper bound of b on the number of times each item can be included.

Briest et al. [1] show that such a packing problem can be approximated to
within min(

√
m,m

1
b ). Let OPT be the optimum solution to Pa,b. For each al-

located set Si, the optimum, by definition, obtains valuation at most f(a)vi.
Therefore, the optimum solution to the packing problem has valuation at least

1
f(a)V (OPT). Thus, the approximate solution returned by the algorithm of [1]
has valuation at least 1

f(a)·min(
√

m,m
1
b )

times that of OPT. For each allocated set

Si, our solution obtains valuation at least f(b)vi, completing the proof.

Next, we show that so long as we are willing to incur a constant factor loss in
the approximation guarantee, we can restrict our attention to solutions in which
the share-averseness function does not take on too small values.

Lemma 5. Let n̄ be the largest j such that f(j) ≥ 1
n . Then, there is a solution

OPT′ whose value is within a factor 2 of that of OPT, such that no item is
shared more than n̄ times in OPT′.

Proof. Let I be the set of all bidders sharing items with more than n̄ other
bidders. If the total valuation obtained from bidders in I is at most 1

2V (OPT),
then we allocate each bidder in I the empty bundle. This ensures the condition,
while reducing the total value of the solution by at most a factor of 2.

On the other hand, if the total valuation of bidders in I is at least half the
optimum valuation, then let i∗ ∈ I be the bidder with highest valuation for her
set Si. If we allocate i∗ her bundle and everyone else the empty bundle, we again
ensure that no one shares with more than n̄ other bidders. Furthermore, the
choice of i∗ gives us that

vi∗ ≥ 1
|I| ·
∑

i∈I vi ≥ 1
n ·
∑

i∈I(nf(n̄+ 1))vi ≥ 1
2V (OPT).

Here, we used that |I| ≤ n, and nf(n̄+ 1) ≤ 1 by definition of n̄.

The idea of our approximation algorithm is to solve several problems of the
form Pa,b, and keep the best of the solutions. In order not to lose too large a
factor f(a)/f(b), we ensure that each interval has f(a) and f(b) “reasonably
close” together. Formally, we define a sequence d1, . . . , dk+1 by d1 = 0, and
di+1 = max{j | f(j − 1) ≥ 1

2f(di)}. We stop when di ≥ n̄, and let k + 1 be the
total length. Notice that k = O(log n) by Lemma 5. The algorithm solves each
of the problems Pdi,di+1−1 using the algorithm of Briest et al. [1], and returns
the best of the solutions found. This clearly takes polynomial time.

Theorem 5. This algorithm gives a solution within a factor Ω(
√
m) of OPT.

Proof. Let OPT be the optimum solution. For each i = 1, . . . , k, let Oj denote
the set of bidders j who were assigned their set Sj sharing with d other bidders,
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for di ≤ d ≤ di+1 − 1. Because in each solution Oj , there is potentially less
sharing than in OPT, we obtain that

∑k
i=1 V (Oi) ≥ V (OPT).

Each assignmentOi is a feasible solution to Pdi,di+1−1. Therefore, by Lemma 4,
the solution Ai found by the algorithm in the ith iteration satisfies

V (Ai) ≥ f(di)
min(

√
m,m1/(di+1−1))·f(di+1−1)

· V (Oi) ≥ 1
2(min(

√
m,m1/(di+1−1)))

V (Oi),

by the definition of the di. Now, consider 2 cases:

1. If V (O1) + V (O2) ≥ 1
2 · V (OPT) (i.e., sharing very little can give within a

constant factor of the optimum total welfare), then

V (A1) + V (A2) ≥ 1
2
√

m
· (V (O1) + V (O2)) = Ω( 1

2
√

m
) · V (OPT).

Therefore, at least one of A1, A2 gives an Ω( 1
2
√

m
) approximation.

2. If, on the other hand, V (O1) + V (O2) < 1
2V (OPT), then

∑k
i=3 V (Oi) ≥

1
2V (OPT). Because d4 ≥ 4, and thus each item can be allocated at least
three times in Pdi,di+1−1 for i ≥ 3, we know that the algorithm of Briest et
al. [1] gives an Ω(m1/3) approximation for each such subproblem. The best
of the solutions Ai for i ≥ 3 is at least as good as the average, i.e., at least

1
2(k−2)m1/3 V (OPT) ≥ 1

2m1/3 log(n)V (OPT) ≥ 1
2
√

m
V (OPT),

so long as m and n are polynomially related.

5 Further Directions

In the context of single-item share-averse auctions, a promising direction for
future work is to characterize the optimum mechanism more specifically when
bidders have different share-averseness functions. Perhaps, stronger assumptions
on the distributions could help here. It would also be interesting to draw further
connections to the literature on club goods, and consider the effects of multiple
competing auctioneers.

In the context of share-averse combinatorial auctions, many directions remain
open. It would be desirable to obtain approximation guarantees (nearly) match-
ing those for regular combinatorial auctions, e.g., with submodular valuations.
For the single-minded case, our algorithm gives an essentially best-possible ap-
proximation guarantee. However, it does not satisfy the monotonicity condition
in Theorem 4. A simple randomized variation gives monotonicity in the de-
clared values. However, the more difficult problem is that the algorithm of Briest
et al. [1] is not monotone in terms of the number of sharing agents. Modifying
the algorithms of [1] to achieve monotonicity in the amount of sharing is an
interesting direction for future work.

Another challenge is to obtain exact or tight approximate solutions when bid-
ders have different share-averseness functions. Our algorithms can be generalized
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to this case, but current results on approximations of PIPs [11,1] are not quite
strong enough to give the tight

√
m approximation. Finally, we have not yet

covered the case where the share-averseness functions are not public knowledge.
Designing mechanisms that are also incentive compatible with regard to reveal-
ing share-averseness, or mechanisms that learn share-averseness from past bids,
is an interesting direction for future work.

Acknowledgments. We thank Isabelle Brocas for useful discussions.
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Abstract. Sponsored search involves running an auction among adver-
tisers who bid in order to have their ad shown next to search results
for specific keywords. The most popular auction for sponsored search
is the “Generalized Second Price” (GSP) auction where advertisers are
assigned to slots in the decreasing order of their score, which is defined
as the product of their bid and click-through rate. One of the main ad-
vantages of this simple ranking is that bidding strategy is intuitive: to
move up to a more prominent slot on the results page, bid more. This
makes it simple for advertisers to strategize. However this ranking only
maximizes efficiency under the assumption that the probability of a user
clicking on an ad is independent of the other ads shown on the page.
We study a Markovian user model that does not make this assumption.
Under this model, the most efficient assignment is no longer a simple
ranking function as in GSP. We show that the optimal assignment can
be found efficiently (even in near-linear time). As a result of the more
sophisticated structure of the optimal assignment, bidding dynamics be-
come more complex: indeed it is no longer clear that bidding more moves
one higher on the page. Our main technical result is that despite the
added complexity of the bidding dynamics, the optimal assignment has
the property that ad position is still monotone in bid. Thus even in this
richer user model, our mechanism retains the core bidding dynamics of
the GSP auction that make it useful for advertisers.

1 Introduction

Targeted advertisements on search queries is an increasingly important adver-
tising medium, attracting large numbers of advertisers and users. When a user
poses a query, the search engine returns search results together with advertise-
ments that are placed into positions, usually arranged linearly down the page,
top to bottom. On most major search engines, the assignment of ads to posi-
tions is determined by an auction among all advertisers who placed a bid on a
keyword that matches the query. The user might click on one or more of the ads,
in which case (in the pay-per-click model) the advertiser receiving the click pays
the search engine a price determined by the auction.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 621–628, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In the past few years, the sponsored search model has been highly success-
ful commercially, and the research community is attempting to understand the
underlying dynamics, explain the behavior of the market and to improve the
auction algorithms. The most common auction being run today is the Gener-
alized Second Price (GSP) auction: Each bidder i submits a bid bi stating the
maximum amount they are willing to pay for a click, and the bidders are placed
in descending order of bipi, where pi is what is called the click-through-rate of
advertiser i; i.e., the probability that a user will click on the ad, given that the
user looks at it. Much of previous research on sponsored search auctions has
fixed this sort order, and focused on understanding the implications of different
pricing schemes, assuming strategic behavior on the part of the advertisers. We
now know something about GSP’s equilibrium properties [8,17,3], alternative
pricing that will make it truthful [3], and to some extent, impact on the revenue
in principle [8] and via simulations [16].

However, by fixing this sort order, and assuming that an ad’s clicks are inde-
pendent of the other ads on the page, prior work exogenizes an important third
party in sponsored search: the search engine user. Unfortunately, there is very
little guidance on this in the literature, even though the user’s behavior is the
essential ingredient that defines the commodity the advertisers are bidding on,
and its value.

We suggest a different framework for principled understanding of sponsored
search auctions:
– Define a suitable probabilistic model for search engine user behavior upon

being presented the ads.
– Once this model is fixed, ask the traditional mechanism design questions of

how to assign the ads to slots, and how to price them.
– Analyze the given mechanism from the perspective of the bidders (e.g.,

strategies) and the search engine (e.g., user satisfaction, efficiency, revenue).

There are certain well-accepted observations about the user’s interaction with
the sponsored search ads that should inform the model:
– The higher the ad is on the page, the more users see it and thus click on it.
– The “better” the ad is, the more users click on it, where the ad’s “goodness”

depends on its inherent quality, and how well it matches the user query.

These properties govern not only how the auction is run but also how advertisers
think about their bidding strategy: they prefer to appear higher and get more
clicks. Indeed even though GSP is not truthful under a private value model
(where each bidder has some inherent private value vi for a click), its ranking
function makes bidding strategy simple: to obtain a higher (more prominent)
slot, bid higher and/or make your ad better. This simplicity is very important,
since an advertiser may not have a precise notion of click value on which to base
their bid. Indeed some advertisers are hoping to generate traffic just to attract
attention to their brand, and the value of this attention is less clear than for an
advertiser who is making direct sales through the Internet.

In this paper, we propose a natural Markov model for user clicks that retains
the properties above, and no longer assumes that the number of clicks an ad
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receives is independent of the other ads on the page. We show that simple ranking
no longer finds the optimal assignment of ads to slots under this model, but the
optimal assignment can still be found efficiently (in near-linear time). Our main
technical result is to show that under this new assignment algorithm, the auction
mechanism still has a simple bidding strategy; i.e., we prove that a bidder’s ad
slot is monotone in her bid.

1.1 Our Contributions

Modeling the Search Engine User. Most previous work on sponsored search has
(implicitly) modeled the user using two types of parameters: ad-specific click-
through rates pi and position-specific visibility factors αj . There are some in-
tuitive user behavior models that express overall click-through probabilities in
terms of these parameters. One possibility is “for each position j independently,
the user looks at the ad i in that position with probability αj then clicks on
the ad with probability pi.” Alternatively: “The user picks a single position ac-
cording to the distribution implied by the αj ’s, and then clicks on the ad i in
that position with probability pi.” Under both these models, it follows that the
probability of an ad i in position j receiving a click is equal to piαj , which is
the so-called separability assumption [3]. From separability it follows that GSP
ordering of ads will be suitable, because GSP ordering maximizes the total ad-
vertiser value on the page.

In both these models there is no reason a priori that the position factors
αj should decrease; this is simply imposed because it makes sense, and it is
verifiable empirically. Also, both suggested models assume that the probability
of an ad getting clicked is independent of other ads on the page, an assumption
made without much justification. It is hard to imagine that seeing an ad, perhaps
followed by a click, has no effect on the subsequent behavior of the user.

In designing a user model, we would like the monotonicitiy of click-through
rate in position to arise naturally. Also, each ad should have parameters dictating
their effect on the user both in terms of clicking on that ad, as well as looking at
other ads. We propose a model based on a user who starts to scan the list of ads
from the top, and makes decisions (about whether to click, continue scanning, or
give up altogether) based on what he sees. More specifically, we model the user as
the following Markov process: “Begin scanning the ads from the top down. When
position j is reached, click on the ad i with probability pi. Continue scanning
with probability qi.” In this model, if we try to write the click probability of
an ad i in position j as piαj , we get that αj = Πi′∈Aqi′ , where A is the set of
ads placed above1 position j. Thus the “position factor” in the click probability
decreases with position, and does so naturally from the model. Also note that
we do not have separability anymore, since αj depends on which ads are above
position j. Consequently, it can be shown that GSP assignment of ads is no
longer the most efficient.

1 Throughout the paper, we will often refer to a position or an ad being “higher” or
“above” another position or ad; this means that it is earlier on the list, and is looked
at first by the user.
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Auction with Markovian users. Given this new user model, we can now ask what
the best assignment is of ads to slots. We will study the most efficient assignment;
i.e., the one that maximizes total advertiser value derived from user clicks. It
turns out that the structure of this assignment is different from that of GSP,
and indeed is more sophisticated than any simple ranking. The presence of the
qi’s requires a tradeoff between the click probability of an ad and its effect on
the slots below it. In this paper, we identify certain structural properties of the
optimal assignment and use them to find such an optimal assignment efficiently,
not only in polynomial time, but in near-linear time. Given this algorithm, a
natural candidate for pricing is VCG [18,6,11], which is truthful in this setting
under a private value model.

Monotonicity of Bidding. Now that we have defined a more sophisticated assign-
ment function, even though VCG pricing makes the mechanism truthful under a
private click-value model, the auction may not still admit the intuitive bidding
strategies that are so important under GSP—especially for advertisers without
a precise notion of click value. Our main technical result is to show that in our
Markov model, if a mechanism uses the most efficient assignment, indeed po-
sition and click probabilities are monotonic in an ad’s bid (with all other bids
fixed), thus preserving this important property. Monotonicity of click probabil-
ity follows from the general result of Archer and Tardos [4] on single-parameter
mechanisms—for completeness we provide a proof from first principles. In con-
trast, position monotonicity turns out to be rather involved to prove, requiring
some detailed combinatorial arguments, and insights into the optimal substruc-
ture of bidder assignments.

1.2 Related Work

Sponsored search has been an active area of research in the last several years
after the early papers explored the foundational models [8,3,17,15]. In general,
the motivation for the work that followed is that sponsored search in practice is
much more complex than as described by the first models; see [9] for a discussion.

Only very recently are alternate user models that break the separability as-
sumption starting to receive some attention. Ghosh and Mahdian [10] study a
very general model and show hardness results for the allocation (winner deter-
mination) problem; they also give algorithms for several special cases, but none
of those imply the algorithms discussed in this work. Craswell et al. [7] give an
empirical study of several user click models. The “cascade” model, which was
found to fit the data the best, is a special case of the model we study here (with
pi = 1−qi and the events being mutually exclusive). Gunawardana and Meek [12]
performed an empirical study of ad aggregators with the goal of detecting the
affect of an ad on the other ads on the page. Their findings were consistent with
our model; i.e., the presence of an ad can have a significant affect on the ads
below it. Athey and Ellison [5] present a model where users have an inherent
need, and click until that need is filled (or there is little chance of it getting
filled). They analyze user behavior, advertiser bidding strategies and Bayesian
equilibria in their model.
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Independently of our work (which also appeared in [1,2]), Mahdian and Kempe
[13] study the same model we do here. They also provide an O(n log n + nk)
dynamic program for allocation; however at that point they generalize to the case
of position-dependent continuation probabilities and provide an approximation
algorithm for this case, whereas we go on to study deeper structural and incentive
properties in the original model.

2 Markov User Click Model

We consider an auction with n bidders B = {1, . . . , n} and k positions. We
will also refer to “ad i,” meaning the advertisement submitted by bidder i.
Each bidder i ∈ B has two parameters, pi and qi. The click-through-rate pi is
the probability that a user will click on ad i, given that they look at it. The
continuation probability qi is the probability that a user will look at the next ad
in a list, given that they look at ad i.

Each bidder submits a bid bi to the auction, representing the amount that
they value a click. The quantity pibi then represents the value of an “impression,”
i.e., how much they value a user looking at their ad. This is commonly referred
to as their “ecpm.”2 Throughout, we use the notation ei = pibi for convenience.

Our model is as follows. Given an assignment (x1, . . . , xk) of bidders to the k
positions, the user looks at the first ad x1, clicks on it with probability px1 , and
then continues looking with probability qx1 .3 This is repeated with the second
ad, etc., until the last ad is reached, or some continuation test has failed. Thus
the overall expected value of the assignment to the bidders is ex1 + qx1(ex2 +
qx2(ex3 + qx3(. . . qxk−1(exk

)))).
The goal of the auctioneer is to compute an assignment of ads to positions

that maximizes overall expected value. Given this assignment, prices can be
computed using VCG [18,6,11]: for each assigned bidder we compute the change
in others’ value if that bidder were to disappear. This assures truthful reporting
of bids under a profit-maximizing utility.

3 Properties of the Optimal Assignment

In this section, we establish several properties of optimal assignments in this
Markov user model, including our main technical result that position and click
probability will be monotone in bid and match our intuition. We also give our
algorithm for finding an optimal assignment, which gives the truthful auction
via VCG pricing. All proofs can be found in [1].
2 The acronym ecpm stands for “expected cost per thousand” impressions, where M

is the roman numeral for one thousand. We will drop the factor of one thousand and
refer to pibi as the “ecpm.”

3 The user could also have some fixed probability of looking at the first ad, which
can be trivially incorporated into our results, and we leave this out for clarity. Also,
the click event and the continuation event could in principle have some correlation,
and all our results will still hold. However since we only consider expected value, we
never use this correlation explicitly in our analysis.
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Adjusted ECPM. It turns out that the quantity ei/(1−qi), which we will refer to
as the “adjusted ecpm (a-ecpm),” plays a central role in this model. Intuitively,
this quantity is the impression value adjusted by the negative effect this bid
has on the ads below it. We use ai = ei/(1− qi) for convenience. The following
lemma tells us how to assign a set of k selected ads to the k positions:

Lemma 1. 4 In the most efficient assignment, the ads that are placed are sorted
in decreasing order of adjusted ecpm ai = ei/(1− qi).
While this result tells us how to sort the ads selected, it does not tell us which
k ads to select. One is tempted to say that choosing the top k ads by a-ecpm
would do the trick; however the following example proves otherwise.

Example 1. Suppose we have two slots and three bidders as follows:

Bidder ei qi ai = ei/(1 − qi)
1 $1 .75 4
2 $2 .2 2.5
3 $0.85 .8 4.25

Let’s consider some possible assignments and their efficiency. If we use simple rank-
ing by ecpm ei, we get the assignment (2, 1), which has efficiency $2 + .2($1) = $2.20.
If we use simple ranking by a-ecpm ai we get the assignment (3, 1) with efficiency
$0.85+ .8($1) = $1.65. It turns out that the optimal assignment is (1, 2) with efficiency
$1 + .75($2) = $2.50. The assigned bidders are ordered by a-ecpm in the assignment,
but are not the top 2 bidders by a-ecpm.

Now suppose we have the same set of bidders, but now we have three slots. The
optimal assignment in this case is (3, 1, 2); note how bidder 3 goes from being unassigned
to being assigned the first position.

Bidder Dominance. In classical sponsored search with simple ranking, a bidder
j can dominate another bidder i by having higher ecpm; i.e., bidder j will always
appear whenever i does, and in a higher position. Example 1 above shows that
having a higher ecpm (or a-ecpm) does not allow a bidder to dominate another
bidder in our new model. However, we show that if she has higher ecpm and
a-ecpm, then this does suffice. This is not only interesting in its own right, it is
essential for proving our deeper structural properties.

Lemma 2. For all bidders i in an optimal assignment, if some bidder j is not
in the assignment, and aj ≥ ai and ej ≥ ei, then we may substitute j for i, and
the assignment is no worse.
Subset Substructure in Optimal Assignments. We show some subset structure
between optimal assignments to different numbers of slots. This is used to
prove position monotonicity, and is an essential ingredient of our algorithm.
Let OPT(C, j) denote the set of all optimal solutions for filling j positions with
bidders from the set C.

Theorem 1. Let j ∈ {1, . . . , k} be some number of positions, and let C be
an arbitrary set of bidders. Then, for all S ∈ OPT(C, j − 1), there is some
S′ ∈ OPT(C, j) where S′ ⊃ S.
4 Interestingly, this result also essentially follows from a prior work on optimizing

database queries [14].
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Monotonicity of Position and Click Probability. Our main theorem regarding
the structure of the optimal assignments in the Markovian click model is that
position and click probability are monotonic in a bidder’s bid, with all other
bids fixed. This is a fundamental property that makes the bidder’s interaction
with the system intuitive, and allows the bidder to adjust her bid intelligently
without global knowledge of the other bids.

Theorem 2. As a bidder increases her bid (keeping all other bids fixed):

(a) the probability of her receiving a click in the optimal solution does not de-
crease, and

(b) her position in the optimal solution does not go down.

Computing the Optimal Assignment. A dynamic program gives an O(n logn +
nk) time algorithm. for computing the optimal assignment of bidders to posi-
tions. The algorithm proceeds as follows. First, sort the ads in decreasing order of
a-ecpm in time O(n log n). Then, let F (i, j) be the efficiency obtained (given that
you reach slot j) by filling slots (j, . . . , k) with bidders from the set {i, . . . , n}. We
get the following recurrence: F (i, j) = max(F (i+1, j+1)qi+ei, F (i+1, j)). Solv-
ing this recurrence for F (1, 1) yields the optimal assignment, and can be done
in O(nk) time. In fact, insights from the previous sections give an O(n log n +
k2 log2 n) time algorithm which is faster when k is large with respect to logn:

Theorem 3. Consider the auction with n Markovian bidders and k slots. There
is an optimal assignment which can be determined in O(n log n+k2 log2 n) time.

4 Concluding Remarks

We approached sponsored search auctions as a three party process by modeling
the behavior of users first and then designing suitable mechanisms to affect the
game theory between the advertiser and the search engine. This formal approach
shows an intricate connection between the user models and the mechanisms.

There are some interesting open issues to understand about our model and
mechanism. For example, in order to implement our mechanism, the search en-
gine needs to devise methods to estimate the parameters of our model, in partic-
ular, qi’s. This is a challenging statistical and machine learning problem. Also,
we could ask how much improvement in efficiency and/or revenue is gained by
using our model as opposed to VCG without using our model.

More powerful models will also be of great interest. One small extension of our
model is to make the continuation probability qi a function of location as well,
which makes the optimization problem more difficult; Mahdian and Kempe [13]
have given an approximation algorithm for this case, and so it is natural to ask
if position monotonicity is preserved in their algorithm. One can also generalize
the Markov model to handle arbitrary configurations of ads on a web page (not
necessarily a search results page), or to allow various other user states (such as
navigating a landing page). Finally, since page layout can be performed dynam-
ically, one could ask what would happen if the layout of a web page were a part
of the mechanism; i.e., a function of the bids.
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Abstract. In the increasingly important market of online search adver-
tising, a multitude of parameters affect the performance of advertising
campaigns and their ability to attract users’ attention enough to pro-
duce clicks. Thus far, the majority of the relevant literature assumed an
advertisement’s probability of receiving a click to be dependent on the
advertisement’s quality and its position in the sponsored search list, but
independent of the other advertisements shown on the same webpage.

We examine a promising new model [1, 16] that incorporates the ex-
ternalities effect based on the probabilistic behavior of a typical user.
We focus on the Generalized Second Price mechanism used in practice
and examine the Nash equilibria of the model. We also investigate the
performance of this mechanism under the new model by comparing the
efficiency of its equilibria to the optimal efficiency.

1 Introduction

Online search engine advertising is an appealing approach to highly targeted
advertising, and is the major source of revenue for modern web search engines
such as Google, Yahoo! and MSN. The most common setup is as follows: when
a user performs a query at a search engine, she is shown a collection of organic
search results that contains the links the search engine has deemed relevant
to the search, together with a list of sponsored links, i.e., paid advertisements.
If the user actually clicks on a sponsored link, she will be transferred to the
advertiser’s web site. For each such click, in which the advertiser receives a
potential customer, the advertiser pays the search engine.

Keyword auctions determine which ads get assigned to which keywords (search
terms) and how much each advertiser pays. Because of the explosive growth of
online advertising and the rising economic importance of ad auctions, a great
deal of recent research has focused on developing mathematical models of these
systems, with an eye towards understanding their equilibria, dynamics and other
properties from the perspective of users, advertisers and search engines [20, 2,
11, 19, 6].

Most keyword auction models assume that each advertisement shown has an
inherent click-through rate that depends only on the slot allocated to that adver-
tisement and on the advertisement itself, regardless of the other advertisements

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 629–638, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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that are shown. However, this does not take into account externalities: the success
of an advertisement depends to a significant extent on which other advertisements
are shown alongside it. This is because high-quality competitive ads shown at the
same time may detract from each other. Moreover, low-quality ads may deter the
viewer from continuing to examine ads shown on the same page.

The importance of the phenomena of externalities has motivated a number of
recent papers [12, 1, 16, 9]. Building on work of Craswell et al [8], independently,
Kempe and Mahdian [16], and Aggarwal, Feldman, Muthukrishnan and Pal [1]
have defined a new Markovian user model. Their model postulates that users scan
through the ads in order. For each ad a, users decide probabilistically whether
to click, with some ad-specific probability ra, as well as whether to continue the
scanning process, that depends on a different ad-specific probability qa (as well
as the slot the ad is in). This probabilistic continuation models the externality of
prematurely terminating the scanning process as a result of either a frustrating
irrelevant ad, or a very high-quality web site leading to a purchase. The papers
of Kempe et al and Aggarwal et al focus on the problem of computing the
efficient allocation given this model, and the efficient (in terms of computational
complexity) implementability of an incentive-compatible mechanism (the VCG
mechanism).

In this paper, we consider the impact of the new Markovian model on equi-
libria under the Generalized Second Price (GSP) mechanism. This is important
because GSP is the standard mechanism used in practice. Moreover, it is highly
unlikely that even if the Markovian model is accurate that the search engines
will switch to VCG. Thus, it is of great interest to understand the effects of the
new model when GSP is used.

1.1 Results

The focus of our research is on understanding the equilibria of GSP under the
new user model. Our main results are the following:

We show that in the new model, in contrast to the most important result about
the standard model [20, 11], GSP does not necessarily have an equilibrium in
which efficiency is maximized. This raises two key questions: First, does GSP
have pure equilibria? And second, how bad can these equilibria be in terms of
their efficiency?

The answer to the first question is yes. In Section 3, we give a general con-
struction showing that no matter what the parameters of the system, GSP does
have pure Nash equilibria in the new model.

We then turn to the study of the efficiency of GSP equilibria. Our main result
here, in Section 4, is that the efficiency of the worst Nash equilibrium under GSP
can be a factor of k smaller than optimal but no worse, where k is the number of
slots in the system. Thus, the so-called price of anarchy [18] of GSP with respect
to efficiency is k. This latter result depends on the assumption that no advertiser
ever bids more than their value. On the other hand, when advertisers can bid
more than their value, the efficiency of the worst Nash equilibrium under GSP
can be arbitrarily smaller than optimal.



On the Equilibria and Efficiency of the GSP Mechanism 631

Finally, we show that there are instances where the efficiency of the best Nash
equilibrium under GSP has efficiency which is a factor of k smaller than optimal.
Thus, even the price of stability [4] of GSP is k.

2 Model

We consider a model for sponsored search auctions with n participating players
(bidders or advertisers) {1, . . . , n}, bidding for k advertising slots {1, . . . , k}.
Each player i ∈ {1, . . . , n} has three associated values: The first, 0 ≤ ri ≤ 1,
represents the position-independent click-through rate, which is the probability
that the user will click on the ad, given that they look at it. It is a measure of
the relevance of the ad to the query as well as the general quality of the ad, and
can also perhaps be thought of as the probability that the user will click on the
ad if it is placed in the top slot. The second quantity, 0 ≤ qi ≤ 1 represents the
continuation probability, the probability that a user will look at the next ad in
the list, given that they look at ad i. The third quantity, Vi ≥ 0 represents the
expected value or profit of the advertiser given that the user clicks on his ad.

Each advertising slot s ∈ {1, . . . , k} has an associated fixed constant θs rep-
resenting the ad-independent probability that a user continues scanning adver-
tisements after the s-th slot, given that she scans the s-th slot.

Each player submits a bid and depending on the mechanism used (see discus-
sion below), the search engine produces an allocation of the k slots π() such that
advertiser π(s) is assigned to slot s. An associated list of prices p is also produced
such that each time user π(s) receives a click he is charged a price of ps.

We model the behavior of the end-user when presented with the sponsored
search results as follows. The user begins scanning the results list with some
probability θ0 which for simplicity we normalize to 1. The first slot is scanned
and the user clicks on the ad with probability rπ(1). Independently of whether the
user clicked on the first ad, she proceeds to scan the second slot with probability
θ1 · qπ(1), where she clicks on that ad with probability rπ(2). On the other hand,
with probability 1−θ1 ·qπ(1), the user stops scanning ads after the first and quits
the whole process. Given that the user scanned the second slot, she proceeds to
scan the third slot with probability θ2 · qπ(2) and so on.

Our main measure for evaluating the performance of the system will the sys-
tem’s efficiency. The efficiency of the system for a given ranking of the players
π is defined as the sum of the expected utilities of all the players.

efficiency = rπ1Vπ(1) + θ1qπ(1)
(
rπ(2)Vπ(2) + θ2qπ(2)

(
· · ·
(
Vπ(2)

)))
=

=
k∑

j=1

((
j−1∏
i=1

θiqπ(i)

)
· rπ(j)Vπ(j)

)
. (1)

Discussion

In this model, the probability that the user proceeds to scan the ad in slot s+ 1
given that she scanned the ad in slot s is dependent on both the slot s and the
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the quality rπ(s) of the ad in slot s. The dependence on slot has been documented
in eye-tracking studies that show that the probability that a user looks at an ad
decays with the slot number [13, 15]. This description of the user’s eye movement
and clicking behavior has been studied under the term “directional market” in
several economics papers [5, 3]. As stated, in [3], “the directionality arises due
to cognitive burden as it is cognitively ‘costlier’ for a typical consumer to visit
sellers at the bottom of the list before visiting the sellers at the top of the listing”.

The dependence of continued scanning on the quality rπ(s) of the ad in slot
s is the combination of two phenomena. First, if the click on slot s results in a
conversion, the user is unlikely to continue scanning. Second, if the quality of
the ad in slot s is low, the user may be more likely to give up in “disgust”. These
factors and undoubtedly many others combine to give some ad-dependent prob-
ability of continuing to scan. This feature of the model captures the externalities
inherent in this setting.

2.1 Mechanisms

The VCG Mechanism. One of the mechanisms under examination and our
main comparison point is the celebrated Vickrey-Clarkes-Groves (VCG) [21, 7,
14] mechanism. The VCG mechanism is a truthful mechanism which allocates
the slots such that efficiency, as defined in (1), is maximized.

Recall that under the VCG mechanism, the expected payment charged to
player π′(j) at slot j is determined by OPT−π′(j) − (OPT − vπ′(j)) where

vπ′(j) =

(
j−1∏
i=1

θiqπ(i)

)
· rπ(j)Vπ′(j)

is the expected utility of this player, OPT is the optimal efficiency with all the
players and OPT−π′(j) is optimal efficiency without player π′(j). Since the most
commonly used charging scheme, both in literature and in practice, is on a per
click basis, the pay per click price for VCG is defined as

pj =
OPT−π′(j) − (OPT − vπ′(j))(∏j−1

i=1 θiqπ(i)

)
· rπ(j)

.

The GSP Mechanism. Our main focus in this study will be the mechanism
most widely used in practice, the Generalized Second Price mechanism (GSP):

Definition 1. GSP mechanism
Each player i submits a bid bi representing the maximum amount they are willing
to pay for a click. The GSP mechanism ranks the players in decreasing order of
bi · ri. For the resulting ranking π(), the price per click of slot j is

pj = bπ(j+1)
rπ(i+1)

rπ(i)
.
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Player V r q VCG ranking VCG price(expected)
1 1 1 0.75 1 0.7
2 2 1 0.2 2 0.6
3 0.8 1 0.7 3 0

Fig. 1. Counterexample for the existence of the VCG equilibrium

The expected utility U(π(j)) of player π(j) occupying slot j is

U(π(j)) =

(
j−1∏
i=1

θiqπ(i)

)(
rπ(j)Vπ(j) − bπ(j+1)rπ(j+1)

)
.

We note that in the standard model (where qi = 1 for all i) the GSP ranking
maximizes efficiency with respect to the declared bids1. In our model, this is
not the case: if we were to rank by declared efficiency, players with lower biri
might be placed in higher slots than players with higher biri, which would be
considered unfair.

3 Nash Equilibria in the GSP Mechanism

Of particular interest in the literature on ad auctions [20, 10, 11] has been the
equilibrium that yields the same allocation and prices as the VCG mechanism
under the standard user model2. It is of course very appealing to be able to
show that GSP has an equilibrium in which optimal efficiency and several other
appealing properties of the VCG equilibrium (such as envy-freeness) hold.

Unfortunately in our model the VCG equilibrium does not always exist. We
present a counterexample inspired by a similar counterexample for a different
purpose in [1]. Suppose we have 3 bidders and 2 slots with θ1 = 1. Given the
parameters defined in figure 1 it is easy to check that the ranking and VCG

prices are as stated in the figure. Notice that the prices in the figure are prices
per round or in expectation, therefore the pay per click prices would have to be
p1 = 0.7 and p2 = 0.6

θ1q1
= 0.6

0.75 = 0.8 and thus b2 = 0.7 and b3 = 0.8 which
cannot result in the desired ranking in the GSP mechanism. Despite the fact
the VCG equilibrium might not be achievable, we are able to prove that a pure
equilibrium always exists:

Theorem 1. GSP Equilibria Existence
We assume the players are labeled in decreasing order of ri · Vi. If the players’
bids are such that

bsrs =

⎧⎪⎨⎪⎩
V1r1 for s = 1,∑k+1

j=s−1

(∏j
i=s θi−1qi

)
Vjrj(1− θjqj+1) for 1 > s ≥ k

Vsrs for k > s,
(2)

or alternatively by the following recursive definition
1 Since this mechanism is not truthful, the actual efficiency of the system is not guar-

anteed to be optimal as in VCG.
2 We will refer to this equilibrium as the VCG equilibrium.
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bsrs =

⎧⎨⎩
Vsrs for k > s,
(1− θs−1qs)Vs−1rs−1 + θs−1qsbs+1rs+1 for 1 > s ≥ k
V1r1 for s = 1,

(3)

then the resulting allocation and prices of the GSP mechanism is a Nash equi-
librium in the new model.

The proof of this theorem is presented in the Appendix.

4 The Efficiency of GSP Equilibria

In light of the fact that the equilibria of GSP may not maximize efficiency, it is
interesting to ask how low the relative efficiency (and other properties) of these
equilibria can go. We do this using price of anarchy and price of stability style of
analysis3. For the price of anarchy analysis we focus on the least efficient GSP

equilibrium and compare it against the VCG allocation and the most efficient
GSP equilibrium, while, for the price of stability, we compare the most efficient
GSP equilibrium against the VCG allocation.

We will also distinguish between two cases. In the first case, the players bid
in an unrestricted fashion while in the second case the players can only bid as
high as their value. While in reality it is possible for players to bid above their
values, it seems unlikely that such bidding behavior can be sustained in practice
as the players risk paying a price higher than their value. We therefore expect
the restricted case to be more interesting in practice. We will show that the price
of anarchy for efficiency can be bounded as per the following theorem.

Theorem 2. Price of Anarchy
The price of anarchy of GSP equilibria both against VCG and the best GSP

equilibrium is k (the number of slots) in the restricted case, and infinite in the
unrestricted case.

Proof. We first look at the efficiency of GSP equilibria in the restricted case. Fix
ε and δ arbitrarily small positive constants and consider the following setting.
We have n = k+ 1 players {1, 2, . . . , k, k+ 1} bidding for k slots with θi = 1 for
all 1 ≤ i ≤ k. The players’ parameters are illustrated in figure 2.

It is easy to check that, for large enough X , the most efficient ranking is
[k + 1, k, . . . , 4, 3, 1], with total efficiency kX − (k − 1)(1 + δ) ≥ kX − εX .
Although this ranking is not achievable under GSP, an equilibrium with the
ranking [2, 3, . . . , k, 1] can be achieved if all players bid their values except
player 1 who bids X − 1 − δ. The efficiency of this equilibrium is X − δ +

1
1+δ ((k − 1)X − (k − 2)(1 + δ)) ≥ 1

1+δkX − εX for large enough X .
On the other hand, consider the case under GSP where the players are bid-

ding their values except player 2 who bids X − 1. The resulting allocation is
[1, 2, . . . , k − 1, k] and we can verify that this results in an equilibrium. Clearly,
3 The price of anarchy was originally introduced by Koutsoupias and Papadimitriou

in [18] (see also [17] for a survey) as a measure of the performance degradation by
selfish autonomous users in the absence of a coordination mechanism.
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Player 1 2 3 . . . k − 1 k k + 1
V X X − δ X − 1 − δ . . . X − 1 − δ X − 1 − δ X − 1 − δ
q 0 1

1+δ
1 . . . 1 1 1

r 1 1 1 . . . 1 1 1

Fig. 2. Example for the price of anarchy regarding efficiency in the restricted case

all players are getting zero utility without being able to improve it. Player 1 is
getting utility X − (X − 1) = 1 while if he were to bid lower to obtain slot j he
would still get 1/(1 + δ)(X− (X − 1− δ)) = 1. The efficiency of this equilibrium
is just X . We conclude that for both against VCG and over all GSP equilibria,
the price of anarchy regarding efficiency can be bounded by

1
1+δkX − εX

X
≥ 1

1 + δ
k − ε.

We are also able to show that this bound is tight. Indeed, assume we have an
arbitrary system of players and slots and consider the least efficient equilibrium
of GSP. Focusing on a player x for which rxVx = maxiriVi, we will show that
the efficiency of this equilibrium is at least rxVx. Indeed, consider the case where
x is not awarded the top slot. In this case some other player y gets the first slot
while player x is at slot j with probability of the user getting to that slot φj .
From the equilibrium conditions regarding player x’s “desire” to get the first
slot by bidding higher than y’s bid by, we have

rx(Vx − by
ry
rx

) ≤ φjrx(Vx − pj)

and using our bidding restriction, we can bound both sides of the inequality.

rxVx − ryVy ≤ rx(Vx − by
ry
rx

) ≤ φjrx(Vx − pj) ≤ φjrxVx

rxVx − ryVy ≤ φjrxVx

rxVx ≤ φjrxVx + ryVy

The efficiency of the equilibrium is at least ryVy + φjrxVx ≥ rxVx. But both
the VCG mechanism and most efficient GSP equilibrium cannot have efficiency
more than k · rxVx, hence the price of anarchy is at most k.

For the unrestricted case, consider a setting of 1 slot and two players such
that r1V1 = 0, r2V2 = X . It is easy to see then when b1 > X and b2 = 0 we have
an equilibrium of 0 efficiency. On the other hand, the VCG or optimal GSP

equilibrium allocations yield efficiency X . We conclude that for both of these
cases the price of anarchy is unbounded.

We next turn our attention to the price of stability of GSP equilibria relative
to the VCG mechanism. Here our goal is to understand how the best GSP
equilibrium in the worst case compares in performance to the VCG outcome.
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Theorem 3. Price of Stability
The price of stability of GSP equilibria against the VCG mechanism is k in the
restricted case, and between k/2 and k in the unrestricted case.

The proof of this Theorem is similar in spirit to the proof of Theorem 1 and is
omitted from this short version of this paper.

5 Conclusions

We have examined a simple and elegant model for keyword auctions introduced
in a series of papers [8, 1, 16] that is able to capture effects that appear in
practice but are not considered by the standard model. This model incorporates
externalities by modeling the effects advertisements have on the probability that
a typical user will scan or click on other ads.

Our model makes use of player parameters that are considered a priori de-
termined by the search engine. The use of the click-through probability ri is
generally considered acceptable and these values are probably computed by sea-
rch engines by sampling the click performance of an ad when the listing is placed
randomly in different slots. However, it is not clear if similar techniques can be
used to estimate the new parameters qi. Although determining qi is not nec-
essary to run the GSP mechanism, if it can be computed efficiently it would
certainly open up possibilities for more efficient ranking and pricing schemes.

We have shown that the GSP mechanism always has a pure Nash equilibrium.
On the other hand, unlike the standard model, it may not have a Nash equilib-
rium which maximizes efficiency. We thus attempted to quantify the difference
in efficiency between GSP and VCG by examining the price of anarchy and sta-
bility. Although the derived bounds appear to make a strong statement in favor
of the VCG mechanism, it remains undetermined how these two mechanisms
would compare in practice.

An empirical study with real or simulated auction data would potentially
reveal more practical results on the performance of GSP and it would be ex-
tremely interesting to evaluate its performance against alternative mechanisms
that take advantage of the extended information of this model.
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Appendix

A Proof of Theorem 1

Proof. It is easy to check that the two definitions are equivalent. Also, it can be
easily seen from the recursive definition that the resulting bids are ordered in the
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right way as each bsrs is a linear combination of bs+1rs+1 and the s−1’th player’s
expected valuation. By the initial conditions of the recursive definition it follows
that the bids are correctly ordered and the following equilibrium conditions are
satisfied

–
(∏s−1

i=1 θiqi

)
(Vsrs − bs+1rs+1) ≥ 0 for all s ≤ k,

–
(∏j−1

i=1 θiqi

)
(rsVs − bjrj) ≤ 0 for all j ≥ k > s.

or in other words, all the winning players have greater than or zero utility and
the losing players cannot get positive utility by bidding higher.

It remains to show the remaining equilibrium conditions, or that the winning
players do not have an incentive to alter their bid so as to get a different slot.
Assume an arbitrary winning player s. We need to show that

– For all slots j < s,
(∏s−1

i=j θiqi

)
(Vsrs − bs+1rs+1) ≥ Vsrs − bjrj .

– For all slots k ≥ j > s, Vsrs − bs+1rs+1 ≥
(∏j−1

i=s θiqi+1

)
(Vsrs − bj+1rj+1) .

To prove the first case, we proceed as follows.

Vsrs − bjrj = Vsrs − ((1− θj−1qj)Vj−1rj−1 + θj−1qjbj+1rj+1)
and since Vsrs ≤ Vj−1rj−1

≤ Vsrs − ((1− θj−1qj)Vsrs + θj−1qjbj+1rj+1)
= θj−1qj(Vsrs − bj+1rj+1)
≤ . . . (similarly substituting using the recursive definition)
≤ θj−1qjθj · · · qs−1θs−1qs(Vsrs − bs+1rs+1)

≤

⎛⎝s−1∏
i=j

θiqi

⎞⎠ (Vsrs − bs+1rs+1) , since θj−1qs ≤ 1.

To prove the second case, for j > s, we proceed similarly.

Vsrs − bs+1rs+1 = Vsrs − ((1− θsqs+1)Vsrs + θsqs+1bs+2rs+2)
= θsqs+1(Vsrs − bs+2rs+2)
= θsqs+1 (Vsrs − (1− θs+1qs+2)Vs+1rs+1 − θs+1qs+2bs+3rs+3)
≥ θsqs+1 (Vsrs − ((1− θs+1qs+2)Vsrs + θs+1qs+2bs+3rs+3))
= θsqs+1θs+1qs+2(Vsrs − bs+3rs+3)
≥ . . .
≥ θsqs+1 · · · θj−1qj(Vsrs − bj+1rj+1)

≥
(

j−1∏
i=s

θiqi+1

)
(Vsrs − bj+1rj+1) .
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Abstract. Inspired by the recent Democratic National Primary, we con-
sider settings in which the members of a distributed population must
balance their individual preferences over candidates with a requirement
to quickly achieve collective unity. We formalize such settings as the
“Democratic Primary Problem” (DPP) over an undirected graph, whose
local structure models the social influences acting on individual voters.

After contrasting our model with the extensive literature on diffusion
in social networks (in which a force towards collective unity is usually
absent), we present the following series of technical results:
– An impossibility result establishing exponential convergence time for

the DPP for a broad class of local stochastic updating rules, which
includes natural generalizations of the well-studied “voter model”
from the diffusion literature (and which is known to converge in
polynomial time in the absence of differing individual preferences).

– A new simple and local stochastic updating protocol whose conver-
gence time is provably polynomial on any instance of the DPP. This
new protocol allows voters to declare themselves “undecided”, and
has a temporal structure reminiscent of periodic polling or primaries.

– An extension of the new protocol that we prove is an approximate
Nash equilibrium for a game-theoretic version of the DPP.

1 Introduction

The recent Democratic National Primary race highlighted a tension that is com-
mon in collective decision-making processes. On the one hand, individual voters
clearly held (sometimes strong) preferences between the two main candidates,
Barack Obama and Hillary Clinton, and these preferences appeared approxi-
mately balanced across the population. On the other hand, as the race progressed
there were frequent and increasingly urgent calls for Democrats to “unify” the
party — that is, quickly determine the winner and then all rally around that
candidate in advance of the general election [13]. There was thus a balancing
act between determining the overall (average) preference of voters, and reaching
global consensus or unity.

Inspired by these events, we consider settings in which the members of a
distributed population must balance their individual preferences over candidates
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with a requirement to achieve collective unity. We formalize such settings as the
“Democratic Primary Problem” (DPP) over an undirected graph, whose local
structure models the social influences acting on individual voters. In this model,
each voter i is represented by a vertex in the network and a real-valued weight
wi ∈ [0, 1] expressing their preference for one of two candidates or choices that
we shall abstractly call red and blue. Here wi = 1

2 is viewed as indifference
between the two colors, while wi = 0 (red) and wi = 1 (blue) are “extremist”
preferences for one or the other color.

Our overarching goal is to investigate distributed algorithms in which three
criteria are met:

1. Convergence to the Global Preference: If the global average W of the wi

is even slightly bounded away from 1
2 (indifference), then all members of

the population should eventually settle on the globally preferred choice (i.e.
all red if W < 1

2 , all blue if W > 1
2 ), even if it conflicts with their own

preferences (party unity).
2. Speed of Convergence: Convergence should occur in time polynomial in the

size of the network.
3. Simplicity and Locality: Voters should employ “simple” algorithms in which

they communicate only locally in the network via (stochastic) updates to
their color choices. These updates should be “natural” in that they plausibly
integrate a voter’s individual preferences with the current choices of their
neighbors, and do not attempt to encode detailed information, send “signals”
to neighbors, etc.

The first two of these criteria are obviously formally precise. While it might be
possible to formalize the third as well, we choose not to do so here for the sake of
brevity and exposition. However, we are explicitly not interested in algorithms
in which (for instance) voters attempt to encode and broadcast their underlying
preferences wi as a series of binary choices, or similarly unnatural and complex
schemes. In particular, in our main protocol it will be very clear that voters are
always updating their current choices in a way that naturally integrates their
own preferences and the statistics of current choices in their local neighborhood.

We note that the formalization above clearly omits many important features
of “real” elections. Foremost among these is the fact that real elections typi-
cally have strong global coordination and communication mechanisms such as
polling, while we require that all communication between participants be en-
tirely local in the network. On the other hand, our framework does allow for the
presence of high-degree individuals, including ones that are indifferent to the
outcome (wi = 1/2) and can thus act as “broadcasters” of current sentiment in
their neighborhood. Variation in degrees can also be viewed as a crude model
for the increasing variety of global to local media sources (from “mainstream”
publications to influential blogs to small discussion groups).

There is a large literature on the diffusion of opinion in social networks
[4,12,10], but the topic is usually studied in the absence of any force towards
collective unity. In many contagion-metaphor models, individuals are more or
less susceptible to “catching” an opinion or fad from their neighbors, but are
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not directly concerned with the global outcome. In contrast, we are specifically
interested in scenarios in which individual preferences are present, but are sub-
ordinate to reaching a unanimous global consensus.

Our main results are:
– An impossibility result establishing exponential convergence time for the

DPP for a broad class of local stochastic updating rules, which includes
natural generalizations of the well-studied “voter model” from the diffusion
literature (and which is known to converge in polynomial time in the absence
of differing individual preferences).

– A new simple and local stochastic updating protocol whose convergence time
is provably polynomial on any instance of the DPP. This new protocol al-
lows voters to declare themselves “undecided”, and has a temporal structure
reminiscent of periodic polling or primaries.

– An extension of the new protocol that we prove is an approximate Nash
equilibrium for a game-theoretic version of the DPP.

2 The Democratic Primary Problem

The Democratic primary problem (DPP) is studied over an undirected graph
G = (V,E) with n nodes andm edges, where each node i represents an individual
voter. Denote by N (i) the neighbors of i in G; we always consider i as a neighbor
of himself.

There are two competing choices or opinions, that, without loss of generality,
we shall call blue and red (or b and r for short). A voter i comes with a real-
valued weight wi ∈ [0, 1] expressing his preference for one of the two opinions;
without loss of generality, let wi(b) = wi and wi(r) = 1−wi denote his preference
for blue and red, respectively.

Throughout, we make the assumption that
∣∣∑

i∈V wi(b) −
∑

i∈V wi(r)
∣∣ > ε

for some constant ε, that is, one opinion is always collectively preferred to the
other; and we assume that which opinion is preferred is not known a priori to
anyone and the goal of the DPP is for the entire population to actually figure
this out through a distributed algorithm, or protocol, that is simple and local,
and converges in time polynomial in n to the collectively preferred consensus.
Because of the stochastic nature of the protocol we consider, it is implausible to
require that it always converges to the collectively preferred consensus. Instead,
we require the protocol does so with high probability, by which we mean the
probability can differ from 1 by an amount that is at most negligible in n. We
summarize the definition of DPP in the following.

Democratic Primary Problem (DPP)

Instance: Given an undirected graph G = (V,E) with n nodes, two opinions
{b, r}, and for each i ∈ V , a preference (wi(b), wi(r)) where wi(b), wi(r) ∈ [0, 1]
and wi(b)+wi(r) = 1. Assume ∃ α ∈ {b, r} such that

∑
i wi(α) > n

2 + ε for some
constant ε > 0 and α is not known a priori.

Objective: Design a simple and local distributed protocol that in time polyno-
mial in n lets V converge to α with high probability.
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We will be considering protocols of the following form:

1. (Initialization) At round 0, each node i in V independently and simultane-
ously initializes to an opinion in α ∈ {b, r} according to I, a randomized
function that maps i’s local information to an opinion in {b, r}.

2. (Stochastic Updating) At round t ≥ 1, a node i is chosen uniformly at
random from V ; i then picks a neighbor j ∈ N (i) according to a possibly non-
uniform distribution over N (i); this distribution is determined by function
F , which is a randomized function whose arguments are i’s local information.
i then converts to j’s opinion.

Therefore a protocol is specified by a pair of functions, (I,F). This frame-
work by itself does not forbid “unnatural” coding behaviors as discussed in the
Introduction; however in the spirit of emphasizing algorithms that are simple
and local, we restrict I and F to be functions that only depend on simple and
local information of a node i. In particular, only the following arguments to
either functions are considered: 1) fi, the distribution of opinions in the neigh-
borhood, where fi(b) and fi(r) represent the fractions of neighbors currently
holding opinion blue and red, respectively; 2) i’s intrinsic preferences wi; 3) i’s
degree di = |N (i)|.

3 The Classic and Simplest: The Voter Model

The voter model, which was introduced by Clifford and Sudbury [2] and Holley
and Liggett [5], is a well-studied probabilistic stochastic process that models
opinion diffusion on social networks in a most basic and natural way. It consists
of a class of protocols that satisfy our criterion of being simple and local. In
fact, this class of protocols is the simplest that we examine in this paper. A
voter model protocol is one where in each round, a node i is picked uniformly at
random from V , and i in turn picks one of his neighbors uniformly at random
and adopts his opinion; it does not specify how the initialization is done. More
formally,

Definition 1 (Voter Model). The voter model is a class of protocols of the
form (I,F) where F(fi) = α with probability fi(α), ∀ α ∈ {b, r}.

Importantly, the voter model is a class of protocols in which there are no indivi-
udal preferences present at all, and the only concern is with reaching unanimity
(to either color). This is in sharp contrast to the DPP setting. However, we shall
make use of some known results on the voter model, which we turn to now.

Let Cvm denote the random variable whose value is the time at which a
consensus is reached in a voter model protocol. It can be shown that E(Cvm) =
O(log(n)maxi,j hij), where hij is the expected hitting time of node j of a random
walk starting from node i (see [1] for a proof of this). Also it is well-known that
for any graph G with self-loops (i.e. i ∈ N (i)), hij = O(n3) for any node i, j
[11], so E(Cvm) = O(n3 log(n)). We summarize this in the following theorem.
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Theorem 1 ([1]). For any initialization, it takes O(n3 log(n)) time in expec-
tation for all the n nodes to converge to a consensus opinion in a voter model
protocol.

Denote by π the stationary distribution of a random walk onG, i.e. π(i) = di/2m
for all i ∈ V and π(S) =

∑
i∈S di/2m for all S ⊂ V . The next theorem also largely

follows from established results in literature. And we omit the proof here.

Theorem 2. Let S ⊂ V be the set of nodes initialized to opinion α in a
voter model protocol, then after n5 rounds the probability that an α-consensus is
reached differs from π(S) by an amount negligible in n.

Theorem 1 and 2 allow us to conclude that after n5 rounds into a voter model
protocol, with high probability some consensus is reached. In particular, let
B,R ∈ V be the set of nodes initialized to blue and red respectively, the prob-
ability of reaching a b-consensus (resp., r-consensus) differs from π(B) (resp.,
π(R)) by negligible amount. Recall our goal of solving DPP is to find an effi-
cient protocol that converges to the collectively preferred consensus with high
probability. Since the voter model does not even consider wi, it is clear that it
does not solve the DPP. (The voter model does not specify how initialization is
done, however it is easy to prove that even if I is allowed to depend on wi in an
arbitrary way, no voter model protocol solves the DPP.)

Therefore, the logical next thing to consider in order to solve the DPP is to
allow F to in addition depend on wi. And this leads us to the natural extension
of the classic voter model: the biased voter model.

4 The Biased Voter Model

Discussion from the previous section reveals that in order to solve the DPP, it is
necessarily to allow F to depend on wi in addition to fi, so that how an individ-
ual changes his opinion is influenced by his neighbors as well as his own intrinsic
preferences. A natural class of F that reflect an individual’s preference (or bias)
are those that let him assume his preferred opinion α with probability higher than
fi(α), which is the probability he assumes opinion α in the voter model. We call
the resulting model the biased voter model and define it formally as follows.

Definition 2 (Biased Voter Model). The biased voter model is a class of
protocols of the form (I,F) where for some constant ε > 0,

P{F(fi, wi) = α}
{
≥ min{fi(α) + ε, 1} if wi(α) > 1/2;
≤ max{fi(α)− ε, 0} otherwise.

and I is allowed to depend on wi in an arbitrary way.

Definition 2 is a generic one which only defines biased updating function F
qualitatively without specifying how exactly it is computed. A natural choice is
where each agent plays α with probability proportional to the product fi(α)wi(α)
[8]. In this model an agent balances their preferences with the behavior of their
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neighbors in a simple multiplicative fashion and we call this the multiplicative
biased voter model.

We note the extension to the biased voter model in Definition 2 is fairly general
in that F is allowed to include a broad class of local stochastic updating rules
that reflect a node’s preferences; and I is allowed to be arbitrary although it has
to be independent of G. These seemingly provide us with a lot of power in the
design of protocols; but perhaps surprisingly, in this section we prove that even
this broad class of biased voting rules is insufficient to solve the DPP:

Theorem 3. No biased voter model protocol (I,F) solves the DPP.

The rest of this section is organized as follows. In Section 4.1, we prove a technical
lemma about a certain Markov chain that can be represented by a line graph.
We then use this lemma to prove Theorem 3 in 4.2, by constructing an example
where for any voter model protocol (I,F), it either takes exponential time to
converge to the globally preferred color, or convergence is to the globally non-
preferred color, both violations of the DPP requirements.

4.1 A Markov Chain Lemma

Consider a Markov Chain on a line graph of n nodes, namely s1, s2, ..., sn, where
transition does not happen beyond adjacent nodes. In this subsection we want
to show that if at any state si (1 < i < n), the Markov chain is more likely to go
‘backward’ to state si+1 than to go ‘forward’ to state si−1, then starting from
state si (where i ≥ 2), it takes exponential time in expectation to hit state s1.
While this is perhaps intuitive, we will need this result to be in a particular form
for the later reduction.

Here are a couple of notations: Let pi,j (i, j ∈ [n]) be the transition probability
from node i to j, by construction pi,j = 0 if |i − j| > 1. Simplify notation by
writing pi = pi,i−1 and qi = pi,i+1, which are the ‘forward’ and ’backward’ tran-
sition probability, respectively. Define hi to be the expected number of rounds
for the process to hit state s1 for the first time, given that it starts from state
si. Let γmax = maxi∈{2,3,...,n−1}

qi

pi
and γmin = mini∈{2,3,...,n−1}

qi

pi
, we have the

following lemma.

Lemma 1. If γmin ≥ 1+ ε for some constant ε > 0, then hi (i ≥ 2) is exponen-
tial in n.

Proof. We first claim that hi−hi−1 >
γn−i

min

pn
. To prove this claim, note hi satisfies

the following linear system

hi =

⎧⎪⎨⎪⎩
0 (i = 0)
1 + pihi−1 + qihi+1 + (1− pi − qi)hi (2 ≤ i ≤ n− 1)
1 + pnhn−1 + (1− pn)hn (i = n)

It is clear hj − hj−1 > 0 for all j > 1 as a process starting from state sj has
to hit sj−1 before hitting s1. Let hj − hj−1 = λj , combining it with hj−1 =
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1 + pj−1hj−2 + qj−1hj + (1 − pj−1 − qj−1)hj−1 gives hj−1 − hj−2 = 1+qj−1λj

pj−1
,

which in turn implies λj−1 >
(

qj−1
pj−1

)
λj > γminλj . Repeating this inductively

gives λi > γ
n−i
minλn. Since λn = 1

pn
, this proves the claim.

Immediately following from this claim, we have h2 = h2 − h1 >
γn−2

min

pn
≥

(1 + ε)n−2 if γmin ≥ 1 + ε. Since hi > h2 whenever i > 2, this completes the
proof. ��

4.2 The Impossibility Result

Our goal in this subsection is to prove Theorem 3. To this end, first consider the
biased voter model on the following 3-regular line graph.

A Line Graph. G is a line graph of 2n nodes, where the left half prefers blue
and the right half prefers red. The leftmost and rightmost node each has two
self-loops and all the other nodes have one self-loop.

We prove two lemmas (Lemma 2 and 3) about this particular setting, as a
preparation for the proof of the main theorem.

Lemma 2. For any biased voter model protocol (I,F), given that I results in
an initialization where all nodes initialized to blue are to the left of all nodes
initialized to red, it takes exponential time in expectation to reach a consensus
on the line.

Proof. We prove this by reducing this stochastic process to the Markov process
described in Section 4.1. First observe that since we start with a coloring where
all blues are to the left of all reds, this will hold as an invariant throughout the
evolution of the whole process and the only way for the coloring to evolve is
for the blue node adjacent to a red neighbor to convert to red, or for its red
neighbor to convert to blue.

Therefore, we can always describe the state by a pair of integers (b, 2n −
b), where b is the number of blue-colored nodes. Now if we lump two states,
(b, 2n − b) and (2n − b, b), into one, this model is exactly the Markov process
(with n+ 1 states) described in Section 4.1 with si = {(i, 2n− i), (2n− i, i)} for
i = {0, 1, ..., n}.

And by definition of biased voter model and the way the Markov chain is
constructed in the above, we have pi ≤ 1/3−ε

2n and qi ≥ 1/3+ε
2n (i ∈ {1, 2, ..., n−1})

for some constant ε > 0. Therefore, γmin ≥ 1/3+ε
1/3−ε = 1 + δ, for some constant

δ > 0. Invoking Lemma 1 shows that it takes exponential time to hit s0 starting
from state si (where i ≥ 1). Therefore, it takes exponential time to reach a
consensus given that one starts with a coloring where all nodes initialized to
blue are to the left of all nodes initialized to red. ��

Lemma 3. For any biased voter model protocol (I,F), if I initializes a node i
to his preferred opinion with positive probability, then it takes exponential time
in expectation to reach a consensus on the line.
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Proof. Note I is independent of G, therefore whenever it initializes with positive
probability, the probability is independent of n. In particular, the probability
that I initializes the leftmost node to blue and the rightmost node to red is not
negligible. Therefore we are through if we can show that given the leftmost node
is initialized to blue and the rightmost to red, it takes exponential time to reach
a consensus.

Lemma 2 does not differentiate between a b-consensus and a r-consensus. If we
concern ourselves only with the outcome of, say a b-consensus, it can be shown
that it still takes exponential time to reach given that we start from the same
initialization described in Lemma 2 (i.e. all blues are to the right of all reds). We
prove this by first observing that, conditioning on that a b-consensus is reached,
the time taken is distributed exactly the same as in the modified stochastic
process on the same 2n-node line graph, with the only difference being making
the leftmost node extremely biased towards blue so that it always votes for blue
regardless of his neighbor’s opinion. Therefore we only need to prove it takes
exponential time for this modified process to reach a consensus (which can only
be a blue one), and this follows from Lemma 2.

Of course by a similar argument we can show that starting from an initializa-
tion where all blues are to the left of all reds, it takes exponential time to reach
a r-consensus.

Now consider the initialization where the leftmost node is blue and rightmost
node is red and call this the case of interest. Compare it with the initializa-
tion where the leftmost node is blue and all the other n − 1 nodes are red, the
r-consensus time of this case is clearly upper bounded by that of the case of in-
terest. By the above discussion, it takes exponential time to reach a r-consensus
even when we start with only the leftmost node blue; therefore, it takes exponen-
tial time to reach a r-consensus for the case of interest. By the same argument, it
also takes exponential time to reach a b-consensus for the case of interest. In sum
this allows us to conclude that it takes exponential time to reach a consensus
given that I initializes the leftmost node to blue and the rightmost to red. ��
We are now ready to give a proof for Theorem 3.

Proof. (of Theorem 3) In Lemma 3, we have already shown that any biased
voter model protocol (I,F) fails to solve the DPP (taking exponential time to
converge) if we restrict I to the kind of initialization functions that initializes
a node to its preferred opinion with positive probability. It is easy to see that
(I,F) also fails for any I that does the opposite, in which case I initializes a
node to his not-preferred opinion with probability 1: Simply construct a graph
consists solely of nodes that prefer blue, and I initializes it to a r-consensus.
Therefore, we conclude that any biased voter model protocol (I,F) fails to solve
the DPP. ��
Note since the line graph we construct above is 3-regular, we have actually shown
a stronger version of Theorem 3: Even if we allow both I and F to depend on di,
no protocol (I,F) can solve the DPP. We also note that a similar exponential
convergence result can be shown for clique in certain settings.

.
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5 A Protocol for DPP

Previous discussions establish the limitation of the classic voter model protocol
and its natural extension to the biased voter model when it comes to solving
DPP. We are thus interested in the question: What are the (ideally minimal)
extensions to the biased voter model that are needed to obtain a simple, efficient
and local protocol for solving the DPP?

In this section, we give one answer to this question, by providing a provable
solution to the DPP that employs the following extensions:

1. Introduction of a third choice of opinion, undecided, or u for short;
2. Allowing initialization and evolution of a node’s opinion be dependent on its

degree in G;
3. Allowing multiple identical copies of the protocol to be run in G and having

each node vote for the opinion (between blue and red only, and ignoring
undecided) converged to more frequently among the multiple runs. This can
be implemented by having a slightly more powerful schedule that after every
n5 steps, re-initializes each node.

It is interesting to note that at least two of these extensions — the ability to
temporarily declare oneself undecided, and the notion of an election that is run
in multiple phases — have obvious analogues in many actual political processes.
In any case, we would argue that our protocol is natural in the sense that it
obviously does not engage in any of the kind of coding or signalling schemes
mentioned in the Introduction.

We give the protocol in Algorithm 1. This protocol consists of T = poly(n)
phases. In each phase, each node simultaneously and independently initializes his
opinion to either b, r or u according to some probabilities before launching into
the standard unbiased voter model process. These initialization probabilities are
properly chosen so that the probability of reaching an α-consensus (α ∈ {b, r})
is proportional to

∑
i∈V wi(α). The introduction of the undecided opinion u is

to allow individuals of high degree deliberately reduce their potentially strong

Algorithm 1. A Simple and Local Voting Protocol
1. Each node i maintains an array Ri of size T
2. for phase = 1 to T do
3. Each node i simultaneously and independently initializes its color to b, r and u

with probability wi(b)
di

, wi(r)
di

and di−1
di

, respectively;
4. Run the (standard) voter model process (on opinion b, r, u) for n5 rounds
5. Each node i records his last round opinion of this phase of the voter model

process in Ri[phase]
6. end for
7. // Each node now has a record of his local ‘outcomes’ of all T phases
8. Each node i ignores all entries in Ri that record u; among the remaining entries,

identify a majority between b and r, breaking ties arbitrarily
9. Each node i vote for this majority identified as his final vote
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influence on the outcome (We note that in a strategic or game-theoretic setting,
high-degree individuals might of course exactly wish to exploit this influence, a
topic we examine in Section 6). At the end of each phase, the standard unbiased
voter model process is run for n5 rounds and each node records his opinion in the
last round as the ‘outcome’ of this phase. After T phases, each node ignores all
phases where his local outcome is undecided and identify the majority between
blue and red among the remaining outcomes; he then vote for this majority as
his final vote.

We now proceed to prove that Algorithm 1 indeed solves the DPP. First we
need the following lemma.

Lemma 4. In each of the T phases of Algorithm 1, with error exponentially small
in n, the probability of reaching a b-consensus, r-consensus and u-consensus are�

i∈V wi(b)
2m ,

�
i∈V wi(r)

2m and 2m−n
2m , respectively.

Proof. We give proof for the case of a b-consensus, and the proof for r-consensus
and u-consensus follows a similar argument.

LetB ⊆ V be the set of nodes initialized to blue, and Pb =
∑

B∈2V p(B)p(b |B)
the probability that a single phase of Algorithm 1 results in a b-consensus. By The-
orem 2 we have

∣∣p(b | B)−π(B)
∣∣ = o(c−poly(n)) for some constant c, or p(b | B) =

π(B)± o(c−poly(n)), therefore Pb =
∑

B∈2V p(B)p(b | B) =
∑

B∈2V p(B)(π(B)±
o(c−poly(n))) =

∑
B∈2V p(B)π(B) ± o(c−poly(n)) =

∑2m
k=0 p(d(B) = k) (k/2m)±

o(c−poly(n)) = E(dB)
2m ± o(c−poly(n)) =

�
i∈V wi(b)

2m ± o(c−poly(n)). Therefore, we

conclude that
∣∣Pb −

�
i∈V wi(b)

2m

∣∣ is negligible. ��

Recall our goal is to let V converge to the collectively preferred consensus. And
by definition of DPP one opinion is significantly preferred than the other, i.e.
|
∑

i∈V wi(b)−
∑

i∈V wi(r)| ≥ ε for some constant ε; this assumption turns out to
be sufficient for Algorithm 1 to achieve this goal if we set T = poly(n) sufficiently
large.

Theorem 4. Setting T = O(n3 log(n)) in Algorithm 1 solves the DPP.

Proof. By Lemma 4 we have Pb ≥
�

i∈V wi(b)
2m −o(c−poly(n)) and Pr ≤

�
i∈V wi(r)

2m +
o(c−poly(n)). Therefore the gap between Pb and Pr is at least ε

2m − o(c−poly(n)),
so there exists a positive constant δ < ε such that the gap between Pb and Pr is
at least δ

2m whenever n is sufficiently large.
Let Tb and Tr be the number of b-consensuses and r-consensuses among the T

trials, the bad event happens when Tb < Tr. For this bad event to happen, either
event Tb <

(
Pb − 1

3 ·
δ

2m

)
T or event Tr >

(
Pr + 1

3 ·
δ

2m

)
T has to happen. Since

n
4m < Pb <

n
2m and Pr <

n
4m , by applying Chernoff bound, it can be shown that

T = O(n3 log(n)) is sufficiently large to guarantee that both of the above two
cases happen with negligible probability. ��

Before closing this section, we note that there is an alternative protocol that is
a natural variant of Algorithm 1. In this variation, we do not need to introduce
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the undecided opinion u, instead we make the degree of G, d(G) = maxi∈V di,
an input to F . Now that each node is aware of d(G), he can increase his own
influence by (conceptually) adding d(G)−di self-loops. When each node does so,
the graph becomes regular and we can now simply have each node initialize to
opinion α ∈ {b, r} with probability wi(α) and then run the voter model protocol.
Using essentially the same analysis it can be shown that this alternative protocol
also solves the DPP if repeated sufficiently many times.

6 An ε-Nash Protocol for Democratic Primary Game

Our protocol for solving DPP assumes that each individual will actually follow
the protocol honestly. However in a strategic setting, an individual may have
incentives to deviate from the prescribed protocol. For example, a node i who
prefers blue may deviate from Algorithm 1 in a way that increases the chance of
reaching a blue-consensus, even when this consensus is not collectively preferred.

This naturally leads us to consider the Democratic Primary Game (DPG),
which is an extension of DPP to the strategic, or game theoretic, setting. In
DPG, a node with preference (wi(b), wi(r)) receives payoff wi(b) (resp., wi(r)) if
the game results in an unanimous global blue-consensus (resp., red-consensus)
and payoff 0 if no consensus is reached. A solution to DPG is a protocol that
solves the DPP (which must be simple and local and in polynomial time converge
to the collectively preferred consensus with high probability) and at the same
time is strategy-proof, i.e. each node honestly following the protocol constitutes
a Nash equilibrium of the game. We note that DPG may also be viewed as a
distributed, networked version of the classic “Battle of the Sexes” game, or as a
networked coordination game [7].

In the rest of this section, we show the existence of a protocol that is an
ε-approximate Nash equilibirum, or ε-Nash for short, of DPG. This means al-
though a node can deviate unilaterally from this protocol and increases his ex-
pected payoff, the amount of this increase is at most ε and we show ε is negligible
in n and can be made arbitrarily small. To this end, we need to make the fol-
lowing mild assumptions.

1. The removal of any node from G leaves the remaining graph connected. For-
mally, let G−i be the graph induced by V \{i}, we assume G−i is connected
for all i ∈ V .

2. The exclusion of any node does not change the collectively preferred con-
sensus, and moreover, it still leaves a significant (constant) gap between∑

j∈V (G−i) wj(b) and
∑

j∈V (G−i) wj(r).
3. Each node i is identified by a unique ID, ID(i), which is an integer in
{1, 2, ..., n}.

Our ε-Nash protocol consists of n runs of the non-Nash protocol Algorithm 1,
each on a subgraph G−i. Each run of Algorithm 1 polls the majority opinion
of V \{i}, which by assumption is the same as that of V ; however by excluding
i from participating, we prevent him from any manipulation of this particular
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Algorithm 2. A Simple and Local Protocol that is ε-Nash
1. Each node i maintains an array Ei of size n − 1
2. for episode = 1 to n do
3. Let i be the node such that ID(i) = episode
4. Run Line 1 - 8 of Algorithm 1 on G−i

5. Each node j ∈ V \{i} records in Ej [episode] the majority between b and r he
identifies on Line 8 of (this run of) Algorithm 1

6. end for
7. // Each node has now participated in n − 1 runs of Algorithm 1
8. for all i ∈ V do
9. if both b and r are present in the n − 1 entries of Ei then

10. Tossing a private fair coin to decide between b and r, and vote for it as i’s
final vote

11. else
12. Vote for the only opinion present as i’s final vote
13. end if
14. end for

run of the non-Nash protocol. When all the n runs of non-Nash is done, each
node ends up with n− 1 ‘polls’ and with high probability they should all point
to the same collectively preferred consensus. In case it does not, it is strong
evidence that some run(s) of the non-Nash protocol had been manipulated and
the contingency plan is for each node to ignore all the polling results entirely and
toss a (private) fair coin to decide whether to vote for blue or red — and this
turns out to be a sufficient deterrent of unilateral deviation from the non-Nash
protocol.

We note conceptually we are making yet another simple extension in the pro-
tocol’s expressiveness by allowing it to be run on a subgraph G−i. To implement
this, it is important for each node i to be uniquely identified by his neighbors so
that they know when to ignore i; and this is the reason we need assumption 3
listed above. We give this ε-Nash protocol in Algorithm 2 and claim the following
theorem.

Theorem 5. Algorithm 2 approximately solves DPG by being an ε-Nash
equilibrium.

Proof. Suppose each node follows the protocol faithfully, by our assumption that
the exclusion of any node does not change the collectively preferred consensus,
say blue, the n runs of Algorithm 1 must have all resulted in a b-consensus with
high probability. Therefore the final votes result in the collectively preferred
b-consensus with high probability.

Now we examine why faithfully executing this protocol is an ε-Nash strategy
for each node. For a node i that prefers red (i.e. the opinion not collectively
preferred), assuming everyone else is following Algorithm 2, the expected payoff
to i for doing the same is at least his payoff in a b-consensus minus a number
negligible in n (because there is a negligible probability that no consensus is
reached in the final voting even if every node follows Algorithm 2 faithfully).
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Now we consider what happens if he deviates. There are two stages during which
i can deviate: the first or the second for-loop in Algorithm 2. i’s effort during
the first for-loop is obviously futile if none of the n − 1 runs of Algorithm 1 is
turned into a r-consensus, and in this case, with high probability all the n runs
of Algorithm 1 result in a b-consensus. Therefore, i will have no incentive to
deviate during the second for-loop because everyone else is going to vote for b.

Next consider the case where i successfully turns some of the global outcomes
of Algorithm 1 into a r-consensus (i.e. all nodes identify r as the majority on
Line 8 of Algorithm 1), then with high probability the n runs of Algorithm 1
result in both r-consensus and b-consensus because the single run of it without i
participating results in a b-consensus with high probability. In this case, at least
n − 2 nodes out of V \{i} see both blue and red as outcomes from the n − 1
runs of Algorithm 1 they each participated in and will vote for either b or r by
tossing a private fair coin, which means the probability of reaching a b-consensus
or r-consensus among them, independent of whatever strategy i adopts in the
second for-loop, is ( 1

2 )(n−2). Therefore, no matter what strategy i adopts in the
second for-loop, his expected payoff is negligible and obviously worse than what
he would have gotten by not deviating. Therefore, we conclude that executing
Algorithm 2 faithfully is actually a Nash strategy for i.

Now consider a node j who prefers a b-consensus. By the same discussion as
above, Algorithm 2 results in a b-consensus in the final voting with high prob-
ability, therefore the expected payoff to j is at least his payoff in a b-consensus
minus a negligible number. Therefore by deviating j can only hope to improve
his expected payoff by a negligible amount. And this allows us to conclude that
each node following Algorithm 2 faithfully constitutes an ε-Nash equilibrium for
the game, where ε is a negligible number and can be made arbitrarily small. ��

Finally, we note that it is possible for one to construct a distributed protocol that
is a Nash equilibrium for DPG, by employing cryptographic techniques developed
for distributed computation in a recent work by Kearns et al. [8]. Although the
resulting protocol is highly distributed and uses only local information, its use of
cryptographic tools, including the broadcast of public keys and secure multiparty
function computations, violates our goal of finding simple protocols of the kind
we have examined here.
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Abstract. The recent result of Friedgut, Kalai and Nisan [9] gives a
quantitative version of the Gibbard-Satterthwaite Theorem regarding
manipulation in elections, but holds only for neutral social choice func-
tions and three alternatives. We complement their theorem by proving a
similar result regarding Pareto-Optimal social choice functions when the
number of voters is two. We discuss the implications of our results with
respect to the agenda of precluding manipulation in elections by means
of computational hardness.

1 Introduction

Can we design a good voting rule that is immune to manipulation? That is, one in
which the best strategy for each voter is to report its true preferences, without
taking into account complicated strategic issues (“my first-ranked alternative
has no chance of winning, so perhaps I should vote for my second best option”)?
The classic result of Gibbard and Satterthwaite [10,16] gives us an unfortunate
answer: every voting rule that is immune to manipulation must be dictatorial.
The question we ask in this paper is: is there a reasonable voting rule that is
mostly immune to manipulation? That is, can we find a voting rule that cannot
be manipulated “most” of the time?

Let us discuss this problem more formally. The basic ingredients of a voting
setting are a set of voters N , |N | = n, and a set of alternatives A, |A| = m. The
preferences of each voter are represented by a ranking of the alternatives, which
is the private information of the voter. The collection of the preferences of all
the voters is known as a preference profile. The setting also consists of a social
choice function (SCF), which is simply a voting rule: a function that receives the
preference profile submitted by the voters, and outputs the winning alternative.
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Motivation and Related Work. Ideally, one would like to design SCFs that are
strategyproof, i.e., theoretically immune to manipulation. A voter is said to ma-
nipulate the election if misreporting its preferences improves the outcome (from
the voter’s point of view). Unfortunately, as mentioned above, the seminal im-
possibility result of Gibbard [10] and Satterthwaite [16] states that if there are
at least three alternatives, an SCF that is strategyproof and onto A must be a
dictatorship, in the sense that there is a single voter whose favorite alternative is
elected under any preference profile. This devastating theorem (hereinafter, the
G-S Theorem) implies that, in theory, it is impossible to design a “reasonable”
SCF that is strategyproof.

Nevertheless, several avenues have been suggested for circumventing the G-S
Theorem. One approach, introduced by Bartholdi, Tovey and Trick [1], is em-
ploying computational complexity. Indeed, Bartholdi et al. suggested that some
of the prominent SCFs may be computationally hard to manipulate. The work-
ing hypothesis is that, if successfully lying is computationally infeasible, voters
would simply report the truth. Since then, and especially in recent years, numer-
ous results about the worst-case hardness of manipulation have been published
(see, e.g., [2,4,5,6,8,11,15]).

The foregoing line of work is encouraging, and doubtless being worst-case
hard to manipulate is a desirable property in an SCF. However, researchers have
pointed out that worst-case hardness may not be a sufficient barrier against ma-
nipulation. What one would ideally wish for is an SCF that is almost always hard
to manipulate, when the instances are drawn according to typical distributions;
this notion of hardness of manipulation is closer to the cryptographic notions of
hardness.

Recent works have argued that common SCFs are not frequently hard to ma-
nipulate with respect to typical distributions. An algorithmic approach to this
issue was presented by Procaccia and Rosenschein [14]. This work relies on the
arguable (as discussed by Erdélyi et al. [7]) concept of junta distributions, and
only deals with manipulation by coalitions in a specific family of SCFs when
the number of alternatives is constant. The algorithmic results of Procaccia and
Rosenschein were later significantly strengthened by Zuckerman, Procaccia and
Rosenschein [20], but this work also deals with specific SCFs and coalitional ma-
nipulation. Another algorithmic, general, approach was introduced by Conitzer
and Sandholm [3], but in order to apply their results, the SCF has to satisfy a
somewhat restrictive property. This property is empirically shown to hold with
respect to some SCFs, when the number of alternatives is very small. Yet another
approach was proposed by Procaccia and Rosenschein [13], and generalized by
Xia and Conitzer [18]. This approach, once again, only deals with manipulation
by coalitions and a constant number of alternatives.

An intriguing and ambitious approach to the issue of frequency of hardness in
manipulation was presented by Friedgut, Kalai and Nisan [9]. They looked at a set-
ting where each voter votes independently and uniformly at random; this is known
in the social choice literature as the impartial culture assumption. Friedgut et al.
suggested that, under the impartial culture assumption, a potential manipulator
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can improve the outcome of the election with nonnegligible probability by simply
reporting a random ranking instead of its truthful ranking.

Roughly speaking, define an SCF f to be δ-dictatorial if one must change
the outcome of f on at most a δ-fraction of the preference profiles in order to
transform f into a dictatorship. We call f ε-strategyproof if, given a random
profile, a random manipulation succeeds with probability at most ε. Friedgut
et al. suggested that the following quantitative version of the G-S Theorem
is true: If |A| ≥ 3, then any ε-strategyproof SCF that is onto A (and possibly
satisfies additional weak properties) is δ-dictatorial, for δ = K1·poly(n,m)·ε1/K2 ,
where K1 and K2 are constants. Such a result would directly imply that if
a random manipulation succeeds with only negligible probability, namely ε is
superpolynomially small, then the SCF must be very close to being dictatorial,
that is unreasonable from a social choice point of view. Hence, if this statement
is true, it would be of supreme importance to the frequency-of-manipulation
agenda.

Friedgut et al. themselves were only able to prove the above result under
the assumptions that there are exactly three alternatives, and that the SCF is
neutral, i.e. indifferent to the identities of the alternatives. The techniques of
Friedgut et al. are beautiful, but it seems to be very difficult to generalize their
proof to more than just 3 alternatives. Strictly speaking, neutrality might also
be undesirable, since neutrality and anonymity (indifference to the identities of
the voters) are sometimes mutually exclusive [12, page 25], and all prominent
SCFs are anonymous.

Xia and Conitzer [19] extended the result of Friedgut et al. (via a completely
different, involved line of reasoning) to any number of alternatives. However, the
quality of their result decreases rapidly with the number of alternatives, so the
authors assume that the number of alternatives is constant in order to achieve
the ideal of Friedgut et al. In addition, Xia and Conitzer require several very
technical and restrictive assumptions with respect to the SCF. Although they
show that these assumptions are satisfied by most (but not all) prominent SCFs,
the assumptions still severely limit the scope of their result when it comes to the
possibility of designing nonstandard SCFs that are usually hard to manipulate.

Our result. We complement the two previous results along the line of work
proposed by Friedgut et al. by establishing the desired quantitative version of
G-S for an arbitrary number of alternatives m but n = 2, namely only two
voters. The only assumption we make is that the SCF is Pareto-optimal, i.e., if
all voters rank alternative a above b, than b is not elected. Specifically, we prove:

Main Theorem. Let ε < 1
32m9 ; assume N = {1, 2}, m ≥ 3, and let f be an

ε-strategyproof and Pareto-optimal SCF. Then f is 16m8ε-dictatorial.

In particular, if the probability of success of a random manipulation is negligible,
then f is very close to being dictatorial. As Pareto-Optimality is a very basic
requirement, this directly implies that it is impossible to design a reasonable SCF
that is frequently hard to manipulate, when each voter votes independently and
uniformly at random and N = {1, 2}.
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Discussion. A crucial aspect of our theorem is that it seems to be better than
previous results as a first step towards a more general result. Indeed, the proof
of Friedgut et al. is fascinating but involved and relies on heavy mathematical
machinery: Fourier analysis, isoperimetric inequalities, and so on. The proof of
Xia and Conitzer seems to strongly rely on their assumptions, and it is not clear
if the same techniques can be used once these assumptions are removed.

On the other hand, our proof is relatively simple and is built “from scratch”.
More importantly, Svensson [17] gives an inductive argument that extends the
deterministic proof of G-S from two voters to n voters. However, this argument is
not “robust”, in the sense that using it directly causes too great a deterioration
in the quality of the result with respect to n and m. Certainly, new tricks are
needed, but we believe that using clever induction on the number of voters in
order to achieve a general result should be possible.

We wish to make some remarks regarding the generality of our result. First, we
assume Pareto-optimality, but this assumption can probably be relaxed, since in
the deterministic case Pareto-optimality is implied by strategyproofness. Second,
our auxilary monotonicity lemma (Lemma 1) can certainly be generalized to any
number of voters n.

Let us briefly examine the significance of our result in its own right (and not as
a first step towards a general result). The case of two voters and m alternatives
might at first seem less important than the case of n voters and three alternatives
that was considered by Friedgut et al. This is true in political elections (where one
expects to find more voters than candidates), but not in general (and especially
not in computer science). For instance, in settings where multiple agents must
decide between joint plans or beliefs the number of alternatives is typically far
greater than the number of voters. In addition, when the number of alternatives
is constant, a potential manipulator can simply check all the possible rankings,
so there is no question of computational complexity. The problem becomes more
interesting when the number of alternatives is large, as it is in our case.

As a final remark, we wish to address the impartial culture assumption (vot-
ers vote independently and uniformly), also used by Friedgut et al. and Xia and
Conitzer. Even if one proves the general quantitative version of G-S (as discussed
above), it would not necessarily spell the end of the hardness of manipulation
agenda. The rankings of voters are typically not independent nor uniform, but
centered around specific strong alternatives. So, the underlying assumption that
voters vote independently and uniformly at random may not be realistic. How-
ever, this assumption allows for elegant “lower bounds”, as noted by Friedgut et
al. Ultimately, the ideal is to obtain results that also hold under a wide range of
typical distributions.
Structure of the paper. In Section 2, we formally present the necessary notations
and definitions. In Section 3, we formulate and prove our main result.

2 Preliminaries

We deal with a finite set of voters N = {1, 2, . . . , n}, and a finite set of alternatives
A, where |A| = m. We denote alternatives by letters such as a, b, c, x, y.
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Each voter i ∈ N holds a strict total order Ri over A, i.e. Ri is a binary
relation over A that satisfies irreflexivity, antisymmetry, transitivity and totality.
Informally, Ri is a ranking of the alternatives. The set L = L(A) is the set of
all such (linear) orders, so for all i ∈ N , Ri ∈ L throughout. A preference profile
RN is a vector 〈R1, . . . , Rn〉 ∈ LN . A social choice function (SCF) is a function
f : LN → A.

We make the Impartial Culture Assumption throughout the paper, that is,
we assume that random preference profiles are drawn by independently and
uniformly drawing a random ranking for each voter (each possible ranking has
a probability of 1/m!). So, for instance, when we write PrRN [E] we refer to
the probability that the event E occurs, when the preferences of each voter Ri

are independently and uniformly distributed. Furthermore, when we write, e.g.,
PrRN ,Q1 [E], we mean that the preferences R1, . . . , Rn and Q1 are all drawn
independently at random.

Definition 1. Let f be an SCF. f is Pareto-optimal if for all RN ∈ LN , if
there exist x, y ∈ A such that xRiy for all i ∈ N , then f(RN ) �= y.

We now define some probabilistic versions of well-known properties of SCFs.

Definition 2. Let f be an SCF. Voter i ∈ N is a δ-dictator with respect to
a ∈ A iff

Pr
RN

[f(RN ) �= a | ∀x ∈ A \ {a}, aRix] ≤ δ.

Voter i is a δ-dictator iff it is a δ-dictator with respect to every a ∈ A. f is a
δ-dictatorship if there exists a δ-dictator.

The classical definition of a dictatorship corresponds to the definition of a
0-dictatorship under this formulation. Also note that δ-dictatorship under our
definition implies δ-far from dictatorship under the definition of Friedgut
et al. [9].

Let us turn to a probabilistic definition of strategyproofness. An SCF f is
manipulable at RN ∈ LN if there exists a voter i ∈ N and a ranking Qi such
that f(Qi, RN\{i})Rif(RN), where (Qi, RN\{i}) is identical to RN except that
Ri is replaced by Qi. That is, voter i strictly benefits according to its true
preferences Ri by reporting false preferences Qi. An SCF is strategyproof if it is
not manipulable at any RN ∈ LN .

Definition 3. An SCF f is ε-strategyproof iff for all voters i ∈ N ,

Pr
RN ,Qi

[f(Qi, RN\{i})Rif(RN)] ≤ ε.

So, strategyproofness corresponds to 0-strategyproofness accordingto this prob-
abilistic definition. Our definition of ε-strategyproofness is exactly equivalent to
all voters having manipulation power at most ε according to the definition given
by Friedgut et al. [9].
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The classic formulation of the Gibbard-Satterthwaite Theorem [10,16] is as
follows.

Theorem 1 (Gibbard-Satterthwaite). Assume |A| ≥ 3, and let f : LN → A
be a strategyproof SCF that is onto A. Then f is dictatorial.

Finally, we wish to extend the classic definition of monotonicity. Let R ∈ L,
a ∈ A, and denote

I(R, a) = {Q ∈ L : ∀x ∈ A, aRx⇒ aQx}.

Now, let RN ∈ LN , and denote

I(RN , a) = {QN ∈ LN : ∀i ∈ N, Qi ∈ I(Ri, a)}.

Definition 4. Let f be an SCF. f is γ-monotonic if

Pr
RN ,QN

[
f(RN ) �= f(QN) | QN ∈ I(RN , f(RN))

]
≤ γ.

In words, f is γ-monotonic if improving a winning alternative harms it with
probability at most γ. Monotonicity is equivalent to 0-monotonicity. We wish
to point out that monotonicity is a very strong property, as the order of other
alternatives can change as long as the winner only improves with respect to
other alternatives. In fact, monotonicity is closely related to, and implied by,
strategyproofness.

3 Main Theorem

Our aim is to prove a quantitative version of the Gibbard-Satterthwaite Theorem
(Theorem 1), under the assumptions that N = {1, 2} and that the SCF in
question is Pareto-optimal. Note that Pareto-optimality implies surjectivity, as
if all the voters rank x ∈ A first then x must be elected, and this is true for all
x ∈ A.

Theorem 2. Let ε < 1
32m9 ; assume N = {1, 2}, m ≥ 3, and let f be an ε-

strategyproof and Pareto-optimal SCF. Then f is 16m8ε-dictatorial.

We wish to stress once again that, as in Friedgut et al. [9] and Xia and Conitzer [19],
the underlying assumption is the impartial culture assumption, that is the voters
vote independently and uniformly at random.

Let us now turn to the proof of Theorem 2. The proof follows the lines of the
proof of Theorem 1 in Svensson [17]. He gives a very simple and short proof of
the G-S Theorem for N = {1, 2}. Our proof is considerably more involved, but
ultimately our main mathematical contribution is to notice that all of Svensson’s
arguments are robust, in the sense that they do not greatly restrict the space of
preference profiles, and thus survive the transition to the quantitative version.
The reader is encouraged to read Svensson’s proof before reading ours.
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As noted above, the deterministic notion of strategyproofness implies the de-
terministic notion of monotonicity. We will require a lemma that gives a quan-
titative version of this implication. The lemma also presents in detail the type
of robustness arguments that we employ throughout the proof of the Theorem.

Lemma 1 (Monotonicity). AssumeN = {1, 2}, and let f be an ε-strategyproof
SCF. Then f is 4m2ε-monotonic

Proof. Since f is ε-strategyproof, we have

Pr
RN ,Q1

[
f(Q1, R2)R1f(RN)

]
≤ ε. (1)

We are now about to apply a critical “robustness” argument, which will be
central to the proofs of both this lemma and Theorem 2. We first claim that

PrRN ,Q1

[
Q1 ∈ I(R1, f(RN ))

]
≥ 1/m. (2)

Indeed, this is true since any ranking Q1 ∈ L that places f(RN ) on top is a
member of I(R1, f(RN)), and there are (m− 1)! such rankings out of the total
m! rankings.

Now, from the basic laws of probability it follows that for two events E1 and
E2,

Pr[E1] = Pr[E1|E2] · Pr[E2] + Pr[E1|¬E2] · Pr[¬E2] ≥ Pr[E1|E2] · Pr[E2],

and therefore

Pr[E1|E2] ≤
Pr[E1]
Pr[E2]

. (3)

Now, from (1), (2), and (3) we obtain:

Pr
RN ,Q1

[
f(Q1, R2)R1f(RN )|Q1 ∈ I(R1, f(RN))

]
≤

PrRN ,Q1

[
f(Q1, R2)R1f(RN )

]
PrRN ,Q1 [Q1 ∈ I(R1, f(RN))]

≤mε,
(4)

where the first inequality follows from (3) and the second inequality follows by
using both (1) and (2). By using symmetric arguments and the union bound we
have that:

Pr
RN ,Q1

[
f(Q1, R2)R1f(RN ) ∨ f(RN )Q1f(Q1, R2) | Q1 ∈ I(R1, f(RN))

]
≤ 2mε.

(5)
Fix RN ∈ LN and Q1 ∈ I(R1, f(RN)), and assume that strategyproofness

holds “in both directions”, namely the event in (5) does not occur. Let a =
f(RN) and b = f(Q1, R2). Assume that a �= b; by strategyproofness aR1b, and
since Q1 is an improvement of a over R1, aQ1b. Strategyproofness in the other
direction implies that bQ1a, which leads to a contradiction. Hence, a = b. To
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summarize, we have shown that given that Q1 ∈ I(R1, f(RN )), then f(RN ) �=
f(Q1, R2) with probability at most 2mε.

Let us extend our arguments to two steps of improvement instead of one.
Analogously to (2), we have that:

PrRN ,QN

[
Q1 ∈ I(R1, f(RN )) ∧Q2 ∈ I(R2, f(Q1, R2))

]
≥ 1
m2 . (6)

Now, similarly to (4) we conclude by ε-strategyproofness, (6) and (3) that:

Pr
RN ,QN

[
f(QN)Q2f(Q1, R2)|Q1 ∈ I(R1, f(RN)) ∧Q2 ∈ I(R2, f(Q1, R2))

]
=

PrRN ,QN

[
f(QN )Q2f(Q1, R2)

]
PrRN ,QN [Q1 ∈ I(R1, f(RN)) ∧Q2 ∈ I(R2, f(Q1, R2))]

=
PrR2,QN

[
f(QN)Q2f(Q1, R2)

]
PrRN ,QN [Q1 ∈ I(R1, f(RN)) ∧Q2 ∈ I(R2, f(Q1, R2))]

≤ m2ε.

The third equality simply drops R1 in the probability; this is possible as the
event is indifferent to the choice of R1. Hence, we can use ε-strategyproofness
directly on the random preference profile (Q1, R2) and the random manipulation
Q2 by voter 2.

By repeating the arguments given above for a single improvement, we get that if
we choose RN and QN such that Q1 ∈ I(R1, f(RN )) and Q2 ∈ I(R2, f(Q1, R2)),
then f(Q1, R2) �= f(QN ) with probability at most 2m2ε.

Finally, we apply the union bound one last time to get:

Pr
RN ,QN

[
f(RN ) �= f(QN) | QN ∈ I(RN , f(RN))

]
≤ Pr

RN ,QN

[(
f(RN ) �= f(Q1, R2)

)
∨
(
f(RN) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN)

)
| QN ∈ I(RN , f(RN ))

]
≤ Pr

RN ,Q1

[
(f(RN ) �= f(Q1, R2)) | Q1 ∈ I(R1, f(RN))

]
+ Pr

RN ,QN

[
f(RN ) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN) | QN ∈ I(RN , f(RN))

]
= Pr

RN ,Q1

[
(f(RN ) �= f(Q1, R2)) | Q1 ∈ I(R1, f(RN))

]
+ Pr

RN ,QN

[
f(RN ) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN)

| Q1 ∈ I(R1, f(RN)) ∧Q2 ∈ I(R2, f(Q1, R2))
]

≤ 2mε+ 2m2ε ≤ 4m2ε.

(7)

The third transition follows from the fact that, given that f(RN ) = f(Q1, R2)
occurred, the events QN ∈ I(RN , f(RN )) and Q1 ∈ I(R1, f(RN )) ∧ Q2 ∈
I(R2, f(Q1, R2)) are one and the same. Formally,
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Pr
RN ,QN

[
f(RN ) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN ) | QN ∈ I(RN , f(RN ))

]
= Pr

RN ,QN

[
f(RN ) = f(Q1, R2) | QN ∈ I(RN , f(RN))

]
· Pr

RN ,QN

[
f(Q1, R2) �= f(QN) | QN ∈ I(RN , f(RN)) ∧ f(RN) = f(Q1, R2)

]
= Pr

RN ,QN

[
f(RN ) = f(Q1, R2) | Q1 ∈ I(R1, f(RN )) ∧Q2 ∈ I(R2, f(Q1, R2))

]
· Pr

RN ,QN

[
f(Q1, R2) �= f(QN) | Q1 ∈ I(R1, f(RN )) ∧ Q2 ∈ I(R2, f(Q1, R2))

∧ f(RN ) = f(Q1, R2)
]

= Pr
RN ,QN

[
f(RN ) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN ) | Q1 ∈ I(R1, f(RN))

∧ Q2 ∈ I(R2, f(Q1, R2))
]
,

where in the second equality above the two left hand side factors are equal since
the event f(RN) = f(Q1, R2) is independent of the choice of Q2.

The last transition of (7) is true since the probability that

f(RN ) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN)

is bounded from above by the probability that f(Q1, R2) �= f(QN ). ��
We are now in a position to prove our main theorem.

Proof (of Theorem 2). Fix two distinct alternatives a, b ∈ A, and define

Z(a, b) = {RN ∈ LN : ∀x ∈ A \ {a, b}, aR1bR1x ∧ bR2aR2x}.
That is, Z(a, b) is the set of all preference profiles where voter 1 ranks a first
and b second, and voter 2 ranks b first and a second. We have that

Pr
RN

[
RN ∈ Z(a, b)

]
=
(

(m− 2)!
m!

)2

= 1/m4. (8)

Now, for every RN ∈ Z(a, b), we have that f(RN ) ∈ {a, b} from Pareto-
optimality. Assume without loss of generality that at least a 1/2-fraction of the
profiles in Z(a, b) satisfy f(RN) = a, that is

Pr
RN

[
f(RN ) = a | RN ∈ Z(a, b)

]
≥ 1

2
. (9)

For any RN ∈ Z(a, b) such that f(RN ) = a, let Q2 ∈ L such that bQ2xQ2a for
all x ∈ A \ {a, b}. Let Y (a, b) be the set of all such ordered pairs (RN , Q2), i.e.,

Y (a, b) = {(RN , Q2) ∈ Z(a, b)× L : f(RN ) = a ∧ ∀x ∈ A \ {a, b}, bQ2xQ2a}.
We have that

Pr
RN ,Q2

[
(RN , Q2) ∈ Y (a, b)

]
= Pr

RN

[
RN ∈ Z(a, b) ∧ f(RN ) = a

]
· Pr

Q2

[
∀x ∈ A \ {a, b}, bQ2xQ2a

]
≥ 1

2m4 ·
1
m2 =

1
2m6 ,

(10)
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where the first equality is by the independence of the two events, and the in-
equality follows from (8) and (9).

At this point we appeal to ε-strategyproofness, and apply our recurring ro-
bustness argument, namely, in this case, (3) coupled with (10). This gives us:

Pr
RN ,Q2

[
f(R1, Q2)R2f(RN) | (RN , Q2) ∈ Y (a, b)

]
≤ 2m6ε ≤ 1/2,

where the last inequality follows from our choice of ε. Therefore,

Pr
RN ,Q2

[
f(RN )R2f(R1, Q2) ∨ f(RN) = f(R1, Q2) | (RN , Q2) ∈ Y (a, b)

]
= 1− Pr

RN ,Q2

[
f(R1, Q2)R2f(RN) | (RN , Q2) ∈ Y (a, b)

]
≥ 1/2.

(11)

From Pareto-optimality we have that for any (RN , Q2) ∈ Y (a, b), f(R1, Q2) ∈
{a, b}, and, if in addition we have that f(RN)R2f(R1, Q2) or f(RN ) = f(R1, Q2),
then f(R1, Q2) = a. Indeed, this is true since b is ranked first in R2, and by def-
inition f(RN) = a; hence, if f(R1, Q2) = b then voter 2 gains by switching from
R2 to Q2.

Now, by applying (10) and (11), we obtain:

Pr
RN ,Q2

[
(RN , Q2) ∈ Y (a, b) ∧ f(R1, Q2) = a

]
≥ 1

4m6 .

We are now in a position to show that when a preference profile is chosen at
random, the probability of obtaining a profile where voter 1 ranks a first, voter
2 ranks a last, and the winner is a is significant. Indeed,

Pr
R1,Q2

[(
∀x ∈ A \ {a}, aR1x ∧ xQ2a

)
∧
(
f(R1, Q2) = a

)]
≥ Pr

R1,Q2

[
∃R2 ∈ L s.t. (RN , Q2) ∈ Y (a, b) ∧ f(R1, Q2) = a

]
≥ Pr

RN ,Q2

[
(RN , Q2) ∈ Y (a, b) ∧ f(R1, Q2) = a

]
≥ 1

4m6 .

(12)

Next, we are finally going to use Lemma 1. We have that

Pr
RN ,QN

[
f(QN ) �= f(RN)

|
(
∀x ∈ A \ {a}, aR1x ∧ xR2a

)
∧
(
f(RN ) = a

)
∧
(
QN ∈ I(RN , a)

)]
≤

PrRN ,QN

[
f(QN) �= f(RN ) | QN ∈ I(RN , a)

]
PrRN [(∀x ∈ A \ {a}, aR1x ∧ xR2a) ∧ (f(RN) = a)]

≤ 4m2ε · 4m6 = 16m8ε.

The first inequality follows from (3), while the second inequality is obtained by
applying Lemma 1 and (12). Therefore, there must be some RN

0 that satisfies
for all x ∈ A \ {a}, aR1

0x and xR2
0a, f(RN

0 ) = a, and

Pr
QN

[
f(QN ) �= f(RN

0 ) = a | QN ∈ I(RN
0 , a)

]
≤ 16m8ε. (13)
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Crucially, since in RN
0 voter 1 ranks a first and voter 2 ranks a last, I(RN

0 , a)
is exactly the set of preference profiles such that voter 1 ranks a first. In other
words, (13) can be reformulated as:

Pr
QN

[
f(QN ) �= a | ∀x ∈ A \ {a}, aQ1x

]
≤ 16m8ε.

In words, voter 1 is a δ = 16m8ε-dictator with respect to a. If we had assumed
that at least half the profiles in Z(a, b) satisfied f(RN) = b, we would have
deduced that voter 2 is a δ = 16m8ε-dictator with respect to b.

So far, the analysis was for a fixed pair of alternatives a, b ∈ A. By repeating
the analysis for every pair of alternatives, we may obtain two sets of alternatives
A1 and A2, such that Ai contains all the alternatives for which voter i is a
16m8ε-dictator. First notice that A3 = A\(A1∪A2) satisfies |A3| ≤ 1, otherwise
we could perform the analysis for two alternatives in A3 and deduce that either
the first is in A1 or the second is in A2.

Second, we claim that for two distinct alternatives a, b ∈ A, it can’t be the case
that a ∈ A1 and b ∈ A2. Indeed, otherwise, by the assumption that ε < 1/(32m9),
voter 1 is less than a 1/2m-dictator for a, whereas voter 2 is less than a 1/2m-
dictator for b. This directly implies that:

Pr
RN

[
f(RN) �= a |

(
∀x ∈ A \ {a}, aR1x,

)
∧
(
∀x ∈ A \ {b}, bR2x

)]
≤

PrRN

[
f(RN ) �= a | ∀x ∈ A \ {a}, aR1x

]
PrRN [∀x ∈ A \ {b}, bR2x]

<
1

2m
·m = 1/2,

and similarly

Pr
RN

[
f(RN) �= b |

(
∀x ∈ A \ {a}, aR1x,

)
∧
(
∀x ∈ A \ {b}, bR2x

)]
< 1/2.

It follows that there exists a profile, where voter 1 ranks a first and voter 2
ranks b first, such that a and b are both winners, which is a contradiction to the
definition of f as an SCF.

Now, since |A3| ≤ 1 andm ≥ 3, we must have that one of A1 or A2 is empty (it
is easily verified that otherwise there must be distinct x, y ∈ A such that x ∈ A1
and y ∈ A2). Our early assumption that at least a 1/2-fraction of the profiles in
Z(a, b) satisfy f(RN ) = a ultimately led to the conclusion that a ∈ A1, thus it
follows that A2 = ∅.

To conclude the proof, we must show that A3 = ∅. This is obvious, since
if c ∈ A3, we can repeat the analysis with the pair {c, a}, and get that either
c ∈ A1 or a ∈ A2, which implies a contradiction. Hence, it must hold that
A1 = A, namely voter 1 is a 16m8ε-dictator. ��

References

1. Bartholdi, J., Tovey, C.A., Trick, M.A.: The computational difficulty of manipu-
lating an election. Social Choice and Welfare 6, 227–241 (1989)

2. Conitzer, V., Sandholm, T.: Universal voting protocol tweaks to make manipulation
hard. In: Proc. of 18th IJCAI, pp. 781–788 (2003)



664 S. Dobzinski and A.D. Procaccia

3. Conitzer, V., Sandholm, T.: Nonexistence of voting rules that are usually hard to
manipulate. In: Proc. of 21st AAAI, pp. 627–634 (2006)

4. Conitzer, V., Sandholm, T., Lang, J.: When are elections with few candidates hard
to manipulate? Journal of the ACM 54(3), 1–33 (2007)

5. Elkind, E., Lipmaa, H.: Hybrid voting protocols and hardness of manipulation. In:
Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 206–215. Springer,
Heidelberg (2005)

6. Elkind, E., Lipmaa, H.: Small coalitions cannot manipulate voting. In: S. Patrick,
A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 285–297. Springer, Heidelberg
(2005)
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Abstract. In a cost-sharing problem, finitely many players have an un-
known preference for some public excludable good (service), and the
task is to determine which players to serve and how to distribute the
incurred cost. Therefore, incentive-compatible mechanisms are sought
that elicit truthful bids, charge prices that recover the cost, and are
economically efficient in that they reasonably balance cost and valua-
tions. A commonplace notion of incentive-compatibility in cost sharing
is group-strategyproofness (GSP), meaning that not even coordinated
deceit is profitable. However, GSP makes strong implications on play-
ers’ coordination abilities and is known to impose severe limitations on
other goals in cost sharing. There is hence good reason to seek for a
weaker axiom: In this work, we study the following question: Does re-
laxing GSP to resilience only against coalitions of bounded size yield a
richer set of possible mechanisms? Surprisingly, the answer is essentially
“no”: We prove that already a mechanism resilient to coalitions of size
only two (“2-GSP”) is GSP, once we require that cost shares must only
depend on the service allocation (and not directly on the bids). More-
over, we show that even without additional requirements, 2-GSP implies
weak group-strategyproofness (WGSP). Consequently, our results give
some justification that GSP may, after all, still be desirable in various
scenarios. As another benefit, we believe that our characterizations will
facilitate devising and understanding new GSP cost-sharing mechanisms.
Finally, we relate our findings to other concepts of non-manipulability
such as (outcome) non-bossiness [19] and weak utility non-bossiness [13].

1 Introduction

Indivisible units of a public excludable good (a service; e.g., connectivity in a
network) are to be made available to n ∈ N players at non-negative prices. In
the binary-demand scenario studied in this work, each player has demand for
only one unit and is completely characterized by his valuation for receiving it.
Direct-revelation cost-sharing mechanisms are sought that elicit truthful reports
of the players’ valuations and then determine both an allocation q ∈ {0, 1}n of
the good and a distribution of the allocation-dependent cost C(q).
� This work was partially supported by the IST Program of the European Union under
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This work follows the line of examining cost sharing from the viewpoint of
incentive compatibility: How can rational selfish players be incentivized to reveal
truthful information out of self-interest? Cost-sharing problems are fundamental
in economics and have a broad area of applications; e.g., distributing volume dis-
counts in electronic commerce, sharing the cost of public infrastructure projects,
allocating development costs of low-volume built-to-order products, etc.

There are three essential goals when designing a truthful cost-sharing mech-
anisms: It should balance the budget (i.e., recover the incurred cost with the
prices charged), and be economically efficient (i.e., trade off the service cost and
the excluded players’ valuations as good as possible). Practical applications also
demand for polynomial-time computability.

1.1 Collusion-Resistance

As is common in cost sharing, we assume quasi-linear utilities: When served,
a player’s utility is his valuation minus his payment, otherwise he will not be
charged and his utility is zero. The basic notion of truthfulness, strategyproofness
(SP), requires that no player can improve his utility by false bidding (assuming
all other bids are fixed); i.e., truth-telling is always a dominant strategy.

Especially in settings with a large number of players (e.g., in the Internet),
not only SP but also resistance against coordinated manipulation is desirable.
Several concepts of collusion-resistance are known in the literature: A mechanism
is called group-strategyproof (GSP) if any defection of a coalition that increases
some member’s utility inevitably decreases the utility of one of its other members.
A weaker notion of collusion resistance is weak group-strategyproofness (WGSP)
that is fulfilled if any defecting coalition has at least one member whose utility
does not strictly improve. Since it is unlikely that players have unlimited means
to communicate and make binding agreements with all of their competitors,
Serizawa [21] advocated relaxing GSP to effective pairwise strategy-proofness,
meaning that a mechanism needs only be resilient to pairs of defecting players—
and this only if their defection was stable (i.e., none of the two players could
betray his partner to further increase his utility). While similar in spirit to this
work, Serizawa’s findings do not apply to the cost-sharing scenario.

Besides the (coalitional) variants of strategyproofness, there are several other
concepts of non-manipulability. Satterthwaite and Sonnenschein [19] suggested a
property called (outcome) non-bossiness (ONB): If a single player changes his bid
in a way so that his own outcome does not change, then all other players should
also get the same outcome as before. In an unpublished paper, Shenker [22]
proved several results on the relationship between various forms of (coalitional)
strategyproofness, non-bossiness, and other technical properties. However, his
results do not apply in settings with quasi-linear utilities, as in the case of cost
sharing. This special domain was later studied by Mutuswami [14]. He introduced
a relaxation of ONB called weak utility non-bossiness (WUNB), meaning that
if a single player changes his bid so that his utility remains the same, then
no other player may become better off. Mutuswami [14] showed that SP and
ONB together imply WGSP; moreover, SP, ONB, and WUNB together imply



The Power of Small Coalitions in Cost Sharing 667

GSP. For scenarios when players are capable of side-payments, Schummer [20]
studied bribe-proof mechanisms, meaning that no player has an incentive to bribe
another player to misreport his type. For the cost-sharing scenario, his results
imply that notions of collusion-resistance that include monetary transfers are
too strong: They would rule out all but trivial mechanisms where each player’s
outcome is completely independent of the other players’ actions.

1.2 Our Contribution

We concentrate on the question whether reducing the maximum coalition size
that a mechanism should withstand allows for a richer set of possible mecha-
nisms. We say a mechanism is k-GSP (or k-WGSP, respectively) if it ensures
collusion-resistance up to coalition size k. In detail, our results are:

– While we give (arguably artificial) cost-sharing mechanisms that are k-GSP
but not (k + 1)-GSP, we obtain as our main result that already 2-GSP is
equivalent to GSP once we require mechanisms to be separable, i.e., cost
shares must only depend on the service allocation (and not directly on the
bids). We remark that no general technique for the design of truthful cost-
sharing mechanisms is known that violates separability (cf. Section 1.3). Our
result can be seen as a generalization of the main theorem in [14].

– In contrast, WGSP is not equivalent to 2-WGSP plus separability.
– Even without separability, 2-GSP always implies WGSP.

We regard the chief asset of our work to be threefold: First, our results indicate
that the substantial “jump” in collusion-resistance seems to occur from 1-GSP =
SP to 2-GSP. Second, GSP is often felt to be too strong an axiom with unrealistic
implications on players’ capabilities and behavior (cf. Section 3); now, the fact
that GSP is equivalent to merely 2-GSP plus separability gives some a posteriori
justification for GSP. Third and last, we firmly believe that our characterizations
will facilitate devising and understanding new GSP cost-sharing mechanisms.

1.3 Further Related Work

Arguably the most important result in mechanism design is the family of Vickrey-
Clark-Groves (VCG) mechanisms (see, e.g., [15]), that are SP and satisfy opti-
mal economic efficiency. Even more, under quite general assumptions, the VCG
mechanisms is the only family of mechanisms with these properties [9]. Unfortu-
nately, VCG mechanisms are not resistant against collusion and fail to provide
any revenue guarantees. Hence, exact budget balance and optimal efficiency can
in general not be simultaneously achieved by any SP mechanism. In fact, not
even bi-criteria approximation guarantees are possible [2], unless economic effi-
ciency is measured in terms of social cost (service cost plus excluded valuations)
and not the traditional surplus (included valuations minus service cost) [18].

Essentially, only one general technique is known for the design of GSP mech-
anisms, due to Moulin [12]. Its main ingredient are cross-monotonic cost shares
ξi(S) that never decrease when the set of served players S gets larger. Then, a
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Moulin mechanism serves the maximal set of players who can afford their corre-
sponding price—due to cross-monotonicity, a unique maximal set always exists.
The main advantage of Moulin’s technique is that it reduces the design of GSP
mechanism to finding cross-monotonic cost-sharing methods. However, there
are several natural cost-sharing problems for which any Moulin mechanisms in-
evitably suffers poor budget-balance and efficiency [10]. In [4], Bleischwitz et al.
give a novel family of GSP mechanisms with good budget balance, yet only for
the special case of symmetric costs and at the price of sacrificing efficiency.

A general technique for the design of mechanisms satisfying only the less
demanding WGSP is due to Mehta et al. [11]. Their mechanisms are called
acyclic and are strictly more general than Moulin mechanisms. Bleischwitz et al.
[3] devise a special family of acyclic mechanisms that for the broad class of
subadditive cost-sharing problems provide exact budget-balance and optimal
(cf. [8]) asymptotic efficiency. For some classes of problems, these mechanisms
are computable in polynomial time; yet, this does not necessarily hold in general.

To the best of our knowledge, no other general techniques have been proposed
in the literature1. Besides general design techniques, most other work on cost
sharing has focused on finding “good” cross-monotonic cost-sharing methods
(see, e.g., [18, 10] an the references therein), obtaining characterization results
[12, 6, 7, 17, 4, 10], and finding “good” acyclic mechanisms [11, 3, 5].

2 The Model

Notation. For n,m ∈ N0, let {n . . .m} := {n, n+1, . . . ,m} and [n] := {1 . . . n}.
Given vector v ∈ Rn, we denote its components by v = (v1, . . . , vn). Two vectors
v,v′ are called K-variants if vi = v′i for all i /∈ K. In this case, we write
v′ = (v−K ,v

′
K). If K = {i}, then v and v′ are i-variants and v′ = (v−i, v

′
i).

A cost-sharing problem is specified by a cost function C : {0, 1}n → R≥0 that
associates all possible service allocations to their incurred costs. A service al-
location q ∈ {0, 1}n together with a distribution of costs x ∈ Rn is called an
outcome. We denote player i’s valuation for being served by vi ∈ R. Utilities are
quasi-linear, i.e., player i’s utility for outcome (q,x) is vi · qi − xi.

Definition 1. A cost-sharing mechanism M = (q, x) is a pair of functions q :
Rn → {0, 1}n and x : Rn → Rn that associates any combination of announced
bids b to an outcome (q(b), x(b)).

Cost-sharing mechanisms are direct-revelation mechanisms, since the set of pos-
sible bids is equal to the set of possible valuations (types). Given M = (q, x), we
writeMi(b) := (qi(b), xi(b)). We denote player i’s induced utility by ui(b | vi) :=
vi·qi(b)−xi(b). When there is no confusion about the true valuation vi, we simply
write ui(b) instead of ui(b | vi). In this work, we only discuss mechanisms that
fulfill three standard axiomatic properties: First, No Positive Transfers (NPT)
1 There are other families of GSP mechanisms [10, 16]; however, they are considered

implausible here as they force players to participate. See Section 2.
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requires that players never get paid. That is, xi(b) ≥ 0. Second, Voluntary Par-
ticipation (VP) means that when served, players never pay more than they bid;
otherwise, they are charged nothing. That is, if qi(b) = 1 then xi(b) ≤ bi, else
xi(b) = 0. Third and last, Consumer Sovereignty (CS) means that each player
can bid in a way so that he is served, regardless of the other players’ bids. That
is, there is a bid b∞ ∈ R≥0 such that if bi = b∞ then qi(b) = 1.

VP and NPT imply that players may opt to not participate (by submitting
a negative bid). This property strengthens the collusion-resistance requirements
and rules out otherwise implausible and undesirable mechanisms (see [10]).

Definition 2. A mechanism M is strategyproof (SP) if for all true valuations
v ∈ Rn and all their i-variants b it holds that ui(b) ≤ ui(v).

Definition 3. Let M be a cost-sharing mechanism. If for all coalitions K ⊆ [n],
all true valuations v ∈ Rn, and all their K-variants b it holds that

1. ui(b) ≤ ui(v) for at least one i ∈ K, then M is weakly group-strategyproof
(WGSP);

2. ui(b) = ui(v) for all i ∈ K or ui(b) < ui(v) for at least one i ∈ K, then M
is group-strategyproof (GSP).

Definition 4 ([19]). A mechanism M is (outcome) non-bossy (ONB) if for all
i-variants b, b′ ∈ Rn it holds that Mi(b) �= Mi(b′) or M−i(b) = M−i(b′).

Definition 5 ([13]). A mechanism M is weakly utility non-bossy (WUNB) if
for all true valuations v ∈ Rn and all their i-variants b it holds that ui(v) �= ui(b)
or u−i(v) ≥ u−i(b).

We pay special attention to mechanisms with cost shares that depend only on
the service allocation and not directly on the bids (note Proposition 3).

Definition 6. A cost-sharing method is a function ξ : {0, 1}n → Rn
≥0 that

associates each service allocation to a vector of cost shares. We say that a cost-
sharing mechanism M = (q, x) is separable if there exists a cost-sharing method
ξ so that x = ξ ◦ q, i.e., for all b ∈ Rn

≥0 : x(b) = ξ(q(b)).

For completeness (despite not the focus of this work), we briefly formalize the
two optimization goals budget balance and economic efficiency. Typically, cost-
sharing problems are specified implicitly by combinatorial optimization prob-
lems, i.e., C(q) is the minimum-cost value of an optimal solution to the
instance that corresponds to q. Due to the computational complexity, usually
only an approximate solution with cost C′(q) can be computed. Still, the revenue
of the mechanism should be reasonably bounded, i.e., any computed outcome
(q,x) should satisfy C′(q) ≤

∑n
i=1 xi ≤ β · C(q) for some constant β ≥ 1.

Moreover, as a measure for economic efficiency, the incurred cost and the re-
jected players’ valuations should be traded off as good as possible. That is,
C′(q)+

∑n
i=1(1− qi)bi ≤ γ ·minp∈{0,1}n

{
C(p) +

∑n
i=1(1− pi)bi

}
for some con-

stant γ ≥ 1, where bi := max{bi, 0}.



670 F. Schoppmann

3 Resistance against Coalitions of Bounded Size

MoneyNone

None
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Fig. 1. Dimensions of coalitions’ capabilities

Demand for some level of collusion-
resistance implies assumptions on
players’ behavior and their coali-
tion-forming capabilities: For in-
stance, if (a) side-payments are
unlikely but (b) players yet have
virtually unlimited means to com-
municate and (c) one expects
them to help others even for no
personalreward (e.g., by voluntary
non-participation in case of indifference), then GSP is an appropriate axiom.
Similarly, when players have no means to communicate at all, then simple SP is
probably sufficient. One can also think of collusion-resistance at the other end of
the spectrum: We use the term “ultimate group-strategyproofness” (UGSP) here
if a mechanism even prevents that coalitions can improve their total utility by
manipulation—thus, UGSP is stronger than bribe-proofness [20]. To conclude,
WGSP, GSP, and UGSP imply different levels of transfers that coalitions might
accomplish in order to be successful. Figure 1 provides a schematic illustration.

Since it is unlikely that all players can efficiently communicate with each other
and make binding agreements on collective deceit, this gives rise to the following
natural question: Can we increase the degree of freedom for designing cost-
sharing mechanisms by relaxing GSP with respect to coalition sizes? Surprisingly,
we show in the rest of this paper that the answer is essentially “no”. (Due to space
limitations, we have to omit all proofs. See the full version of this paper.)

Definition 7. A mechanism M is k-GSP (or k-WGSP, respectively) if it satis-
fies the conditions of Definition 3 for all coalitions K of size up to k.

Note that 2-GSP is equal to pairwise SP from [21] and immediately implies
2-WGSP, SP, and WUNB.

3.1 Some Preliminary Implications by SP and WUNB

We start with some observations needed throughout the paper. Note that the
following simple proposition is well-known and a standard fact (see, e.g., [6]).

Proposition 1. A cost-sharing mechanism M = (q, x) is SP if and only if the
following holds: For all i ∈ [n] and all b−i ∈ R[n]\i, there is a threshold bid
τi(b−i) so that if bi > τi(b−i) then qi(b) = 1, if bi < τi(b−i) then qi(b) = 0, and
if qi(b) = 1 then xi(b) = τi(b−i).

Lemma 1. Let M = (q, x) be a SP cost-sharing mechanism, v ∈ Rn contain
the true valuations, and b be an i-variant. Then:

1. ui(b) < ui(v) and qi(v) = 1 =⇒ qi(b) = 0, ui(b) = 0 < ui(v), and bi ≤
τi(v−i) = xi(v) < vi
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2. ui(b) < ui(v) and qi(v) = 0 =⇒ qi(b) = 1, ui(b) < 0 = ui(v), and bi ≥
τi(v−i) = xi(b) > vi

Lemma 2. LetM be a WUNB cost-sharing mechanism, v ∈ Rn contain the true
valuations, and b be an i-variant. Then: Mi(b) = Mi(v) =⇒ u−i(b) = u−i(v).

Lemma 3. LetM = (q, x) be a SP and WUNB cost-sharing mechanism, v ∈ Rn

contain the true valuations, and b be an i-variant. Moreover, let j ∈ [n]\i. Then:

1. uj(b) > uj(v) =⇒ ui(b) < ui(v)
2. uj(b) < uj(v) and qi(v) = 1 =⇒ qi(b) = 0 and bi < τi(v−i) = xi(v) ≤ vi

3. uj(b) < uj(v) and qi(v) = 0 =⇒ qi(b) = 1 and bi > τi(v−i) = xi(b) ≥ vi

4. u−i(b) ≤ u−i(v) or u−i(b) ≥ u−i(v)
5. vi = τi(v−i) =⇒ uj(b) ≤ uj(v)
6. uj(b) > uj(v) =⇒ τj(b−j) < τj(v−j)

3.2 k-GSP Is Strictly Weaker Than GSP

Before establishing the link between 2-GSP and GSP in the next sections, we
give an example showing that k-GSP is not equivalent to GSP when k < n.
Algorithm 1 (3-player mechanism that is 2-GSP but not GSP).
Input: bid vector b ∈ R3 Output: allocation q∈{0, 1}3; cost shares x∈R3

≥0

1: if b = (1, 1, 1) then q := (1, 1, 1); x := (1, 1, 1)
2: else
3: q := (0, 0, 0); x := (0, 0, 0); ξ := (1, 1, 1)
4: if b1 > 1 and b2 > 1 then ξ3 := 2
5: for all i ∈ [3] with bi > ξi do qi := 1; xi := ξi

It is easy to see that Algorithm 1 defines a 2-GSP mechanism, as the only player
who could ever improve is player 3. In this case, however, v1 > 1 and v2 > 1, so in
order to help player 3, both players 1 and 2 have to deviate. Clearly, Algorithm 1
can be generalized for n players so that it is (n− 1)-GSP but not n-GSP.

3.3 Upper Continuity and 2-GSP Together Imply GSP

We first add a continuity condition (see [10]) to our assumptions that determines
how to deal with indifferent players (valuation = payment). This condition is
fulfilled by almost all general cost-sharing techniques ([4] is an exception).

Definition 8. A cost-sharing mechanism M = (q, x) is upper continuous if for
all players i and all bid vectors b the following holds: If qi(b−i, x) = 1 for all
x > bi then also qi(b) = 1.

Lemma 4. Let M be upper continuous and 2-GSP. Then M is also ONB.

Proposition 2 ([14]). Let M be a SP, ONB, and WUNB. Then, M is GSP.

Corollary 1. Let M be upper continuous and 2-GSP. Then, it is GSP.

We remark that all results of this section would remain valid if we changed the
model to only allow for non-negative bids and valuations.
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3.4 Separability and 2-GSP Together Imply GSP

In this section, we generalize Corollary 1 to hold for arbitrary separable mecha-
nisms. Specifically, we will obtain as our main result that a 2-GSP cost-sharing
mechanism is GSP if and only if it is separable. We start with an auxiliary
lemma, stating that every 2-GSP cost-sharing mechanism is at least resistant
against coalitions where deviators either do not participate (submit a negative
bid) or bid very much.

Lemma 5. Let M = (q, x) be a 2-GSP cost-sharing mechanism, K ⊆ [n] be
a coalition (of arbitrary size), v ∈ Rn contain the true valuations, and b be a
K-variant so that for all i ∈ K : bi ∈ {−1, b∞}. Then, either ui(b) = ui(v) for
all i ∈ K or ui(b) < ui(v) for at least one i ∈ K.

Theorem 1. Let M be separable and 2-GSP. Then M is GSP.

Proposition 3 ([12]). Let M be GSP. Then, M is separable.

Corollary 2. A mechanism M is GSP if and only if is 2-GSP and separable.

3.5 Separability and 2-WGSP Do Not Imply WGSP

Does a statement similar to Theorem 1 also hold for WGSP? The cost-sharing
mechanism M = (q, x) defined by Algorithm 2 is a counterexample.

Algorithm 2 (Separable mechanism that is 2-WGSP but not WGSP).
Input: bid vector b ∈ R6 Output: allocation q∈{0, 1}6; cost shares x∈R6

≥0

1: q := (0, . . . , 0), x := (0, . . . , 0)
2: for all i ∈ {4 . . . 6} with bi > 1 or (bi = 1 and b1+(i−3 mod 3) ≥ 2) do
3: qi := 1, xi := 1
4: for all i ∈ [3] with bi ≥ 1 + qi+3 do qi := 1, xi := 1 + qi+3

The unique cost-sharing method ξ of mechanism M is given by

ξi(q) :=

⎧⎪⎨⎪⎩
0 if qi = 0
1 otherwise, if i ∈ {4 . . . 6} or (i ∈ [3] and qi+3 = 0)
2 otherwise, if i ∈ [3] and qi+3 = 1

Since for each player i, there is a threshold bid that does not depend on i’s own
bid and that is equal to i’s cost share, Algorithm 2 is SP due to Proposition 1.
Moreover, the only players who could ever improve are [3]. Now, no subset S ⊂ [3]
of size |S| = 2 can jointly improve because there is always a player i ∈ S
whose outcome does not depend on bS . Hence, M is 2-WGSP. However, it is
not 3-WGSP: Let v = (2, 2, 2, 1, 1, 1) contain the true valuations and consider
b = (1, 1, 1, 1, 1, 1). Then, q(v) = (1, 1, 1, 1, 1, 1) and q(b) = (1, 1, 1, 0, 0, 0), so [3]
is a successful coalition.
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Fig. 2. Overview of the various non-manipulability properties

3.6 2-GSP Implies WGSP

Theorem 2. Let M be a 2-GSP. Then, M is also WGSP.

The previous result is a case where a stronger notion of collusion-resistance, yet
only for players with limited communication abilities, implies a weaker collusion-
resistance against coalitions of arbitrary size.

3.7 Collusion-Resistance and Non-bossiness Properties

Lemma 6. Let M be a SP and ONB. Then M is separable.

Consequently, Theorem 1 can be seen as a generalization of Proposition 2 be-
cause its requirements (SP, ONB, and WUNB) imply 2-GSP and separability in a
relatively straightforward manner. The following example shows that Theorem 1
is strictly more general because ONB is not a necessary condition for GSP: Define
mechanism M = (q, x) by

q(b) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, 1) if (b1 ≥ 1 and b2 > 1) or b = (1, 1)
(1, 0) if (b1 ≥ 1 and b2 ≤ 1) and b �= (1, 1)
(0, 1) if b1 < 1 and b2 > 1
(0, 0) if b1 < 1 and b2 ≤ 1

and x(b) := q(b) .

Obviously, neither of the two players could ever improve. However, the mecha-
nism is not ONB because M1(1, 1) = M1(2, 1) but M2(1, 1) �= M2(2, 1).

We conclude by stating another result in [14], which completes our overview
of the various notions of non-manipulability and many of their implications (see
Figure 2).

Proposition 4 ([14]). Let M be SP and ONB. Then M is also WGSP.
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Abstract. We introduce social context games. A social context game
is defined by an underlying game in strategic form, and a social con-
text consisting of an undirected graph of neighborhood among players
and aggregation functions. The players and strategies in a social con-
text game are as in the underlying game, while the players’ utilities in a
social context game are computed from their payoffs in the underlying
game based on the graph of neighborhood and the aggregation functions.
Examples of social context games are ranking games and coalitional con-
gestion games. In this paper we consider resource selection games as the
underlying games, and four basic social contexts. An important property
of resource selection games is the existence of pure strategy equilibrium.
We study the existence of pure strategy Nash equilibrium in the cor-
responding social context games. We also show that the social context
games possessing pure strategy Nash equilibria are not potential games,
and therefore are distinguished from congestion games.

1 Introduction

Game theory has become a standard tool for the analysis of social interactions of
self-motivated agents.1 Naturally, social interactions may be complex and refer
to issues such as competition, coordination, and collaboration among agents.
The attitude of agents towards other agents is typically captured by their utility
functions. However, it may be of interest to separate the payoff the agent receives,
by means of e.g. delay, cost, etc., from his social attitude; this will allow to
study the possible effects that various social contexts have. Consider for example
several service providers who act on behalf of a set of customers. Each service
provider suffers a cost, caused by the need for sharing resources with other
service providers. This type of situations are typically modeled as a form of
congestion game. Indeed, such congestion games have been a central topic of

� The work of the second author is supported by DFG grant Kr 2332/1-3 within Emmy
Noether program.

1 We use the terms agents and players interchangeably.
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study in the interplay between computer science and game theory. However,
while these games capture the underlying situation, they implicitly assume a
very particular social context, where the actual goals of each service provider is
to minimize its own cost. In some situations it may be the case that the aim of
each agent is to have its payoff ranked as high as possible comparing to other
agents’ payoffs, as studied in [2]. Another example is when each agent cares
about the sum (or average) of payoffs of a set of agents in a coalition it belongs
to, as studied in coalitional congestion games [4,5]. In our terminology the above
are examples of social contexts. Our aim is to study the effects of social contexts
on basic properties of fundamental types of underlying games.

Consider a resource selection game. In a resource selection game we have a set
of n agents, and a set of m resources. Each agent chooses a resource from among
the set of resources, and his cost is a non-decreasing function of the number of
agents who have chosen his selected resource. Needless to say, resource selection
games are central to work in various communities, such as operations research,
computer science, game theory and economics. A resource selection game is
a special type of congestion games [8]. A fundamental property of congestion
games is that they possess a pure strategy equilibrium. This result is implied by
the fact that congestion games possess a potential function. Indeed, the classes
of potential games and congestion games coincide [6]. Given the importance of
resource selection games, and the desire to consider various social contexts, we
will consider the existence of pure strategy Nash equilibrium when the resource
selection games are embodied in the following basic social contexts:

1. Rank competition: the agents are partitioned into cliques, where at each
clique the agents compete on the their relative payoff. This significantly
extends upon ranking games, where the whole graph is a single clique.

2. Best-Member Collaboration: there is a given social network, and each agent
cares about the highest payoff obtained by him or by one of his neighbors.
This is in the spirit of work in congestion games where an agent can choose
several resources and cares about the one with the best performance [7];
here the agent cares that either himself or one of his friends will behave (e.g.
provide a service) as good as possible.

3. Min-Max Collaboration: there is a given social network, and each agent cares
that the worst case payoff obtained by him or by one of his friends will be
maximized. This requirement is in the spirit of minmax fairness2; however,
it is stated as a social attitude rather than as a system requirement.

4. Surplus Collaboration: there is a social network, and each agent wishes to
maximize the average payoff of himself and his friends. This is in the spirit of
coalitional congestion games [4,5]; however, here we allow arbitrary graphs
rather than a partition of the nodes into cliques.

In the following sections we deal with the social context games generated by
resource selection games and the above social contexts. We show:

2 Our particular treatment extends upon [3], by allowing arbitrary networks.
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– When the resources are identical then any Rank Competition resource selec-
tion game possesses a pure strategy equilibrium. This is no longer true when
the resources are non-identical.

– Any Best-Member Collaboration game possesses a pure strategy equilib-
rium whenever the size of the largest independent dominating set of the
corresponding graph is smaller than n

2 ; this condition is necessary.
– Any pure strategy Nash equilibrium is an equilibrium also in the correspond-

ing Min-Max collaboration game; the converse is not true.
– Pure strategy equilibrium does not always exist in surplus collaboration re-

source selection games, even with identical resources and when the graph
is a tree. We show a subset of the resource selection games where a pure
strategy equilibrium exists.

– We show that all social contexts games above do not possess a potential
function, and therefore they are not isomorphic to congestion games.

2 Basic Definitions

A game in strategic form (for short, a game) is a tuple H = (N, (Ai)i∈N , (ci)i∈N )
where N = {1, 2, . . . , n} is a finite set of players (agents), for every player i ∈ N ,
Ai is the action set of player i, and ci : ×i∈NAi → R is player i’s cost function.
We denote by A = ×i∈NAi the set of action profiles. For every non-empty subset
of the players S ⊆ N and every vector b = (b1, . . . , bn) we denote by bS the
vector (bi)i∈S where b−i = bN\{i}.3 An action profile a ∈ A is a Nash equilibrium
(or just an equilibrium4) if for every player i, ci(ai, a−i) ≤ ci(bi, a−i) for every
bi ∈ Ai.

Given an underlying game H , a social context game is generated by consid-
ering a neighborhood graph over the players, and aggregation functions that
determine how the game is affected by that graph. Formally, a social context is
a tuple F = (G, (fi)i∈N ), where G = (N,E) is an undirected graph, and for
every i, fi : G × RN → R is an aggregation function. The aggregation function
maps a payoff profile of the underlying game into a utility profile, as a function
of the graph structure. The aggregation function captures the agent’s social atti-
tude. Given an underlying game H = (N, (Ai)i∈N , (ci)i∈N ), and a social context
F = (G, (fi)i∈N ), a social context game S = S(H,F ) = (N, (Ai)i∈N , (ti)i∈N ) is
a game in strategic form, where N is the set of players, Ai is the set of actions
available to player i, and ti : A → R satisfies that ti(a) = fi(c1(a), . . . , cn(a))
for every a ∈ A.

To distinguish between the costs in the games H and S we will refer from
now on to the costs in H as immediate costs. Notice that the set of players and
the set of actions in the social context game are as in H . The following notation
will be useful for us. Denote by v(i) the set of neighbors of i in the graph G and
let g(i) = {i} ∪ v(i) be the group of player i.

3 Vectors/profiles are denoted in boldface, and their elements in italic.
4 We do not consider mixed strategies in this paper.
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Throughout this paper we study social context games with the following ag-
gregation functions:

1. Best-Member Collaboration: a player’s cost is the minimal immediate cost
in her group. Formally, fi(G, c = (c1, . . . , cn)) = minj∈g(i) cj .

2. MinMax Collaboration: a player’s cost is the maximal immediate cost in her
group. Formally, fi(G, c = (c1, . . . , cn)) = maxj∈g(i) cj .

3. Surplus Collaboration: a player’s cost is the average of the immediate costs
of her group. Formally, fi(G, c = (c1, . . . , cn)) = 1

|g(i)|
∑

j∈g(i) cj .
4. Competitive Ranking: a player cares about his ranking among the players

within her group. We assume that each group is a clique of nodes, and
the graph is partitioned into cliques. We need a few notations. Let c =
(c1, c2, . . . , cn) be a tuple of immediate costs. Let li(c) denote the number of
players in g(i) that have a lower immediate cost than i, and let mi(c) denote
the number of players in g(i) with identical immediate cost as i in c. For
every player i, fi(G, c) = li(c) + mi(c)

2 .
Notice that the aggregation function simply counts the number of players

who obtain lower immediate costs assuming that ties are broken randomly.
This is a standard practice in work on ranking systems [1].

For convenience, we will overload notation, and write fi(G, a) to refer to
fi(G, (c1(a), . . . , cn(a))).

In this paper we focus on social context games in which the underlying game
H is a resource selection game. In a resource selection game there is a set of
resources R = {1, . . . ,m} and for every resource k ∈ R, wk : {1, . . . , n} → R+
is resource k’s cost function. Every player i’s action set is Ai = R. Finally, the
cost of a player in the game who chooses resource k is wk(l), where l is the
number of players that choose resource k. Formally, ci(a) = wai(σai (a)) where
σk(a) = |{j ∈ N : aj = k}| denotes the number of players that choose resource
k in a. We assume the resource cost functions are non-decreasing.

Resource selection games belong to a larger class of games called congestion
games. It is well-known [8] that every congestion game possesses a (pure strategy)
Nash equilibrium.

3 The Competitive Ranking Game

In this section we study social context games in which the aggregation function
is the competitive ranking function. We call such a game a competitive ranking
game. We will assume that the graph is a partition into cliques. Hence, every
player cares about her ranking (with respect to immediate costs) in her clique.
We assume there is some order over the cliques, t = 1, 2, . . . , T , where T ≥ 1.
Notice that the case T = 1 is the special case of ranking games [2].

Theorem 1. Let S = (H,F ) be a competitive ranking game in which H is a
resource selection game with identical resources, and G is a partition into cliques.
Then, there exists a Nash equilibrium in S.
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Before the proof we need some preparations.

Definition 1. Let a be an action profile. Let i ∈ N . Resource j > (<)ai is a
right (left) improvement for player i in a if fi(G, a) > (<)fi(G, (j,a−i)). We
say that player i has a right (left) improvement in a if there exist a resource j
which is a right (left) improvement for i in a.

Resource j is a minimal left improvement for i in a, if j is a left improvement
for i in a and there is no resource j′ < j s.t. j′ is left improvement for i in a.

We say that there is a right (left) improvement in a if there exist a player i
which has a right (left) improvement in a.

Definition 2. An action profile a is ordered if for every pair of players i, i′ ∈ N
such that |g(i)| < |g(i′)| we have that ai ≤ ai′ .

As we deal with identical resources we let w() = wj() for every resource j. Let
v(i,a, j) denote the number of neighbors of player i that choose resource j in
the action profile a; that is, v(i,a, j) = |{i′ ∈ v(i) : ai′ = j}|.

The following Lemma is the key to the proof of Theorem 1.

Lemma 1. Let S be a social context game as in Theorem 1. Let k = � n
m�. Let

a be an ordered action profile such that σj(a) ∈ {k, k + 1} for every resource j.

1. fi(G, (j,a−i)) < fi(G, a) only if v(i,a, j) > v(i,a, ai), σai(a) = k + 1 and
σj(a) = k.

2. Suppose there is no right improvement in a. If j′ is a minimal left improve-
ment for some player i, then there is no right improvement in (j′, a−i).

The proof the above Lemma is omitted due to lack of space.

Proof of Theorem 1: Our proof is by construction. Let k = � n
m�. Note that

there exist an ordered Nash equilibrium inH in which on every resource there are
either k or k+1 players, and let a be such an equilibrium. Since the resources are
identical every permutation of the players in a is an equilibrium in H . Rename
the resources such that if j < j′ then σj(a) ≤ σj′ (a).

If σj(a) = k for every j then by part 1 of Lemma 1 a is an equilibrium in S and
we are done. Observe by part 1 of Lemma 1 that there is no right improvement
in a. If there is no left improvement in a then a is an equilibrium in S. Suppose
there exist a player i that has left improvement in a. Let j be a minimal left
improvement for i in a and let a1 = (j,a−i). By Lemma 1 part 2 there is no
right improvement in a1. If there is no left improvement in a1 then a1 is an
equilibrium in S. Assume otherwise. Note that a1 is ordered. Construct a2 from
a1 in a similar fashion as a1 was constructed from a. After each iteration s there
is no right improvement in as and as is ordered. Therefore since the number of
players and the number of resources are finite this process is finite and we will
eventually end with an equilibrium in S. �
Example 1 shows a game where Theorem 1 is not true when H does not have
identical resources. The argument showing non-existence of equilibria is omitted.
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Example 1. Let there be a single clique with 5 players. The underlying resource
selection game has 3 resources with the following resource cost functions: w1 ≡
(0, 8, 10, 100, 100),w2 ≡ (7, 100, 100, 100, 100), and w3 ≡ (0, 9, 100, 100, 100). �

4 The Best-Member Collaboration Game

In this section we study social context games with the best-member collaboration
aggregation functions. We call such a game a best-member collaboration game.
Recall that in such games every player wishes to minimize the minimal immediate
cost in its group. Before we state our main result we need the following definition:

Definition 3. Let G = (V,E) be an undirected graph. A subset of nodes Q ⊆ V
is called a dominating independent set if every node v ∈ V \ Q has an edge
connecting to a node in Q and no two nodes in Q are connected by a single edge.
The cardinality of the minimum dominating independent set is denoted by i(G).

Theorem 2. Let S = (H,F ) be a best-member collaboration game in which the
underlying game H is a resource selection game. If i(G) < n

2 then there exists a
Nash equilibrium in S.

Proof. Let T ⊆ N be a dominating independent set in G such that |T | = i(G).
Let z = |N \ T |. By our assumption z > n

2 . Let j′ ∈ argmaxj wj(z − 1). Let
H(j′, T ) be the resource selection game with all resources inH excluding resource
j′ and the set of players is T . Let b be an equilibrium in H(j′, T ). Let a be the
action profile in which all players in T choose the same resource as they choose
in b and for every i ∈ N \ T , ai = j′. We claim that a is an equilibrium in
S. Let i be a player such that ai = j′. Since z > n

2 , for every resource j �= j′,
σj(a) < z. Note that since T is a dominating independent set there exist a
player i′ ∈ g(i) such that ai′ �= j′. Since aT is an equilibrium in H(j′, T ) then
ci((j,a−i)) > ci′(a) for every resource j �= j′. In addition by the definition of
j′, wj′ (σj′ ((j,a−i)) > ci′(a). Therefore i is not better off by deviating. Suppose
ai = j where j �= j′. Since i has no neighbor in T and aT is an equilibrium in
H(j′, T ) deviating to a resource j′′ �= j′ is not better off for i. Deviating to j′ is
also not better off for i by the definition of j′ and since z > σj(a). �

We next provide an example of a best-member collaboration game for which
i(G) = n

2 , which does not posses an equilibrium, even if graph G is connected.
This example implies that our theorem is tight.

Example 2. Consider the following best-member collaboration game. The set of
players is {1, 2, 3, 4, 5, 6}, H has two identical resources with strictly increasing
cost functions, and G has a 3-clique on players 1, 2, 3, and each of these players
i ∈ {1, 2, 3} has an additional edge to player i+3; thus the degree of each vertex
i ∈ {1, 2, 3} is 3 and the degree of each vertex 4, 5, 6 is 1. Clearly, i(G) = 3. �
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5 The MinMax Collaboration Game

In this section we study social context games in which the aggregation function
is the minmax collaboration. We call such game a minmax collaboration game.
Hence, every player wishes to minimize the maximal immediate cost in its group.
A necessary condition for a deviation by a single player i to be beneficial is that
player i has the maximal immediate cost in g(i) before the deviation and strictly
reduces its own immediate cost after deviating. Therefore, we get:

Theorem 3. Let S = (H,F ) be a minmax collaboration game in which H is a
resource selection game. Then, NE(H) ⊆ NE(S).

However, there may exist a ∈ NE(S) such that a /∈ NE(H). To see this consider
three identical resources with strictly increasing cost functions, and a graph
which consists of two cliques both of size 4. Let a be the action profile in which
two players from each clique are on resource 1 and all other players are on
resource 2. W.l.o.g. let i be a player on resource. Note that deviating to resource
3 is not beneficial to i since there are still two players in g(i) on resource 2.

6 The Surplus Collaboration Game

In this section we study social context games in which the aggregation function
is the surplus collaboration. We call such games surplus collaboration games. In
such games every player i wishes to minimize the average immediate costs in
g(i). We begin with a couple of negative results.

Proposition 1. There exist a social collaboration game, in which the underlying
game is a resource selection game, that does not possess a Nash equilibrium.

Proof. We define a social context game with 4 players {1, 2, 3, 4} and 2 identi-
cal resources {1, 2}. Each resource has the same cost function (1, 5, 6, 6). The
graph G has a 3-clique on the vertices 1, 2, 3 and vertex 4 is an isolated vertex
(singleton). We will show now that any assignment of the four players to the
two resources does not define a Nash equilibrium of this game. W.l.o.g. player
4 is assigned to resource 2. The reader can verify that for each partition of the
players over the resources the resulting profile is not in equilibrium. �

The example in the proof of Proposition 1 is given for identical resources, but
uses a disconnected graph. The following example shows that there may not be
a NE even when the graph is connected and in particular is a tree. We omit the
proof that the corresponding social context game does not possess a NE.

Example 3. Let SCG be a social context game with the following structure. Let
G be an undirected tree with one root and 6 children, and let H have 2 identical
resources with the cost function (1, 1, 2.9, 5, 5, 5, 5). �

Notice that while work on coalitional congestion games has shown the non-
existence of pure strategy equilibria (when a coalition may be of size greater than
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two), in our study this is shown for the case where only unilateral deviations
(and not deviations by a whole coalition) are considered. In the next theorem we
provide a family of resource selection games and social contexts, which posses a
Nash equilibrium in the surplus collaboration social context.

Theorem 4. Let H be a resource selection game with m identical resources and
let G be a tree with maximal degree m−2. Then, there exists a Nash equilibrium
in the corresponding surplus collaboration social context game SCG.

7 (The Lack of) Potential Functions

It is well known that every potential game is a congestion game and vice-versa.
Although the underlying game in each of the social context games we have
studied is a potential game we show in this section that none of the games in
our positive results is a potential game. We will use the following lemma:

Lemma 2 (Monderer-Shapley’96). Let H = (N, (Ai)i∈N , (ci)i∈N ) be a game
in strategic form. H is a potential game if and only if for every pair of players
i, j ∈ N , for every a ∈ AN\{i,j} and every ai, bi ∈ Ai and aj, bj ∈ Aj

(ci(bi, aj ,a)− ci(ai, aj , a)) + (cj(bi, bj, a)− cj(bi, aj , a))+

(ci(ai, bj,a)− ci(bi, bj ,a)) + (cj(ai, aj , a)− cj(ai, bj, a)) = 0.

Theorem 5. Resource selection games do not possess a potential function in
the competitive ranking, best member collaboration, and minmax collaboration
social contexts.

Proof. Due to space limitations we only provide the argument in case of a com-
petitive ranking game. Let S = (H,F ) be the following competitive ranking
game. The set of players is {1, 2, 3}. H is resource selection selection game
with 2 identical resources with resource cost functions w(x) = x. The graph
G is partitioned into two cliques; players 1 and 2 form a clique and player 3
is a singleton. The following cycle of action profiles in which only players 2
and 3 change their actions will provides that there is no potential by Lemma 2:
(1, 1, 2),(1, 2, 2), (1, 2, 1) and (1, 1, 1). Note that f2(G, (1, 1, 2))−f2(G, (1, 2, 2))+
f3(G, (1, 2, 2))−f3(G, (1, 2, 1))+f2(G, (1, 2, 1))−f2(G, (1, 1, 1))+f3(G, (1, 1, 1))−
f3(G, (1, 1, 2)) = 1/2− 0 + 0− 0 + 1− 1/2 + 0− 0 = 1 �= 0. �
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Abstract. We consider approximating the minmax value of a multi-
player game in strategic form. Tightening recent bounds by Borgs et al.,
we observe that approximating the value with a precision of ε log n digits
(for any constant ε > 0) is NP-hard, where n is the size of the game. On
the other hand, approximating the value with a precision of c log log n
digits (for any constant c ≥ 1) can be done in quasi-polynomial time.
We consider the parameterized complexity of the problem, with the pa-
rameter being the number of pure strategies k of the player for which
the minmax value is computed. We show that if there are three play-
ers, k = 2 and there are only two possible rational payoffs, the minmax
value is a rational number and can be computed exactly in linear time.
In the general case, we show that the value can be approximated with
any polynomial number of digits of accuracy in time nO(k). On the other
hand, we show that minmax value approximation is W[1]-hard and hence
not likely to be fixed parameter tractable. Concretely, we show that if
k-Clique requires time nΩ(k) then so does minmax value computation.

1 Introduction

AgameG in strategic formbetween lplayers is givenbya setofplayers{1, . . . , l}and
for each player j a finite strategy space Sj and a utility function uj : S1 × S2 × · · · ×
Sl → R. In thispaper, only theutility function forPlayer1 is relevant.Whenthe size
ofSj isnj , we shall refer to the gameas ann1×n2× · · ·×nl game. Theminmax (or
threat)valueofG forPlayer1isgivenbyminσ−1∈∆(l−1) maxa∈S1 E[u1(a, σ−1)]where
∆(l−1) is the set of mixed, but uncorrelated, strategy profiles for players 2, . . . , l. A
profile σ−1 achieving the minimum in the expression is called an optimal minmax
profile or an optimal threat. Themaxmin (or security) value ofG for Player 1 is given
by maxσ1∈∆ mina2,...,al

E[u1(σ1, a2, . . . , al)] where∆ is the set of mixed strategies
for Player 1.

The minmax value of a finite two-player game is a fundamental notion of
game theory. Its mathematical and computational properties are extremely well-
studied and well-understood, being intimately tied to the theory of linear pro-
gramming. In particular, the duality theorem of linear programs implies that the
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minmax value equals the maxmin value. Also, the computation of the minmax
value of a two-player game in strategic form is essentially equivalent to solv-
ing linear programs and can therefore be done in polynomial time (although a
strongly polynomial time algorithm remains an open problem).

Minmax values of multi-player games are much less well-studied, although
these values are arguably also of fundamental interest to game theory. Most
importantly, the minmax value plays a pivotal role in the statement and proof
of the so-called folk theorems that characterize the Nash equilibria of infinitely
repeated games. Additionally, the minmax value is the equilibrium payoff of the
so-called team-maxmin equilibria studied by von Stengel and Koller [15]. For a
multi-player game, the maxmin value may be strictly smaller than the minmax
value. Computation of the maxmin value easily reduces to the two-player case
and can therefore be done efficiently using linear programming. Rather surpris-
ingly, computation of the minmax value of a multi-player game in strategic form
was not studied until very recently, where Borgs et al. [1] (motivated by com-
putational aspects of the folk theorem) showed that approximating the minmax
value of a three-player game within a certain inverse polynomial additive error
is NP-hard. Our starting point is this important paper.

Given the fundamental nature of the notion of the minmax value, it is im-
portant to understand when the NP-hardness result can be circumvented by
considering special cases or asking for weaker approximations. The purpose of
this paper is to provide a number of results along these lines. First, we observe
that the inapproximability result of Borgs et al. can be tightened and matched
with a positive result, using standard techniques.

Theorem 1. Foranyconstant ε>0, approximating theminmax valueof ann×n×n
gamewith0-1payoffswithin additive error1/nε isNP-hard.On theother hand there
isanalgorithmthat, givenaparameter ε>0andagame in strategic formwith lplayers
each havingn strategies and all payoffs being between 0 and 1, approximates themin-
max value forPlayer 1 fromabovewith additive error atmost ε in timenO(l(log n)/ε2).

This suggests the following important problem: Can the minmax value of a three-
player game with payoffs normalized to [0, 1] be approximated within a non-trivial
additive constant (say 0.001 or even 0.499) in polynomial (rather than quasi-
polynomial) time? We leave this problem open.

It is of interest to know when the minmax value can be computed exactly. A
prerequisite for this is that it is rational. For three-player games, we characterize
when the minmax value for Player 1 can be an irrational number, in terms of the
number of strategies of Player 1 and the number of distinct (rational) payoffs.
For the special case where the value is guaranteed to be rational we present an
optimal linear time algorithm for exactly computing the minmax value1.
1 As the algorithms of Theorem 1 and Theorem 2 are very simple, we express their

complexity in the unit cost random access machine model. E.g., by “linear time” we
mean a linear number of atomic operations in the number of real payoffs of the input.
On the other hand, the algorithm of Theorem 3 uses sophisticated algorithms from
the literature as subroutines and its complexity is better expressed in the Turing
machine model, and in terms of bit complexity.
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Theorem 2. Consider k×n×n three-player games with only l distinct rational
payoffs. When either k ≥ 2 and l ≥ 3 or k ≥ 3 and l ≥ 2 there exists a game
such that the minmax value for Player 1 is irrational. Otherwise, when k = 2 and
l = 2 the minmax value for Player 1 is a rational number and we can compute
it exactly in time O(n2) (on a unit cost random access machine).

Thus having observed that the case of few strategies of Player 1 may be easier
than the general case, we apply the approach of parameterized complexity [8],
considering the number of strategies k of Player 1 as the parameter. Combining
a classical result of Shapley and Snow [14] with Renegar’s decision procedure for
the first order theory of the reals [11,12,13] gives rise to a support enumeration
algorithm for finding the minmax value and we show the following.

Theorem 3. Given a k × n × · · · × n l-player game G with rational payoffs
and a rational number α so that (G,α) has combined bit complexity L, we can
decide in time LO(1)kO(kl)nkl (on a Turing machine) if the minmax value of G
for Player 1 is at most α. Using the terminology of fixed parameter complexity
theory, considering k the parameter, this problem is in W[P], and for the case
of 0-1 payoffs in W[1].

In particular, if l and k are constants, the complexity is polynomial, and we can
approximate the minmax value with any polynomial number of bits of accuracy
in polynomial time by using the decision procedure in a binary search. As the
exponent in the above complexity bound depends linearly on k with impractical
bounds for large k as consequence, we next ask if the problem of approximating
the minmax value for Player 1 in a three-player game is fixed parameter tractable,
i.e., if an algorithm solving the problem in time f(k)nc exists, where f is any
function and c is a constant not depending on k. We provide a reduction from
k-Clique that gives negative evidence.

Theorem 4. Deciding k-Clique in a graph with n vertices reduces in polyno-
mial time to approximating the minmax value for Player 1 within 1/(4k2) in a
three-player 2k × kn× kn game with payoffs 0 and 1.

Downey and Fellows [7] proved that the k-Clique problem is complete for the
class W[1], and hence it immediately follows that the problem of approximating
the minmax value within 1/k2 for Player 1 in a k×n×n game with k being the
parameter is hard for W[1], even when all payoffs are 0 or 1. Combining this
with Theorem 3, we in fact have that the 0-1 case is W[1]-complete. Readers
not well-versed in the theory of parameterized complexity may find the following
consequence of the reduction more appealing: The minmax value of a k× n× n
three-player game with 0-1 payoffs cannot be approximated in time no(k), unless
k-Clique can be solved in time no(k). If k-Clique could be solved in time no(k)

then as proved by Chen et al. [3] it would follow that all problems in the class
SNP (e.g. 3-Sat) could be solved in time 2o(n). Thus, under the assumption
that all of SNP cannot be solved in time 2o(n), the algorithm of Theorem 3 is
essentially optimal for the case of 0-1 payoffs, in the sense that its complexity is
nO(k) and nΩ(k) is a lower bound.
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2 Proofs

2.1 Proof of Theorem 1

We first prove the hardness claim. Borgs et al. [1, Theorem 1] showed hardness
of approximation with additive error 3/n2. Now consider, for a positive integer
c ≥ 2 the following “padding” construction: Given an n × n × n game G with
strategy space Si of Player i and utility function u1 for Player 1. Let n′ = nc

and define the n′ × n′ × n′ game G′ with strategy space S′
i = Si × {1, . . . , nc−1}

and utility function for Player 1 being u′1((x, a1), (y, a2), (z, a3)) = u1(x, y, z).
In words, G′ is simply G with each strategy copied nc−1 times. Now, G′ and G
clearly have the same minmax value. Also, for a given ε > 0, by picking c to be
a large enough constant, we can ensure that 1/(n′)ε < 3/n2, so approximating
the minmax value of G within 3/n2 reduces to approximating the minmax value
of G′ within 1/(n′)ε, which concludes the proof of hardness (we remark that this
simple padding argument also yields a somewhat simpler proof of Lemma 7.1 of
Chen, Teng and Valiant [4]).

We now proceed with the positive approximation result. We only show the
result for the case of three players; the general case being very similar. For the
proof, we will use the following theorem by Lipton and Young [10, Theorem 2]:

Theorem 5. For a two-player zero-sum n×n game with payoffs in [0, 1], there
is a simple strategy for each player that guarantees a payoff within ε of the value
of the game. Here, a simple strategy is one that mixes uniformly on a multiset
of �lnn/(2ε2)� pure strategies.

Now consider a given 3-player game G and consider the optimal threat strategy
profile (σ2, σ3) of Players 2 and 3 against Player 1. Consider σ3 as fixed and look
at the resulting two-player game G′ between Player 1 (maximizer) and Player 2
(minimizer). Clearly, this game has value equal to the minmax value for Player
1 in G. Applying Theorem 5, there is a simple strategy σ′2 for Player 2 that
guarantees this value within ε. Fix σ′2 to this strategy and look at the resulting
two-player game G′′ between Player 1 and Player 3. By construction of σ′2, this
game has value at most ε larger than the value of G′. Applying Theorem 5 again,
there is a simple strategy σ′3 for Player 3 that guarantees this value within ε.
Thus, if Player 2 and Player 3 play the profile (σ′2, σ

′
3) in the original game, they

are guaranteed the minmax value of G plus at most 2ε.
Now, given some ε′, we let ε = ε′/2 and approximate the threat value of Player

1 within ε′ by exhaustively searching through all pairs of simple strategies for
Player 2 and Player 3, finding the best response of Player 1 to each of them and
the associated payoff, and returning the lowest such payoff. This completes the
proof of the theorem.

It is natural to ask if one can get any non-trivial approximation by consid-
ering strategies that mix uniformly over only a constant size multiset, as this
would lead to a polynomial time approximation algorithm rather than a quasi-
polynomial one. Unfortunately, the answer is negative: For given n and s, let m
be maximal such that

(
m
s

)2 ≤ n. Then
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n <

(
m+ 1
s

)2

≤
(

2m
s

)2

≤
(

2me
s

)2s

.

Consider the
(
m
s

)2 ×m ×m game G defined as follows. For every two subsets
T2, T3 of pure strategies of size s for Player 2 and Player 3 there is a pure
strategy, aT2,T3 for Player 1 so that u1(aT2,T3 , a2, a3) = 1 for a2 ∈ T2, a3 ∈ T3
and u1(aT2,T3 , a2, a3) = 0 for a2 �∈ T2 or a3 �∈ T3. If Player 2 and Player 3 both
play a uniform mix on their entire stategy spaces, Player 1 can ensure payoff at
most ( s

m )2. On the other hand, if Player 2 and Player 3 play mixed strategies of
support size at most s then Player 1 has a reply ensuring payoff 1. We can now,
in a similar way as in the construction in the beginning of this section, construct
a padded version of the game, obtaining an n × n × n game G′ such that the
minmax value for Player 1 is at most ( s

m )2 < (2e)2

n1/s , but for every strategy profile
for Player 2 and Player 3 of support size at most s, Player 1 can ensure payoff
1. Thus to approximate the minmax value within some constant c < 1

2 −
2e2

n1/s ,
we must have s > ln n

ln( 4e2
1−2c )

.

2.2 Proof of Theorem 2

First, we give the claimed examples of games for which the minmax value for Player
1 is irrational. We describe each game by a matrix for each action of Player 1, where
rows and columns correspond to the actions of Player 2 and Player 3, respectively.
That is, we let u1(i, j, k) = Ai(j, k).

The first game is a 2 × 2 × 2 game where there are 3 distinct payoffs, given
by the following matrices.

A1 =
[

1 0
0 0

]
A2 =

[
0 0
0 2

]
It is easy to see that the minmax strategy profile for Player 2 and Player 3 is
the profile where both row 1 and column 1 are played with probability 2−

√
2.

This results in the minmax value 6− 4
√

2 for Player 1.
The second game is a 3× 2× 2 game where there are 2 distinct payoffs, given

by the following matrices.

A1 =
[

1 0
0 0

]
A2 =

[
0 0
1 1

]
A3 =

[
0 1
0 1

]
It is easy to see that the minmax strategy profile for Player 2 and Player 3 is the
profile where both row 1 and column 1 are played with probability

√
5−1
2 . This

results in the minmax value 3−
√

5
2 for Player 1.

We now examine the special case where there are only two distinct payoffs, and
Player 1 only has two possible actions. For this case, we show that the minmax
value is a rational number, and that the optimal threat can be computed in
linear time. We assume without loss of generality that the two possible payoffs
are 0 and 1. The proof is a case analysis, where each case can be identified and
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solved in linear time, assuming that none of the previous cases apply. Case 1
and 2 are the trivial cases where either side has a pure optimal strategy.

Case 1: ∃i∀j, k : u1(i, j, k) = 1. Player 1 has a “safe” action, i, such that no
matter what Players 2 and 3 do, Player 1 achieves value 1. Any strategy profile
for Players 2 and 3 is an optimal threat, with minmax value 1.

Case 2: ∃j, k∀i : u1(i, j, k) = 0. The strategy profile (j, k) is an optimal
threat, with minmax value 0.

Case 1 and case 2 can easily be identified and solved in linear time. Notice that
when we are not in case 2, we have that ∀j, k∃i : u1(i, j, k) = 1, and therefore
u1(i, j, k) = 0 ⇒ u1(i′, j, k) = 1 where i′ �= i. This means that Player 1 has a
maxmin (security) value of at least 1

2 , which can be achieved by a uniform mix of
the two strategies. As the minmax value is at least the maxmin value, any threat
with minmax value 1

2 will be optimal. This is exactly what can be achieved in
the next two cases:

Case 3: ∃j∀i∃k : u1(i, j, k) = 0. Player 2 has a pure strategy, such that Player
3 can play matching pennies against Player 1. Let k and k′ be the strategies of
Player 3 achieving payoff 0 against i and i′ respectively. Then (j, (1

2k,
1
2k

′)) is
an optimal threat, with minmax value of 1

2 .

Case 4: ∃k∀i∃j : u1(i, j, k) = 0. Player 3 has a pure strategy, such that Player
2 can play matching pennies against Player 1. Let j and j′ be the strategies of
Player 2 achieving payoff 0 against i and i′ respectively. Then ((1

2j,
1
2j

′), k) is an
optimal threat, with minmax value of 1

2 .
Case 3 and case 4 can again easily be identified and solved in linear time.

Case 5: None of the above. The negation of case 1 implies ∀i∃j, k : u1(i, j, k)=
0. The negation of cases 2, 3 and 4 implies u1(i, j, k) = 0 ⇒ ∀j′, k′ : u1(i′, j′, k) =
u1(i′, j, k′) = 1, where i′ �= i. That is, any strategy of Player 2 or 3 can achieve
payoff 0 against at most one of Player 1’s strategies, and Players 2 and 3 must
agree on which strategy of Player 1 to try to get payoff 0 against. If they disagree,
the payoff is 1 no matter what Player 1 does. The best they can hope for is
therefore minp,q∈[0;1] max{1− pq, 1− (1− p)(1− q)}, which gives a lower bound
on the minmax value of 3

4 . This value can be achieved in this case in the following
way: let u1(i, j, k) = u1(i′, j′, k′) = 0. Then ((1

2j,
1
2j

′), (1
2k,

1
2k

′)) is an optimal
threat, with minmax value of 3

4 .

2.3 Proof of Theorem 3

We prove the theorem for three players, the general case is similar. Shapley and
Snow [14] showed that every k×n zero-sum game has a minmax mixed strategy
for Player 2 of support at most k, i.e., using at most k pure strategies. We claim
that from this it follows that in every k×n×n game there are mixed strategies
for Player 2 and Player 3 of support at most k so that the resulting strategy
profile σ−1 yields the minmax value for Player 1 when Player 1 chooses a best
response. Indeed, consider the actual minmax strategy profile σ∗−1 = (σ∗2 , σ∗3). If
we consider σ∗3 fixed and consider the resulting two-player game between Player
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1 and Player 2, it is clear that σ∗2 is a minmax strategy of this game and that
Player 2 will still guarantee the minmax payoff by playing the minmax strategy
σ∗2 of support k which is guaranteed to exist by Shapley and Snow’s result.
Similarly, we may replace σ∗3 with a strategy of support k without changing the
payoff resulting when Player 1 plays a best response.

Our algorithm is a support enumeration algorithm which exhaustively exam-
ines each possible support of size k for Player 2 and Player 3. From the above
observation it follows that the minmax value of the game is the minimum of the
minmax value of each of the resulting k × k × k subgames. Therefore, we only
have to explain how to compare the minmax value of such a subgame to a given
α, and we will be done. For this, we appeal to classical results on the first order
theory of the reals.

The decision procedure for the first order theory of the reals due to Renegar
[11,12,13] can decide a sentence with ω−1 quantifier alternations, the kth block
of variables being of size nk, containing m atomic predicates and involving only
polynomials of degree at most d with integer coefficients of maximum bit length
L using L(logL)2O(log∗ L)(md)2

O(ω)�
k nk bit operations2 and (md)O(

�
k nk) eval-

uations of the Boolean formula of the atomic predicates. We claim that from this
it follows that given a k × k × k game G with rational payoffs and a rational
number α so that (G,α) has combined bit complexity L, we can decide in time
L(logL)2O(log∗ L)kO(k) (on a Turing machine) if the minmax value ofG for Player
1 is at most α. We can assume that the payoffs and α are integers at the expense
of increasing the bitlength of every number to at most the combined bitlength
of the original problem. Define the following polynomials in 2k variables.

pl(x1, . . . , x2k) =
k∑

i=1

2k∑
j=k+1

u1(l, i, j − k)xixj , ri(x1, . . . , x2k) = xi

q1(x1, . . . , x2k) =
k∑

i=1

xi , q2(x1, . . . , x2k) =
2k∑

i=k+1

xi

The sentence we must decide is then

(∃x ∈ R2k)[p1(x) ≤ α ∧ · · · ∧ pk(x) ≤ α ∧ q1(x) = 1 ∧ q2(x) = 1
∧ r1(x) ≥ 0 ∧ · · · ∧ r2k(x) ≥ 0] .

For this sentence we have ω = 1,m = 3k+2, d = 2 and n1 = 2k, and the sentence
can thus be decided in the claimed running time using Renegar’s procedure. For
the support enumeration algorithm this decision procedure must be invoked for(
n
k

)2 different k× k× k subgames, and the claimed time bound of the statement
of the theorem follows.

Next, we show how to use this algorithm to show W[P] and W[1] membership
of the two versions of the problem. We use the framework of afpt-programs of

2 The bound stated here is the improvement of the bound stated by Renegar due to
the recent breakthrough in integer multiplication due to Fürer [9].
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Chen, Flum and Grohe [5] and Buss and Islam [2] to do this. To transform the
algorithm into an afpt-program showing that the decision problem is in the class
W[P], we simply replace the enumeration by existential steps guessing the sets
of indices of size k giving the support of the strategies of Player 2 and Player 3. In
the remainder of this section we will show that for the special case of 0-1 payoffs
the decision problem is in the class W[1]. The idea is to precompute, for every
possible k × k × k game with 0-1 payoffs, whether the minmax value for Player
1 is at most α. As in the W[P] case, indices of the support of the strategies are
guessed, but now the k× k× k subgame is used as an index in the precomputed
table. To see that this can be turned into an appropriate afpt-program, we will
formally define the relations used.

Assume that the payoffs of Player 1 are given as a k-tuple of n×n 0-1 matrices
(U1, . . . , Uk). Define a unary relation A over k-tuples of k × k 0-1 matrices as
follows: (M1, . . . ,Mk) ∈ A if and only if the minmax value for Player 1 in the
k × k × k subgame given by (M1, . . . ,Mk) is at most α.

Define a 6-ary relation B having as first argument a k-tuple of k × k 0-1
matrices and with the next 3 arguments being indices from 1 to k and the two
last arguments being indices from 1 to n as follows.

((M1, . . . ,Mk), l, a, b, i, j) ∈ B if and only if M l
ab = U l

ij .

The algorithm first computes the relations A and B. In the guessing steps the
algorithm guesses a k-tuple of matrices (M1, . . . ,Mk) and indices i1, . . . , ik and
j1, . . . , jk. The final checks the algorithm must perform are (M1, . . . ,Mk) ∈ A
and ((M1, . . . ,Mk), l, a, b, ia, jb) ∈ B for all l, a, b ∈ {1, . . . , k}. The number of
steps used for guessing the indices and the final checks is a function depending
only on the parameter k, as required.

As discussed by Buss and Islam [2] we can in a generic way transform an
algorithm utilizing a constant number of relations into one that only utilizes
a single binary relation, thereby obtaining an afpt-algorithm showing that the
decision problem is in W[1].

2.4 Proof of Theorem 4

Before starting the proof, we remark that the reduction is based on similar ideas
as the reduction proving NP-hardness by Borgs et al. However, they reduce from
3-Coloring rather than k-Clique, and in their coloring based games, we don’t
see how to restrict the strategy space of Player 1 to a small number of strategies,
so as to obtain fixed-parameter intractability.

We now describe the reduction. We assume throughout the proof that k ≥ 5.
Given an undirected graphG = (V,E), with |V | = n. We construct a 2k×kn×kn
game from G in the following way. Let S1 = {1, . . . , k} × {2, 3} be the strategy
space of Player 1 and S2 = S3 = {1, . . . , k}×V be the strategy spaces of Player
2 and Player 3. We define the payoff of Player 1 as:
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u1((x1, i), (x2, v2), (x3, v3)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if x1 = xi

1 if x2 = x3 and v2 �= v3

1 if x2 �= x3 and v2 = v3

1 if v2 �= v3 and (v2, v3) /∈ E
0 otherwise

As Player 2 and Player 3 try to minimize the payoff of Player 1 we shall refer to
them as bullies. One can think of the game as the bullies each choosing a label
and a vertex of G. Player 1 then chooses one of the bullies and tries to guess his
label. If he guesses correctly he will get a payoff of 1. If not, he will get a payoff
of 0, unless the bullies do one of the following:

(i) Choose the same label, but different vertices.
(ii) Choose different labels, but the same vertex.
(iii) Choose a pair of distinct vertices that does not correspond to an edge.

In these cases he will get a payoff of 1. The intuition behind the proof is that the
bullies will be able to avoid these three cases if the graph contains a k-clique,
thereby better punishing Player 1. Formally, we shall show that the minmax
value for Player 1 is exactly 1

k if G contains a k-clique and at least 1
k + 1

4k2 if G
does not contain a k-clique.

First, we notice that if G contains a k-clique, the bullies can bring down the
payoff of Player 1 to 1/k by choosing a vertex from the k-clique uniformly at
random and agreeing on a labeling of the vertices. For given strategies of the
bullies, let pmax be the highest probability (over j) of any of the bullies choosing
a label j ∈ {1, . . . , k}. Player 1 will always be able to get a payoff of pmax by
choosing j and the corresponding player. It follows that the minmax value of
the game is 1/k when G contains a k-clique, as desired.

Next, we consider the case when G contains no k-clique. Assume to the con-
trary that the bullies can force Player 1 to get a payoff less than 1/k+ 1/(4k2).
For the rest of the proof, consider a fixed strategy profile of the bullies with this
property. We have already seen that in this case, pmax < 1/k + 1/(4k2).

Consider the case where Player 1 always chooses Player 2 and guesses a label
uniformly at random. In this case Player 1 will always guess the correct label
with probability 1/k independently of the actions of the bullies. Let p be the
probability of either (i), (ii) or (iii) happening. We have:

1
k

+
(

1− 1
k

)
p <

1
k

+
1

4k2 ⇒ p <
1

4k(k − 1)
. (1)

In particular, the probability of (i) happening is less than 1/(4k(k − 1)). Let
pmin be the minimum probability assigned to any label by either of the bullies.
We have pmin ≥ 1− (k− 1)pmax > 3/(4k)+1/(4k2). Let (x, v)i denote the event
that Player i chooses the label x and the vertex v. We will use · as a wildcard,
such that (x, ·)i denotes the event that Player i chooses the label x and (·, v)i

denotes the event that Player i chooses the vertex v. For v, w ∈ V we see that:
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1
4k(k − 1)

> Pr
[
x2 = x3 and v2 �= v3

]
=

k∑
j=1

∑
v �=w

Pr
[
(·, v)2 | (j, ·)2

]
Pr
[
(j, ·)2

]
Pr
[
(·, w)3 | (j, ·)3

]
Pr
[
(j, ·)3

]
≥ p2min

k∑
j=1

∑
v �=w

Pr
[
(·, v)2 | (j, ·)2

]
Pr
[
(·, w)3 | (j, ·)3

]
= p2min

k∑
j=1

(
1−

∑
v∈V

Pr
[
(·, v)2 | (j, ·)2

]
Pr
[
(·, v)3 | (j, ·)3

])

= kp2min − p2min

k∑
j=1

∑
v∈V

Pr
[
(·, v)2 | (j, ·)2

]
Pr
[
(·, v)3 | (j, ·)3

]
.

Here, the first inequality follows from (1). The second inequality is by definition
of pmin.

We now estitmate the probability that Player 2 and Player 3 choose the same
vertex, conditioned on the fact that they choose the same label l. We have that
for all l in {1, . . . , k} :∑

v∈V

Pr
[
(·, v)2 | (l, ·)2

]
Pr
[
(·, v)3 | (l, ·)3

]
> k − 1

4k(k − 1)p2min
−
∑
j �=l

∑
v∈V

Pr
[
(·, v)2 | (j, ·)2

]
Pr
[
(·, v)3 | (j, ·)3

]
≥ 1− 1

4k(k − 1)p2min
> 1− 1

4k(k − 1)
( 3

4k + 1
4k2

)2
= 1− 4k3

(k − 1)(3k + 1)2
>

1
2
.

The second inequality follows from observing that all terms in the outer sum are
bounded from above by 1. The last inequality follows from k ≥ 5.

For fixed l, let vl
i be the vertex chosen with highest probability by player i

given that he chooses label l and let ql
i = Pr

[
(·, vl

i)i | (l, ·)i

]
be that probability.

Since
∑

v∈V Pr
[
(·, v)2 | (l, ·)2

]
Pr
[
(·, v)3 | (l, ·)3

]
> 1

2 and
(
Pr
[
(·, v)2 | (l, ·)2

])
v

and
(
Pr
[
(·, v)3 | (l, ·)3

])
v

are probability distributions, we have

∀i ∈ {2, 3}, ∀l ∈ {1, . . . , k} : ql
i >

1
2
.

Since ql
2 and ql

3 are both strictly bigger than 1
2 , and the probability that Player

2 and Player 3 choose the same vertex is strictly bigger than 1
2 , it is easy to see

that we must have vl
2 = vl

3 and we will therefore simply refer to this vertex as
vl. That is, for every label j the bullies agree on some vertex vj that they both
choose with high probability when choosing j. For j, l ∈ {1, . . . , k}, it will either
be the case that there exists some vj = vl, with j �= l, or that all the vj ’s are
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distinct. In the first case Player 1 will, with high probability, get a payoff of 1
when one of the bullies chooses label j and the other chooses label l (case (ii)).
In the second case there will exist a pair of distinct labels j and l, such that
there is no edge between vj and vl, since the graph doesn’t contain a k-clique.
Hence, this will cause Player 1 to get a payoff of 1, with high probability, when
one of the bullies chooses label j and the other chooses label l (case (iii)). In
both cases we get that the probability that (ii) or (iii) holds is at least

1∑
i=0

Pr
[
(·, vj)2+i | (j, ·)2+i

]
Pr
[
(j, ·)2+i

]
Pr
[
(·, vl)3−i | (l, ·)3−i

]
Pr
[
(l, ·)3−i

]
> 2p2min

(
1
2

)2

>
1
2

(
3
4k

+
1

4k2

)2

=
(3k + 1)2

32k4 >
1

4k(k − 1)
.

The last inequality follows from k ≥ 5. This contradicts (1) which states that
(i), (ii) or (iii) happens with probability less than 1/(4k(k − 1)). Thus, we have
completed our proof by contradiction.

3 Conclusions and Open Problems

As mentioned above, an important open problem is achieving a non-trivial ap-
proximation of the minmax value of an n×n×n game in polynomial time, rather
than quasi-polynomial time. Another interesting question comes from the follow-
ing notions: The threat point of a game is defined to be the vector of minmax
values for each of its players. We may consider approximating the threat point
of a three player game where one of the players has few strategies. For this, we
have to consider the problem of approximating the threat value for Player 1 in
a three-player n× k× n game. That is, it is now one of the two “bullies” rather
than the threatened player that has few strategies. We observe that for constant
ε > 0 such an approximation can be done efficiently by simply discretizing the
mixed strategy space of the player with few strategies using a lattice with all
simplex points having distance at most ε to some lattice point, and then for
each lattice point solving the game for the remaining two players using linear
programming. Combining this with Theorem 3 gives us the following corollary:

Corollary 1. There is an algorithm that, given a k×n×n game with 0-1 payoffs
and an ε > 0, computes the threat point within additive error ε in time (n/ε)O(k).

The discretization technique gives algorithms with poor dependence on the de-
sired additive approximation ε. We leave as an open problem if the minmax value
of an n× k×n 0-1 game can be approximated within ε in time (n log(1/ε))O(k).
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Abstract. The standard solution concept for perfect-information extensive form
games is subgame perfect Nash equilibrium. However, humans do not always
play according to a subgame perfect Nash equilibrium, especially in games where
it is possible for all the players to obtain much higher payoffs if they place some
trust in each other (and this trust is not violated). In this paper, we introduce a
new solution concept for two-player perfect-information games that attempts to
model this type of trusting behavior (together with the “ethical” behavior of not
violating that trust). The concept takes subgame perfect equilibrium as a starting
point, but then repeatedly resolves the game based on the players being able to
trust each other. We give two distinct algorithmic definitions of the concept and
show that they are equivalent. Finally, we give a fast implementation of one of
the algorithms for solving the game, and show that it runs in time O(n log n +
nh log(n/h)).

1 Introduction

Under a typical game-theoretic solution concept, the players pursue nothing other than
their own interest at every point in the game. Humans, however, do not always behave
this way: depending on what happened earlier in the game, they may feel that they
“owe” another player something and act accordingly. We propose a solution concept
for two-player extensive-information games that attempts to model this phenomenon.

To illustrate the basic idea, consider the example game in Figure 1. The standard
game-theoretic approach to solving this game is to simply use backward induction. If
player 2 gets to move, he1 maximizes his utility by moving left, resulting in the utilities
(0, 2). Anticipating this, player 1 will choose to move left in the first move, resulting in
the utilities (1, 0). This is the unique subgame perfect equilibrium of the game. We note
that both players would prefer the rightmost outcome, which has utilities (2, 1), but the
strategic structure of the game prevents this outcome from occurring—at least within
the standard game-theoretic approach.

Now, we argue that this is not necessarily the most sensible outcome of the game,
assuming that the players have some amount of decency. Suppose player 1 does, in
fact, move right. In the standard game-theoretic approach, this would be considered a
mistake. However, suppose that it is common knowledge among the players that they

1 We use “she” for player 1 and “he” for player 2.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 696–707, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. A simple example

understand the game perfectly. Hence, player 2 knows that player 1 did not choose this
move by accident, but voluntarily chose to let player 2 pick between the outcome that
is better for both of them than the subgame perfect solution, and the outcome that is
much better for player 2 but worse for player 1. Player 1 knows very well that she
is leaving herself vulnerable to a selfish action by player 2, but chose to move right
anyway, with the hope of a better outcome for both. It seems sensible to argue that in
this case, it would be unethical for player 2 to move left. Specifically, it seems that
player 2 “owes” it to player 1 to give her at least as much utility as she would have
received in the subgame perfect equilibrium, especially as player 2 can do so in a way
that also gives him at least as much utility as he would have received in the subgame
perfect equilibrium. Thus, it seems that the ethical thing to do for player 2 in this sit-
uation is to move right; if player 1 believes that player 2 is ethical in this way, then
she prefers to move right initially—she “trusts” player 2 to make the “ethical” move. In
this paper, we propose a general solution concept corresponding to this ethical type of
reasoning.

Incidentally, the simple game above closely resembles a game studied in experimen-
tal game theory, called the “trust game.” In the trust game, player 1 has an initial budget.
She can choose to give any amount not exceeding this budget to player 2; if she does
so, the money will be tripled before player 2 receives it. After receiving the money,
player 2 can give any amount back to player 1 (this will not be tripled), and the game
ends after this. Again, this game can be solved by backwards induction: it is never in
player 2’s interest to give any money back, and hence player 1 should give player 2 no
money at all.2 Experimentally, however, this is not at all what happens [6,14,15]. In an
experimental study, 85% of subjects in the player 1 role gave at least some money, and
98% of subjects in the player 2 role that received some money gave some back [14].
Also, on average, subjects in the player 1 role gave $5.52 (out of their initial $10), and
subjects in the player 2 role returned $6.96 [15]. The full version of our paper discusses
what our solution concept prescribes for this game.

A few more remarks are in order. We do not wish to argue that the behavior pre-
scribed by our solution concept is the only behavior that can possibly be described as
“ethical.” For example, in a modified version of the trust game where player 2 does not
have the option of giving money back at all, our solution concept prescribes that player

2 This assumes that a player’s utility is simply the amount of money that the player receives.
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1 should give no money; but one could perhaps argue that giving money would still
be the ethical thing to do, given that the money will be tripled. In fact, under a strict
utilitarian framework, one might argue that the ethical thing to do is to transfer all the
money. Still, we argue that our solution concept corresponds to a particular, natural (if
perhaps limited) type of ethical behavior. For the purposes of this paper, we will avoid
discussion of whether our concept is more “rational” than the standard game-theoretic
concepts, and hence we will avoid the use of the word “rational.”

Also, while there has been an agenda within game theory of justifying cooperative
behavior by showing that cooperation can be sustained as an equilibrium of a repeated
game (for instance, in the Prisoner’s Dilemma [13]), philosophically, this paper does
not fall under that agenda. (However, because our solutions always Pareto dominate or
are equal to a subgame perfect solution, they can in fact be sustained as an equilibrium
of the repeated game as well.)

Solution concepts that model this type of ethical behavior potentially have a num-
ber of applications. They can be used to predict human behavior. concepts can be used
in artificially intelligent agents, for interacting either with humans or with each other.
Indeed, it has been argued that standard game-theoretic solutions do not always per-
form well in settings where artificially intelligent agents interact with humans [3,4,12].
The design of artificial intelligence that behaves ethically has previously received at-
tention [1,10]. Much of this work relies on humans specifying examples of ethical
behavior, which the agent then tries to generalize into more general rules [5,9]. Other
work specifies certain prima facie duties, and the agent needs to learn from labeled
examples how to trade off these duties when they conflict [2]. Our work differs from
this prior work in that we define a single concept that is intended to capture a subset of
ethical behavior, and all that remains to be done is to find the corresponding solution
(no learning is needed).

The rest of this paper is laid out as follows. In Section 2, we study some more com-
plex examples to get some intuition about our solution concept. In Section 3, we give a
first definition of our solution concept, which relies on iteratively modifying the agents’
preferences and re-solving for the subgame perfect equilibrium. In Section 4, we give
another definition of the concept, which relies on iteratively removing nodes from the
game tree and re-solving for the subgame perfect equilibrium; we show that this de-
finition is equivalent to the one from Section 3. Finally, in Section 5, we give a fast
algorithm for computing a solution according to our concept.

2 Introductory Examples

In this section, we study two additional example games. The first example shows a
seemingly more complex game that can be simplified to be similar to the example in
Figure 1. The second example is inherently more complex; however, understanding this
example will help significantly to understand the general definition.

Example: A game with moves by Nature. Alice and Bob are sitting next to each other
on a plane, and there are not enough pillows on the plane. Alice has a pillow (it was
sitting in her seat), and Bob does not. Alice is currently not tired, and Bob is (and, from
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Fig. 2. Example: airplane pillows. Key: give pillow, keep pillow, Alice becomes tired, Alice does
not become tired, give when Alice becomes tired, keep when Alice becomes tired.

their demeanors, this is common knowledge). Alice could give the pillow to Bob, but
she might regret it if she gets tired later on. Of course, Bob could give the pillow back
in that case, if he chooses to do so.3 A possible interpretation of this game is shown in
Figure 2. On the left side is the full game tree: Alice first decides whether to give the
pillow, then Nature decides whether Alice gets tired, and finally Bob decides whether
to return the pillow. (We note that if Alice is not tired, she slightly prefers not having
the pillow, to have some more space.) We emphasize that this is a perfect-information
game. Because of that, we can remove Nature from the game by taking expectations,
resulting in the game on the right-hand side. By similar reasoning as that for the example
in Figure 1, Alice should give the pillow, and Bob should give it back if Alice is tired.
This contrasts with the subgame perfect solution in which Bob would not return the
pillow, so that Alice keeps the pillow to herself; the subgame perfect solution is worse
for both players.

Example: A more complex game with 6 leaves. We now move on to an example that
is fundamentally more complex and that will require some more reflection on what is
ethical. Consider the example in Figure 3.

Fig. 3. A more complex example with 6 leaves

Backward induction would tell us that player 2 will move left in each subtree, and
hence player 1 should move left, resulting in the unique subgame perfect equilibrium
with utilities (2, 0). However, again, we may argue that if player 1 chooses middle or
right, then player 2 owes it to player 1 to give her at least 2 (since she could have guar-
anteed herself this much, and to give her this much player 2 does not need to accept

3 This is ignoring the potential complication that Bob may have fallen asleep on the pillow.
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a utility less than the 0 that he would receive in the subgame perfect solution). That
is, if player 1 plays middle, player 2 should play right (resulting in utilities (4, 1));
and if player 1 plays right, player 2 should play middle or right—but middle will give
him a higher utility, resulting in utilities (3, 4). Hence, at this level of analysis, the best
move for player 1 is to move to the middle, resulting in utilities (4, 1). However, we
can take this analysis one step further. Now suppose that player 1 moves right any-
way. Since (given ethical behavior by player 2) she could have guaranteed herself 4
by choosing middle, it can be argued that player 2 owes her at least 4 (especially be-
cause player 2 can do so while still getting at least the 1 that he received at the previous
level of analysis). So, at this level, the only ethical thing for player 2 to do is to move
right; middle is no longer ethical. Hence, the final solution is for both players to move
right.

3 A Definition of Ethical Behavior Based on Iterated Solutions

We now give the general definition of our ethical solution concept. In the example in
Figure 3, in a sense, we “solved” the game three times: first, we found the subgame per-
fect solution; second, we modified the solution based on the notion that player 2 should
give player 1 what she could have guaranteed herself in the first (subgame perfect) so-
lution (as long as doing so does not make player 2 worse off than he would have been in
the first solution); third, we modified the solution again based on the notion that player
2 should give player 1 what she could have guaranteed herself in the second solution (as
long as doing so does not make player 2 worse off than he would have been in the sec-
ond solution). Furthermore, it is easy to construct examples in which even more levels
of analysis are required.

In fact, the second and third solutions can be seen as subgame perfect solutions of a
game in which the preferences have been modified based on the payoffs in the previous
solution. In particular, let us call the utilities (b1, b2) from the previous solution the
base utilities. Then, player 1’s primary goal is to obtain at least utility b1; player 1’s
secondary goal is for player 2 to obtain at least utility b2; her tertiary goal is to maximize
her own utility; and her quaternary goal is to maximize player 2’s utility. 4 That is, given
that she achieves her own base utility, player 1 temporarily sets her own interest aside
and attempts to ensure that player 2 obtains his base utility; once that has been done,
she pursues her own utility again. Player 2’s modified preferences are defined similarly.
Formally, we have:

Definition 1. Given base utilities (b1, b2), we define player 1’s ethical preference re-
lation '1

(b1,b2) as follows: (u1, u2) '1
(b1,b2) (u′1, u

′
2) if and only if at least one of the

following three conditions applies:

– u′1 < b1, and: either u′1 < u1, or both u′1 = u1 and u′2 < u2.
– u1 ≥ b1, u′1 ≥ b1, u′2 < b2, and: u2 > u

′
2.

– u1 ≥ b1, u2 ≥ b2, and: either u1 > u
′
1, or u1 = u′1 and u2 > u

′
2.

4 The quaternary goal is relevant only for breaking ties and is not essential to our concept; we
add it for completeness.
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Player 2’s ethical preference relation '2
(b1,b2) is defined similarly (with the roles of 1

and 2 reversed).

In the special case in which b1 and b2 are smaller than any utility in the game, the
players simply maximize their own utility (and break ties in favor of the other’s utility).

Now, we obtain a solution as follows: we solve the game, then update the base util-
ities to be the utilities in that solution, solve the game again with the modified utilities,
modify the utilities again, etc., until the solution stops changing.5 Formally, we have
the following algorithm:

Iterated Backward Induction with Modified Preferences (IBIMP)
1. initialize b1 ← −∞
2. initialize b2 ← −∞
3. repeat until convergence:

(a) solve the game by backward induction with respect to '1
(b1,b2),'

2
(b1,b2)

(b) update b1, b2 to be the final utilities in this solution

We have not yet shown that this process will in fact converge, but this will become
clear from the alternative characterization in the next section.

For example, for the game in Figure 3, we have the following three solutions:

Fig. 4. IBIMP solves the example game in three iterations. At each nonleaf vertex, an arrow
indicates the player’s move in the subgame perfect solution for the modified preferences, and the
leaf corresponding to the solution is underlined.

Another way to interpret this process is as follows: a third party repeatedly proposes
strategy profiles for both players; the players accept the new proposal if and only if
every move is consistent with their ethical preference relation (with respect to the base
utilities from the currently accepted proposal). Then, the only sequence of solutions that
the third party can successfully propose is the sequence of solutions that results from
the algorithm above.

We emphasize again that breaking ties in favor of the other player is not essential to
the concept, but it seems natural. (Incidentally, if ties are broken in this way, then the
airline pillow example (Figure 2) has the same solution even if player 1 is indifferent
between having the pillow or not when she is not tired.)

5 It should be noted that in general, a perfect-information game can have multiple subgame
perfect Nash equilibria due to ties; finding the optimal one is nontrivial, but can be done in
polynomial time [7]. Because we specified a tie-breaking mechanism—breaking ties in the
other agent’s favor—we do not need to deal with these issues.
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4 An Alternative Characterization Based on Global Pruning

In this section, we present an alternative definition of the solution concept, and show the
equivalence between the two definitions. The alternative definition is also algorithmic,
and also relies on repeatedly solving games. The difference is in how we modify the
game. Instead of modifying the preferences based on the base utilities, we now remove
all the leaf nodes for which at least one player’s utility is lower than the base utility.

Iterated Backward Induction with Pruned Leaves (IBIPL)
1. repeat until convergence:

(a) solve the game by backward induction (breaking ties in favor of the other
player)

(b) let b1, b2 be the final utilities in this solution
(c) remove all the leaves with utilities (u1, u2) such that u1 < b1 or u2 < b2,

and all intermediate nodes that have no children left

For example, for the game in Figure 3, we have the following three solutions:

Fig. 5. IBIPL solves the example game in three iterations. The leaf corresponding to the solution
in each iteration is underlined, and removed leaves are crossed out.

We note that for this game, IBIPL’s solution in each stage is the same as in IBIMP.
This is true in general, as we will see shortly. First, we note:

Lemma 1. Under IBIPL, b1 and b2 monotonically (weakly) increase.

Proof. b1 and b2 always correspond to a solution, and any leaf l with either ul
1 < b1 or

ul
2 < b2 is immediately removed and can hence never be a future solution.

Theorem 1. In each iteration, IBIMP and IBIPL find the same solution. That is, b1 and
b2 are the same at each stage, and the values at each intermediate node are the same in
the solution at each stage (if the intermediate node still exists under IBIPL).

Proof. The first solutions are the same (both find the backward induction solution
in which ties are broken in favor of the other player). We show that if the claim is
true for the first k solutions, it is true for the k + 1th solution, proving the claim by
induction.

Given an intermediate node v (without loss of generality, one at which player 1
moves) that still occurs in both games, suppose that the utilities for all its children (that
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still occur in both games) are the same. We will show that for any child c that still
occurs in the IBIMP game but not in the IBIPL tree, that child will not be the most
preferred under player 1’s ethical preferences'1

(b1,b2) (where b1 and b2 are the solution
values for the kth solution, under both IBIMP and IBIPL by the induction assumption).
Because v still occurs in the IBIPL game, it must have at least one child c′ left in the
IBIPL tree; since it has not been removed, it must have utilities uc′

1 ≥ b1, u
c′

2 ≥ b2.
(We emphasize again that the utilities are the same under both trees, by assumption.)
On the other hand, because c was removed, every leaf l that is a child of c must
have been removed; therefore, using the monotonicity property in Lemma 1, l has ei-
ther ul

1 < b1 or ul
2 < b2. It follows that the utilities at c in the current iteration of

IBIMP must have the same property: either uc
1 < b1 or uc

2 < b2. But then, it follows
that (uc′

1 , u
c′

2 ) '1
(b1,b2) (uc

1, u
c
2). Therefore, under IBIMP, player 1 will not choose c

from v.
Hence, both IBIMP and IBIPL choose from the children c′ of v for which uc′

1 ≥
b1, u

c′

2 ≥ b2. Both of them will choose a child with the highest uc′

1 , breaking ties to
maximize uc′

2 . It follows that the utilities for v are the same under both IBIMP and
IBIPL, and we can repeat this process to show this for all the vertices up to and includ-
ing the root, thereby establishing that the new b1 and b2 will be the same.

While the definition of the ethical solution concept corresponding to IBIMP is perhaps
more natural and easier to motivate, the equivalent definition corresponding to IBIPL
is often easier to work with and prove properties about. The following propositions
illustrate this.

Proposition 1. IBIPL and IBIMP always terminate.

Proof. IBIPL clearly must terminate, because the tree shrinks in each step (other than
the last one). By Theorem 1, it follows that IBIMP must also terminate.

Lemma 2. When IBIPL terminates, all remaining leaves have the same utilities
(b1, b2).

Proof. For each remaining leaf l, we must have ul
1 ≥ b1 and ul

2 ≥ b2 (otherwise,
the leaf would have been eliminated). So, if there is a remaining leaf l with utilities
other than (b1, b2), it must Pareto dominate the current solution (ul

1 > b1 and ul
2 ≥ b2,

or ul
1 ≥ b1 and ul

2 > b2). For the sake of contradiction, suppose that such a leaf l
exists. Both players break ties in favor of the other, so the utilities (ul

1, u
l
2) will al-

ways be preferred to (b1, b2). Hence, the utilities at the parent of l will be (ul
1, u

l
2),

or something else that Pareto dominates (b1, b2). The same is true for its parent, etc.,
up to and including the root. This contradicts (b1, b2) being the backward induction
solution.

Proposition 2. IBIPL and IBIMP always return a Pareto optimal solution.

Proof. For the sake of contradiction, suppose that the final solution under IBIPL is
not Pareto optimal—that is, there exists a leaf that Pareto dominates the solution. This
leaf cannot have been eliminated, based on Lemma 1. But then, we have two remaining
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leaves with different utilities, which contradicts Lemma 2. By Theorem 1, it follows
that IBIMP also returns a Pareto optimal solution.

Proposition 3. IBIPL and IBIMP always return a solution in which both players’ utili-
ties are at least as high as in any subgame perfect equilibrium where players break ties
in each other’s favor.

Proof. Under IBIPL, after the first iteration, b1 and b2 are equal to the utilities from
such a subgame perfect equilibrium; by Lemma 1, the utilities in later iterations can
only be higher. By Theorem 1, the property also holds for IBIMP.

5 A Fast Implementation of IBIPL

The pseudocodes for IBIMP and IBIPL give us some basic (albeit not fully specified)
algorithms for finding the ethical solution. In this section, we present a fast implemen-
tation of IBIPL with a runtime of O(n log n+ nh log(n/h)), where n is the number of
leaf nodes, and h is the height of the tree.

The algorithm and analysis assume, without loss of generality, a game tree in which
all nonleaf nodes have at least two children. The basic idea is to maintain a data structure
corresponding to the game tree, which maintains the optimal action at each nonleaf
node. When in successive iterations, leaves are deleted, we only need to update the
ancestors of those leaves (in fact, we may not need to update all of them).

A fast implementation of IBIPL

1. Initialize two arrays A1, A2 of pointers to the leaf nodes
2. Sort A1 by the first player’s utility, and A2 by the second player’s utility (ties

can be broken arbitrarily)
3. Intialize index pointers i1, i2 to the first element of A1 and A2, respectively
4. Using A1, compute the smallest value by which any two distinct values of u1

differ, divide this number by twice the largest value of u2, and call the result ε1;
compute ε2 similarly

5. Solve the game by backward induction (breaking ties in favor of the other
player); in the process, at each node v, create a Fibonacci max heap whose
elements are v’s children, ordered by their values for u1 + ε1u2 if player 1 con-
trols v, and by u2 + ε2u1 if player 2 controls v (the ε terms are used to break
ties in the other player’s favor); the top child’s u1, u2 values become v’s values

6. Let b1, b2 be the values at the root
7. Repeat until convergence:

(a) In array A1 use binary search to find the first element for which u1 ≥ b1;
let its location be i1′

(b) For every element in A1 in a location {i1, i1 + 1, . . . , i1′ − 1} do:
i. If the corresponding leaf v has not been marked deleted, mark it deleted

and call Update1(P (v), u1(v), u2(v)), where P (v) is v’s parent
(c) Repeat the previous two steps with array A2
(d) Let i1 ← i1

′ and i2 ← i2
′

(e) Update b1, b2 to the new values of u1, u2 at the root
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Update1(w, u1, u2)
1. From w’s Fibonacci max heap, remove (u1, u2)
2. If the max heap has become empty, call Update1(P (w), u1, u2)
3. Otherwise, if the values at the top of the heap have changed, up-

date w’s values u1(w), u2(w); if w is not the root, then call
Update2(P (w), u1, u2, u1(w), u2(w))

Update2(w, u1, u2, u1
′, u2

′)
1. Let u1

′′, u2
′′ be the current values of w

2. From w’s Fibonacci max heap, remove (u1, u2), and insert (u1
′, u2

′)
3. If the values at the top of the heap have changed, up-

date w’s values u1(w), u2(w); if w is not the root, then call
Update2(P (w), u1

′′, u2
′′, u1(w), u2(w))

Theorem 2. The fast implementation of IBIPL runs in O(n logn+nh log(n/h)) time.

Proof. Creating the sorted arrays will take O(n logn) time.
The first subgame perfect solution takesO(n) time to generate; this includes creating

and populating all of the Fibonacci max heaps (for which the amortized insertion time
isO(1)). Calculating ε1 and ε2 also takesO(n) time, because we have sorted arrays and
thus only need to compare n adjacent pairs to find the smallest difference.

There are at most n iterations of the loop: each iteration other than the last must
delete at least one leaf node. Within each iteration, we must find i1′ and i2′, which
takes O(log n) time using binary search. Thus, this takes a total of O(n log n) time.

We still need to consider the time needed for the deletions and updates. Each leaf
node can be deleted at most once, so we have O(n) deletions in total. Finding the
leaves that need to be deleted only requires us to advance through the arrays from i1 to
i′1 and from i2 to i′2. Hence, finding the leaf nodes to delete requiresO(n) time in total.

Each individual leaf deletion can result in a number of updates (including both
Update1s and Update2s); however, it can result in at most h updates, because a node
can only call Update1 or Update2 on its parent. Letting bv be the branching factor
(number of children) of v, updating node v requiresO(log(bv)) time for (at most) an in-
sertion and a deletion into a Fibonacci max heap. At worst, we have h nodes v1, . . . , vh

that require updating as a result of a single leaf deletion, resulting in a total update
time of log(bv1) + . . . + log(bvh

). We know, however, that bv1 + . . . + bvh
≤ 2n:

this is because there are at most 2n nodes in the tree in total (because we assume that
each node has a branching factor of at least 2), and the children of different nodes do
not overlap. The optimization problem maximize log(bv1) + . . .+ log(bvh

) subject to
bv1 + . . . + bvh

≤ 2n is solved by setting bvi = 2n/h for every i, because the log
function is concave. It follows that the total time required for updates as a result of a
single leaf deletion is O(h log(n/h)), resulting in a bound of O(nh log(n/h)) for the
total time for updates.

Adding everything together, our total runtime bound is O(n log n + n + n logn +
n+ nh log(n/h)) = O(n logn+ nh log(n/h)).
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For the purpose of reducing the runtime bound (and in its own right), it is interesting
to consider how many iterations a particular type of tree can require. In the proof of
the runtime bound above, we only used the fact that there are at most n iterations.
We already know that the centipede game requires Ω(n) iterations, but of course the
centipede game tree is extremely unbalanced. In the full version of our paper, we give
lower bounds of Ω(

√
n) iterations for both the case where the tree is a balanced binary

tree, and the case where the tree has depth two. We also construct a game in which the
solution in the first iteration is to move left at the root, in the second iteration it is to
move right, and in the third it is once again to move left.

6 Conclusions

In this paper, we introduced a new solution concept for two-player perfect-information
games that attempts to model a type of trusting behavior (together with the “ethi-
cal” behavior of not violating that trust). The concept takes subgame perfect Nash
equilibrium as a starting point, but then repeatedly resolves the game based on the
players being able to trust each other. We gave two distinct algorithmic definitions of
the concept and showed that they are equivalent. Finally, we gave a fast implementa-
tion of one of the algorithms for solving the game, and showed that it runs in time
O(n log n+ nh log(n/h)).

There exist a large number of directions for future research. First, the validity of the
concept should be evaluated. While we believe that the two equivalent definitions pro-
vide a strong normative justification of our concept, there may be other axiomatizations
of the concept that make it even more convincing. However, as we have said previously,
our concept only considers one particular type of ethical behavior, and other types of
ethical behavior may lead to other natural solution concepts. It would also be interesting
to investigate in more detail to what extent our solution concept models human behav-
ior, taking a more descriptive approach rather than the normative approach discussed
so far.

Another interesting direction is to try to generalize the concept to 3+-player games
and/or games with imperfect information. Neither of these generalizations seem trivial.
For example, if there is third player that barely affects the outcome of the game at
all, then are the first two players still obliged to maintain player 3’s utility at at least
the same level across iterations? And, if (due to imperfect information) it is not clear
to player 1 whether player 2 took a “trusting” move, is player 1 obliged to assume
that player 2 took such a move or not? Hence, it is not clear whether the 3+-player
and/or imperfect-information cases admit as clean of a concept as the 2-player perfect-
information case. Another issue is that our concept in some sense assumes that it is
common knowledge that both players will behave ethically, and it is not clear what
should be done if this is not the case. (One might model this as a game of imperfect
information in which Nature first decides which players are ethical.)

Finally, how can we use this concept to approximately solve games that are so large
that it is not possible to write down the entire tree? AI techniques for such games are
usually based on limited-depth lookahead and heuristics to evaluate the nodes at this
limited depth. For our concept, it is not clear whether the correct approach is to use



An “Ethical” Game-Theoretic Solution Concept 707

this type of limited-depth search on the full remaining tree within each iteration of the
algorithm; or, to run the algorithm (all the iterations) on a limited-depth tree; or to do
something entirely different. It also seems that if the two players do not use the same
heuristics or depths, this can cause significant difficulties, because from one player’s
perspective the other may not be acting ethically.
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Abstract. In the classical secretary problem, the objective is to select
the candidate of maximum value among a set of n candidates arriving
one by one. The value of the candidates come from an unknown distribu-
tion and is revealed at the time the candidate arrives, at which point an
irrevocable decision on whether to select the candidate must be made.
The well-known solution to this problem, due to Dynkin, waits for n/e
steps to set an “aspiration level” equal to the maximum value of the can-
didates seen, and then accepts the first candidate whose value exceeds
this level. This guarantees a probability of at least 1/e of selecting the
maximum value candidate, and there are distributions for which this is
essentially the best possible. One feature of this algorithm that seems
at odds with reality is that it prescribes a long waiting period before
selecting a candidate. In this paper, we show that if a standard hazard
rate condition is imposed on the distribution of values, the waiting pe-
riod falls from n/e to n/ log(n), meaning that it is enough to observe
a diminishingly small sample to set the optimal aspiration level. This
result is tight, as both the hazard condition and the optimal sampling
period bind exactly for the exponential distribution.

1 Introduction

The classical secretary problem, dating back to late 1950’s and early 1960’s,
asks whether one can hire the best secretary among a set of n candidates with
unknown values arriving for interviews in a random order. Only one offer can be
made, and the decision about hiring a candidate has to be made immediately
after the interview and before seeing the next candidate. The surprising result
(often attributed to Dynkin [2]) is that it is indeed possible to select the best
secretary with a constant probability using the following strategy: do not make
any offer to the first n/e candidates that arrive, and after that, make an offer to
the first candidate whose value exceeds the value of all the candidates seen so
far. In other words, the algorithm starts with an exploration phase that sees the
first n/e candidates and sets an aspiration level equal to the highest value seen in
the exploration phase. After that, the algorithm hires the first candidates that
exceeds the aspiration level. We call such a strategy an “aspiration strategy”.
Many variants of the secretary problem and this solution, and their applications
to problems such as online mechanism design for auctions are studied in the
literature; see, for example, the survey papers [1,4].
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An alternative formulation of the secretary problem (and according to
Ferguson [3], the formulation closer to the original “game of googol” puzzle due
to Martin Gardner in 1960 [5]) is as follows: An adversary selects the distribu-
tion from which the n values will be drawn independently.1 The algorithm learns
about this distribution (but not the actual values), and then sees the values one
by one. The algorithm must decide when to stop, at which point it receives the
last value seen. The objective is to maximize the probability that this value is
the maximum value, or, equivalently, the expectation of the ratio of this value
and the ex post maximum value in the sequence. As observed by Ferguson [3],
this formulation of the problem is equivalent to the original one, and the same
aspiration strategy achieves a factor of 1/e. Furthermore, this result is tight,
that is, there is a distribution of values for which, even knowing the distribution,
the optimal strategy is the aspiration strategy with a factor of 1/e.

One unsatisfactory feature of the aspiration strategy is that it requires a
long exploration phase (observing a constant fraction of the candidates) before
setting the aspiration level. One might suspect that this is due to the fact that
there is no penalty (except the possibility of missing the maximum value) in the
secretary problem for waiting, but surprisingly, similar results hold for variants
of the secretary problem where waiting is punished by discounting the values
or by setting an explicit cost for each period that no one is hired [4,7]. The
main message of this paper is to show that a long exploration phase is indeed
an artifact of the assumption that the values are coming from a worst-case
distribution. We show that if we impose a hazard rate condition, frequently
used in engineering analyses and the analysis of auctions, the picture changes
drastically: even the worst value distribution satisfying this condition requires
an exploration phase of length n/ log(n), significantly smaller than n/e.

2 The Model

Consider a setting where one needs to hire a secretary among a set of n potential
candidates. These potential candidates arrive one per time period. Candidate i
has a value vi. vi’s are independently and identically distributed according to a
distribution F with cdf f . The value of vi is revealed when the i’th candidate
arrives. The objective is to give a termination rule (i.e., an algorithm that after
observing the first i values decides whether to stop or to continue) that stops at
the candidate with the maximum value among the n candidates. The algorithm
does not have any knowledge of the distribution F .

A standard approach to solve the above problem is to collect data by observing
vi’s for k periods, set an aspiration level equal to the maximum value observed

1 To be precise, Gardner’s formulation does not assume the values are selected inde-
pendently; instead, it assumes that the adversary selects the values from any joint
distribution that is permutation invariant (exchangeable). However, the assumption
that the values are chosen independently is nearly without loss of generality since
an infinite sequence of exchangeable random variables is conditionally independent
by Kingman’s theorem [6].
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during those k periods, and then accept the first candidate observed with value
exceeding the aspiration level, or the last candidate. We call such a strategy an
aspiration strategy. A classical result due to Dynkin [2] shows that an aspiration
strategy with k = n/e picks the candidate with the maximum value among all n
candidates with probability at least 1/e. Furthermore, this is essentially the best
possible, that is, there are distributions for which no algorithm can guarantee a
probability more than 1/e of picking the candidate with the maximum value.

In this paper, we focus on a special class of value distributions F . First, we
assume that values are all positive, that is, F has support on [0,∞) and F (0) = 0.
This is essentially without loss of generality, as any candidate with negative or
zero value can be discarded. More importantly, we assume that the distribution
F satisfies the monotone hazard rate condition, which means that the hazard
function f(y)

1−F (y) is a monotone non-decreasing function of y. This assumption
is standard in engineering applications and auction theory [8], and intuitively
means that given that the value of a candidate is not less than y, the likelihood
that it is equal to y increases as y increases. As an example, Gaussian, uniform,
and exponential distributions satisfy this property.

In addition to the above, we make the simplifying assumption that the values
are bounded. Therefore, the inverse function F−1(z) := inf{y ∈ [0,∞) : F (y) ≥
z} is well-defined on its domain [0, 1] and satisfies F−1(0) = 0 and F−1(1) <∞.2

3 Main Result

Our main result is to analyze the optimal sample size in an aspiration strategy,
assuming that the value distribution satisfies the hazard rate condition. This is
stated in the following theorem.

Theorem 1. Suppose the value distribution F satisfies the above conditions.
Then the optimal sample size in an aspiration strategy does not exceed

n− 1∑n−1
i=1

1
i

− 1.

Proof. Consider the optimal aspiration strategy, and let y denote the realized
maximum value of the first k observations. The probability density function
associated with this event can be written as kF (y)k−1f(y). The strategy then
performs a search from candidates k+1 to n. Period j (j > k) is reached if none
of the earlier values are acceptable. This happens with probability F (y)j−k−1,
and in this case if the value x of the j’th candidate exceeds y (or if j = n), it is
accepted. Thus the payoff in an aspiration strategy associated with setting the
aspiration level with k observations is

2 It is not hard to see that our proof works for a more general class of distributions,
satisfying the condition that limz→1(1 − z)F −1(z) = 0. This includes distributions
such as the exponential distribution. Details of the proof is left to the final version
of the paper.
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where the third equation follows from integration by parts, and the last equation
is using the change of variables z = F (y). Thus,

πk+1 − πk = (k +1)
n−2�

j=k+1

� 1

0
F −1(z)

zj

j
dz−k

n−2�
j=k

� 1

0
F −1(z)

zj

j
dz +

1
n − 1

� 1

0
F −1(z)dz

=
n−2�

j=k+1

� 1

0
F −1(z)

zj

j
dz −

� 1

0
F −1(z)zkdz +

1
n − 1

� 1

0
F −1(z)dz

=
� 1

0
F −1(z)

�
� n−2�

j=k+1

zj

j
− zk +

1
n − 1

�
� dz

= F −1(z)

�
� n−2�

j=k+1

zj+1

j(j + 1)
− zk+1

k + 1
+

z

n − 1

�
�
������
1

z=0

−
� 1

0
F −1′

(z)

�
� n−2�

j=k+1

zj+1

j(j + 1)
− zk+1

k + 1
+

z

n − 1

�
� dz

= −
� 1

0
F −1′

(z)

�
� n−2�

j=k+1

zj+1

j(j + 1)
− zk+1

k + 1
+

z

n − 1

�
� dz, (1)

where the last equation follows from the fact that F−1(1) <∞ and the identity

1
n− 1

+
n−2∑

j=k+1

1
j(j + 1)

− 1
k + 1

= 0. (2)
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Using the same identity, we can write

πk+1 − πk = −
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This can be written as
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Since F−1′(z) = 1
f(F −1(z)) , the function (1− z)F−1′(z) = 1−z

f(F −1(z)) is the com-

position of the function 1−F (y)
f(y) , which is non-increasing by the hazard rate con-

dition, and the function F−1, which is non-decreasing. Therefore, (1−z)F−1′(z)
is a non-increasing function of z. The function β(z) can be simplified as follows:

β(z) =
n−2∑

j=k+1

1
j(j + 1)

j∑
i=k+1

zi +

⎛⎝ n−2∑
j=k+1

1
j(j + 1)

− 1
k + 1

⎞⎠ k∑
i=1

zi

=
n−2∑

i=k+1

n−2∑
j=i

1
j(j + 1)

zi − 1
n− 1

k∑
i=1

zi

=
n−2∑

i=k+1

(
1
i
− 1
n− 1

)
zi − 1

n− 1

k∑
i=1

zi

=
n−2∑

i=k+1

zi

i
− 1
n− 1

n−2∑
i=1

zi, (4)

where the second and the third equations follow from the identity (2). This
function has the following properties:

1. β(0) = 0.
2. For z > 0 sufficiently small, β(z) < 0. This follows from β′(0) = −1

n−1 < 0.
3. There is a z∗ ∈ (0, 1] with β(z) > 0 if and only if z > z∗.

The last property follows from expressing β as

β(z) = zk

(
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zi−k

(
1
i
− 1
n− 1

)
− 1
n− 1

k∑
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and noting that the term in parentheses is increasing in z, so that once the term
is positive it remains positive.

Claim. Assume β is a function satisfying the above properties. If
∫ 1
0 β(z)dz ≤ 0,

then for every non-negative non-increasing function x(.) we have
∫ 1
0 x(z)β(z)

dz ≤ 0.

Proof. Consider the value z∗ guaranteed to exist by property (3). We have∫ 1
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The first inequality replaced x in the first integral with the lowest possible value
given the other values, increasing the objective function since β was negative, and
x in the second integral with the highest possible, again increasing the objective
function since β was positive.

Now apply the claim with x = F−1′(z)(1− z). By (4), we have∫ 1
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Therefore, when k ≥ n−1�n−1
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−1, by the above equation
∫ 1
0 β(z)dz ≤ 0. Therefore,

since x = F−1′(z)(1 − z) is a non-negative and non-increasing function, by
Claim 3 and Equation (3) we obtain

πk+1 − πk =
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Thus, the sample size k that maximizes πk cannot be larger than n−1�n−1
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Note that
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1
i ≥ lnn. Thus, an upper bound for the optimal k is
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lnn

− 1 <
n

lnn
.
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Table 1. Comparison between three aspiration strategies with exponential distribution

n/e n/ ln n Optimal
n Value Higher Value Higher Search

50 64% 22% 69% 12% 88%
100 64% 27% 71% 15% 89%
500 64% 36% 76% 20% 92%

1000 63% 38% 78% 22% 92%
5,000 63% 43% 81% 25% 94%

10,000 63% 44% 82% 26% 94%

The upper bound is strict in the sense that it is taken on exactly when the
distribution is exponential and satisfies the hazard rate constraint with equality.

Our result shows that, for example, when n is a million, it is enough to explore
7.2% of the candidates before setting an aspiration level, rather than 36.8% as
in the standard result. Moreover the share of observations devoted to learning
falls as the sample size rises, which is a natural conclusion, as the standard
mechanism does a lot of search.

How well does the improved calculation do? Table 1 reports estimated values
using aspiration strategies with exploration phases of length n/e and n/ lnn, for
various values of n and an exponential distribution. All values are expressed as
a percentage of the expected maximum realized value∫ ∞

0
nxF (x)n−1f(x)dx.

The column “Higher” gives the proportion of times a strategy beats the other
strategy. Thus the n/e strategy wins over n/ lnn frequently, but the n/ lnn
produces a higher value.

The last column of the table sets out the average values associated with opti-
mal search, conditional on the exponential distribution. Optimal search involves
setting a critical value ct in each time period t and accepting an offer if it exceeds
that critical value. The critical values ct can be computed using a dynamic pro-
gramming approach as follows: clearly cn = 0 as any offer better than nothing
is acceptable in the last step. This produces a last period expected value vn of∫ ∞

0
xf(x)dx.

Let vt be the value of searching starting from period t. This value is

vt =
∫ ∞

ct

xf(x)dx + F (ct)vt+1.

Clearly vt is maximized by ct = vt+1, which gives

vt =
∫ ∞

vt+1

xf(x)dx + F (ct)vt+1 = vt+1 +
∫ ∞

vt+1

(1− F (x))dx.
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It is not hard to see that the upper bound on the length of the exploration
phase is tight for the exponential distribution, but can be too large for other
distributions. For example, for the uniform distribution, by Equation (1) we
have

πk+1 − πk = −
∫ 1

0

⎛⎝ n−2∑
j=k+1

zj+1

j(j + 1)
− zk+1
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1
j(j + 1)(j + 2)

+
1

(k + 1)(k + 2)
− 1

2(n− 1)

=
1
2

(
1

(k + 1)(k + 2)
− 1
n

)
.

Thus, the optimal k for the uniform distribution is less than
√
n. These results

give insight into optimal experimentation. The standard approach utilizes 37%
of the data for experimental purposes. In contrast, when tails are not too fat,
one should use at most a 1/ lnn fraction for learning about the distribution.
With the uniform distribution, a 1/

√
n fraction is the appropriate length of the

experimentation phase.
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Abstract. In this paper, we investigate the welfare effects of transition
from a single-service class to two-service classes in the Internet. We con-
sider an ISP who offers network access to a fixed user base, consisting
of users who differ in their quality requirements and willingness to pay
for the access. We model user-ISP interactions as a game in which the
ISP makes capacity and pricing decisions to maximize his profits and the
users only decide which service to buy, if any. Our model provides robust
pricing for networks with single- and two-service classes. Our results in-
dicate that transition to multiple service classes is socially desirable, but
could be blocked due to the unfavorable distributional consequences that
it inflicts on the existing network users. To facilitate the transition, we
propose a simple regulatory tool that alleviates the political economic
constraints and thus makes the transition feasible.

1 Introduction

In today’s Internet, despite the technological possibility of providing differen-
tiated services1, no such services are actually offered by the ISPs. We outline
five main reasons for the persistence of this situation. First, ISPs claim that the
demand is uncertain and hence the risks involved render such a QoS provision
unprofitable2. Therefore, ISPs lack incentives to explore offering QoS.

Second, there is a lack of coordination between the ISPs in QoS provision. It
is possible that each ISP would individually like to offer QoS. But, the provision
of QoS depends on all ISPs on a path between two users, not just on a single
ISP. Lack of coordination between the ISPs and conflicts about dividing the QoS
revenue between the involved ISPs preclude them from offering QoS [4].

Third, QoS provision appears to be an inferior investment relative to plain
capacity expansion. For e.g. [5] asserts that over-engineering the current network
by investing in capacity is more profitable than investing in provision of multiple
service classes while [6] concludes that the upfront costs might be too high and
call for very simple QoS mechanisms.

1 For the sake of brevity, we use the term QoS to refer to such differentiated services.
2 Indeed, this profound uncertainty posits considerable difficulties for estimating de-

mand [1,2,3].
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Fourth, the current threat of network neutrality regulations hampers ISPs’
incentives for QoS. Indeed, in the current regime, the ISPs are “at their best be-
havior,” i.e., they suffer from self-imposed constraints [7,8,9]. These constraints
preclude them from investing into developing QoS. Indeed, in the existing politi-
cal climate, such investments are subject to regulatory uncertainty. For example,
if an ISP evaluates the NPV (net present value) of its project to provide a spe-
cific QoS product, a positive probability of imposition of a neutral regime clearly
reduces the project’s NPV relative to the situation where the threat of regula-
tion is not present. It is likely that these self-imposed constraints also create
disincentives to invest in capacity expansion.

Lastly, fifth, the existing QoS pricing research [10,11] indicates the difficulties
of robust pricing of QoS. The idea of utilizing DiffServ to provide multiple ser-
vice classes by pricing them differently was around for a while [12]. Still, recent
research attempts [10] suggest that the only socially optimal capacity division al-
locates zero capacity share for non-premium services. This paper mostly focuses
on the fifth reason, but also suggests a connection to the third and fourth.

We make the following contributions to the literature. First, we develop robust
pricing for a single ISP providing two service classes. Second, we investigate the
political economic considerations that may constrain the feasibility of transition
from the current network (where QoS is not provided) to the network with QoS
provision. Third, we propose a simple regulatory tool that permits to alleviate
the political economic constraints and make the transition feasible.

In this paper, we develop a model that permits robust pricing of differentiated
services, based on the network architecture similar to the Paris Metro proposal
(PMP) [12]. Other closely related papers modeling PMP are [13, 14]. Although
the authors in [13] include capacity choice in the description of the game, they
assume zero capacity costs, and mostly focus on a subgame in which capacities
are fixed. While [13] assumes zero costs of capacity, in [14], capacity is costly,
with capacity costs increasing and convex. On one hand, [13] demonstrates that
monopolistic ISP will indeed provide two service classes, and suggest that the
lack of QoS provision on the Internet could be a consequence of competition
among the ISPs. On the other hand, [14] finds that, in equilibrium, the two
competitors have different prices and congestion levels, with the most expensive
one being the least congested.

Both, [13, 14] focus on ISP competition, with network access provided by
duopolists. They do not study the effects of ISP choices on user welfare. We
assume that capacity is costly, and provide full analysis of capacity choice and
its division and its consequences for user welfare, but we do it for a monopolistic
ISP. Our model is extendable to multiple ISPs, and our preliminary results [15]
indicate that ISP competition does not necessarily preclude QoS provision.

In this paper, we also connect the ongoing network neutrality debate with
ISPs’ incentives to invest into QoS provision. We argue that the threat of neu-
trality regulations hampers ISPs’ incentives for QoS and hence denies society
the higher welfare effects associated with multiple service classes. In our related
work [16], we explore an inexpensive regulatory tool that simplifies the division
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of capacity and alleviates investment disincentives of ISPs by establishing prop-
erty rights over a small fraction of their capacity. This tool facilitates the social
planner to reduce the harmful effects of transition to multiple service classes and
enables the deployment of QoS and development of novel applications.

2 Model

We start with a simple model, in which a single ISP (a monopolist) offers con-
nectivity to a user base of fixed size, and we let N (which we assume to be large)
be the total number of users. First, the ISP chooses his capacity C > 0 that he
builds at a constant unit cost τ > 0. Investment in capacity is irreversible. Sec-
ond, once the capacity is sunk, the ISP makes a pricing decision after which each
user decides whether to adopt the service. The ISP’s objective is to maximize
his profit Πtotal which equals his revenue net of his expense on capacity:

Πtotal = max
C,p

{pZ − τC} ,

where Z is the number of users who adopt the service, and p is the ISP access
price for users. If the ISP offers multiple service classes and allocates a capacity
Ci > 0 for the provision of service i at a price pi > 0, his objective becomes:

Πtotal = max
Ci,pi

{∑
i

piZi − τC
}
,

where C =
∑

i Ci and Zi is the number of users who adopt service i.
We assume that, on average, each user sends an identical unit amount of

traffic. We define the quality of service q observed by users as q = 1 − Z/C,
if Z users are multiplexed in capacity C. This definition of quality reflects the
common perception about service quality. As Z decreases and capacity remains
the same, the quality of service improves, i.e., as the capacity per user increases,
the quality increases as well. Further, we assume that each user in the user base
is characterized by his type θ, which is a random variable uniformly distributed
in [0, 1]. To characterize the user demand, we make the following assumptions.
For a user with type θ, the lowest acceptable service quality is q = θ; and his
highest affordable price is p = θ. Thus, a user buys a service only if this service
is acceptable and affordable, i.e., p < θ ≤ q. (See [17] for a related discussion
of this model.) For a user of type θ, if the quality of service q ≥ θ, his surplus
is the difference between the price and his willingness to pay (which is θ itself).
Thus, for the user with type θ, the surplus Uθ is given by

Uθ = (θ − p)I(q − θ), where I(y) =
{

1 if y ≥ 0
0 if y < 0

. (1)

θ represents the quality of the application that a user is interested in. Thus, in
our model, user adoption is determined by the availability of the most quality
intensive application that his type θ utilizes. Indeed, if a user adopts the network
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service for e-mail only, he gains no extra surplus from the fact that the actual
network quality permits him to use streaming video (which he does not utilize).
Compare this to the user demand in [18]. In general, for a distribution g(θ) of
user types θ ∈ [0, 1], the aggregate user surplus becomes Utotal =

∫ 1
0 Uθg(θ)Ndθ,

and with our assumption of uniformly distributed user types, we have Utotal =∫ 1
0 UθNdθ. Let c denote capacity per user in the user base (c = C/N) and let z

denote the fraction of users adopting the service of quality q (z = Z/N). Then,
Z/C = z/c and from our definition of service quality: q = 1 − z/c. Let also
Π = Πtotal

N and U = Utotal

N , where Π is the profit and U is the surplus per user
in the base. Thus, the ISP objective and user surplus become:

Π = max
c,p
{pz − τc} and U =

∫ 1

0
Uθdθ . (2)

Per user in the base, the social surplus S is the sum of user surplus and provider
profit, i.e., S = U+Π. Below, we analyze the ISP’s optimal choices for scenarios
where the ISP provides (i) a single service, and (ii) two different services, possibly
in the presence of a regulator who constrains the ISP.

3 Analysis

3.1 Single Service Class

In this section, we assume that the ISP provides only a single service class. This
means that his entire capacity is offered at a single price p. To start, we let ISP
capacity be fixed at C and solve the problem of optimal pricing. Once capacity
is sunk, the ISP’s objective is to maximize his revenue R (per user in the base):
R(c) = maxp pz. From (1), a user with type θ will adopt the access (service) if
and only if p < θ ≤ q, where q = 1− z/c, with z being the fraction of users who
adopt the service. Clearly, the service is affordable to all users with type θ > p.
As more users adopt the service, z increases and q decreases until it becomes
equal to the user type at some critical value of θ. Let users with types θ ∈ (θ

¯
, θ̄]

adopt the service. Then, we obtain (see [19])

θ
¯

= p and θ̄ =
p+ c
1 + c

, and z =
c

1 + c
(1− p) . (3)

Using (3), we express the revenue as

R(c, p) = pz =
c

1 + c
p(1− p) . (4)

To find the optimal price (which corresponds to maximum ISP revenue), we
differentiate (4) w.r.t. p and obtain p = 1/2. Thus, for any c, the revenue is
maximized at p† = 1/2, and R(c) = c

4(1+c) . Henceforth, we will use the su-
perscript † to designate the values that correspond to the ISP’s optimal choice
in the single service class case. Next, we use the expression for R(c) to sim-
plify the ISP objective to Π = maxc

c
4(1+c) − τc, which leads to (see [19]):
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c† = 1
2
√

τ
− 1 and p† = 1/2; θ†

¯
= 1

2 and θ̄† =
1
2+c

1+c . Notice that, c† is positive for
τ ∈ [0, 0.25] only. The optimal values Π†, U † and S† are derived in the [19].

3.2 Two Service Classes (Divided Capacity)

Next, we assume that the ISP divides his capacity C = cN into two parts and
provides two services. Let Cl = clN and Ch = chN be the capacities utilized for
each service (l and h respectively), and pl and ph be the prices charged for the
respective services; we assume pl < ph. Further, let zl and zh be the fraction of
users who adopt the respective services l and h. From our definition of service
quality (Section 2), qi = 1− zi/ci, where ci = Ci/N , i = l, h and

∑
i ci = c. Let

x denote the capacity fraction allocated to the provision of service h. Then,

ch = xc and cl = (1− x)c , (5)

and the ISP objective can be written asΠ = Πtotal/N = maxc,x,ph,pl
(
∑

i=l,h pizi
− τc). From (5), one can easily switch between the use of (cl, ch) and (c, x) as
choice variables. In fact, the expressions in terms of cl and ch easily transform
to the ones in terms of c and x. Although we will express the ISP’s objective
in terms of c and x, to simplify the presentation we express the equations in cl
and ch.

Theorem 1. For any fixed c and x, in the ISP optimum,

pl(c, x) = 1
2 −

chcl

2[(1+cl)(1+ch)cl+ch] , ph = pl+cl

1+cl
(6)

θ
¯ l = pl, θ̄l = θ

¯ h = ph, θ̄h = ph+ch

1+ch
, (7)

where users with θ ∈ (θ
¯ l, θ̄l] and θ ∈ (θ

¯ h, θ̄h] adopt service l and h respectively.

For proof, see [19]. From Theorem 1, we have θ̄h > θ̄l, which implies that service
h, that has a higher price (pl < ph) has higher quality (ql < qh) too. Henceforth,
we will denote the ISP’s optimal choices in two service classes by ‡.

Corollary 1. For any fixed c and x in the ISP optimum, we have

pl(c, x) <
1
2

and ph(c, x) >
1
2
. (8)

For proof, see [19]. From (1) and Corollary 1, we deduce that in the case of a
transition from a single service class to two service classes, all existing users who
adopt service l gain surplus while those who adopt service h lose surplus.

From Theorem 1 (using (6) and (7)), we derive the maximum revenue R(c, x)

R(c, x) =
[(1 + ch)cl + ch]2

4 [(1 + cl)(1 + ch)cl + ch] (1 + ch)
. (9)

Expression (9) is too cumbersome to carry out investigation analytically. Hence,
we use MATLAB� to obtain the solution numerically, for results see [19].
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3.3 Network Regulations

In the absence of regulation, from Section 3.2, the ISP objective could be written
as a function of c and x as follows: Π = maxc,xΠ(c, x) = maxc,x {R(c, x)− τc} .
We will say that the network is regulated when x is chosen by an outside party
(regulator). We assume that the regulator’s choice variable is x, i.e., the regulator
only affects the ISP by constraining him from dedicating more than a fraction �

of the entire capacity to service h. Then, the regulated ISP’s profit maximization
can be expressed as

Π = max
c,pl,ph

{plzl + phzh − τc} where cl ≥ (1− �)c and ch ≤ �c .

We consider three regulatory scenarios. Regulator 1 (a social planner) maximizes
social surplus (sum of aggregate user surplus and ISP profit), regulator 2 max-
imizes user surplus and regulator 3 maximizes the surplus of the users served
under a single service class (i.e., users with type θ ∈ (θ†

¯
, θ̄†]). For the regulators

1 - 3, the respective objectives S1, S2 and S3 are:

S1 = max
x
{U +Π} and S2 = max

x
U and S3 = max

x
U |θ∈(θ†

¯
,θ̄†] , (10)

where U is defined in (2). Let �1, �2, �3 be the values of x chosen by the regulators
1-3 respectively. From (10), it is intuitive that: �3 < �2 < �1 < x

‡.
The case of a single service class is identical to the imposition of x = 0. We

do not consider explicit regulations in the case of single service class, but we
believe that the lack of QoS provision by ISPs in the current Internet reflects
the tacit presence of such a regulatory threat. The ongoing network neutrality
debate reflects that the threat is indeed real. We argue that this regulatory threat
makes the ISPs to act as if the constraint x ≡ 0 is imposed [7]. This threat could
be one of the reasons why QoS is not provided currently.

4 Results

Fig. 1(a) depicts the surplus gain of the single class users (users with type
θ ∈ (θ

¯
†, θ̄†]). From Fig. 1(a), in the absence of regulation or with regulator

1, the transition to two service classes results in aggregate surplus loss for these
users. Although, with regulator 2, these users do gain surplus, this might be
insufficient to make the transition politically feasible, especially if the percent-
age of losing single service class users is high. We suggest that users who lose
surplus from transition are likely to resist the change. Hence, when this fraction
of users is high, these users may block such a transition. To assure feasibility,
the regulator may need to reduce the fraction of such losing users. We use regu-
lator 3 to show that it is possible to keep the fraction of users with surplus loss
under 10%.

Fig. 1(b) depicts the percentage of existing single service users whose surplus
decreases after the transition to two service classes. This fraction should be taken
into account and kept sufficiently low by the regulator to assure that these
users do not block the transition. This is exactly the reason why we consider
regulator 3. Indeed, with the unregulated ISP and regulator 1, more than 50%
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Fig. 1. Comparison of Regulatory Regimes

of single service class users lose from the transition to two service classes. But,
for regulator 3, the percentage of losing users is at most 10%. For regulator 2,
the percentage of users with surplus loss from transition to two service classes
is 40% at τ = 0.1. But, as τ decreases, this fraction decreases and reaches 10%
at τ = 0.01. To sum up, regulator 3 makes the transition to two service classes
politically viable and this transition is socially desirable (despite the fact that
only a limited fraction of capacity is allocated to service h).

5 Discussion and Conclusion

We make the following contributions to the literature. First, we develop robust
pricing for the network with two service classes. Second, we investigate the po-
litical economic considerations that may constrain the feasibility of transition
from the current network (where QoS is not provided) to the network with QoS
provision. Third, we propose a simple regulatory tool that permits to alleviate
the political economic constraints and make the transition feasible.

Specifically, from our analysis, the transition to two service classes is socially
desirable, but it could be blocked due to unfavorable distributional consequences
that the transition inflicts on some fraction of current network users. We intro-
duce a regulator (regulator 3), whose objective is to maximize the surplus of the
existing users. We show that with this regulator, at any unit cost of capacity
at most 10% of these users will experience surplus loss by the transition to two
service classes. Regulator 3 reaches this outcome via the imposition of a ceiling
on the fraction of installed capacity that the ISPs are allowed to allocate to the
provision of QoS services.
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Abstract. This paper considers the screening problem faced by a mo-
nopolist of a network good in a general setting. We fully characterize
the optimal contracts in the joint presence of network externalities and
asymmetric information about agents’ types. We find that the pattern
of consumption distortion crucially depends on the degree of network
congestability. It is shown that an optimal consumption scheme exhibits
a two-way distortion, no distortion on the top, or one-way distortion if
and only if network is congestible, neutral-congestible or discongestible.

Keywords: Nonlinear Pricing, Network Externalities, Distortion.

1 Introduction

Two prevailing rules in the classical adverse selection model are “no distortion
on the top” and “one-way distortion for less efficient types”, which means under
asymmetric information, the most efficient agent has the first-best allocation, all
the other types have allocations lower than the first-best one. These rules were
supported by many seminal studies such as those in Maskin and Riley (1984),
Baron and Myerson (1982), Mussa and Rosen (1978), etc. However, these rules
may not be true in the presence of externalities. In this paper, we will discuss
this issue in a nonlinear pricing environment.

An externality is present whenever the well-being of a consumer or the pro-
duction possibilities of a firm are directly affected by the actions of another in
the economy. In consumption sectors, externalities arise whenever a person’s
utility function includes arguments controlled by the other consumers. Among
all forms of consumption externalities, network externality is the most typical
one. It is defined as a change in the benefit, or surplus, that an agent derives
from a good when the total consumption of the same kind of goods changes.
Such a phenomenon might arise for any of a number of reasons: because the
usefulness of the product depends directly on the size of the network (e.g., tele-
phones, fax machines); or because of bandwagon effect, which means the desire
to be in style: to have a good because almost everyone else has it; or indirectly
� Corresponding author.
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through the availability of complementary goods and services (often known as
the “hardware-software paradigm”).

Most studies on consumption externalities in principal-agent setup find that
“no distortion on the top” rule does not hold any more, but the consumptions
still exhibit “one-way distortion”. Hahn (2003) built a model of telecommunica-
tion to examine the role of call and network externalities in nonlinear pricing. He
concludes that in equilibrium all types end up with suboptimal quantities. He
attributes this result to the existence of call externalities which is the benefit of
incoming calls to a subscriber who does not have to pay for the calls. Segal (1999,
2003) developed a general model of contracting with externalities and charac-
terize the nature of the arising inefficiencies. When externalities are positive, he
shows that each agent’s consumption level is smaller in the resulting equilibrium
allocation than in the socially efficient one. Strategic complementarity is iden-
tified as the factor accounting for this result. However, his analysis makes two
additional assumptions in identifying the direction of distortion: first, the con-
sumers are identical, and second, total welfare depends only on aggregate trade
and not on its allocation across consumers. Csorba (2008) showed that under-
consumption result holds even without these two assumptions if externalities are
positive. Applying monotone comparative static tools, he demonstrates that the
joint presence of asymmetric information and positive network effects leads to a
strict downward distortion for all consumers in the quantities provided.

It will be seen in this paper that the one-way distortion results in Segal (1999,
2003), and Csorba (2008) only allow the moderate complementarity of con-
sumers. If the consumers are strongly complementary (i.e., network is strongly
discongestible) to one another, then the concavity of objective function guarante-
ing the existence of global maximizer may be violated, and thus there may exist
no optimal contract for the principal. Furthermore, if the consumers are rivals
or substitutes to each other (i.e., network is congestible), the one-way distortion
results are no longer true. We give a full characterization of the pattern of distor-
tions in the joint presence of network externalities and asymmetric information
about agents’ types. It is shown that the pattern of consumption distortion cru-
cially depends on the degree of network congestability. Specifically, we show that
an optimal contract exhibits a “two-way distortion”, “no distortion on the top”,
or “one-way distortion” if and only if network is congestible, neutral-congestible
or mildly discongestible.

The reminder of this paper is organized as follows: Section 2 sets up economic
environments. Section 3 considers the design of optimal nonlinear pricing con-
tract in the presence of network externalities. Finally, concluding remarks are
offered in Section 4.

2 Economic Environments

Consider a principal-agent model in which the principal is a monopolist of a net-
work good with marginal production cost c and total output q. The principal’s
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payoff function is given by V = t − cq, where t is the payment received from
consumers.

Consumers have heterogenous preferences for the good, suppose there are n
different types of consumers, so that θ1 < θ2 < · · · < θn and let Θ denote the set
of types. Let f(θi) represents the proportion of θi type consumers in the whole
population. Denote by ∆θ ≡ θi − θi−1 > 0 the difference of adjacent types and
F (θi) =

∑
j�i f(θj) the cumulative frequency. Then by Law of Large Numbers,

it is mathematically equivalent to the framework with a single agent whose type
θ is distributed with c.d.f F (·) and p.d.f f(·) on Θ = {θ1, · · · , θn}.

A consumer of θi type is assumed to have an utility function of Ui = θiV (qi)+
Ψ(Q) − ti, where qi is the amount of the network good he consumes, Q =∑

i f(θi)qi is the total amount of network good in the economy (network magni-
tude) and ti is the tariff charged for qi by the principal. The utility function can
be divided into two terms additively: θiV (qi) is the intrinsic value of consuming,
while Ψ(Q) is the network value. Note that, we assume the network effect is
homogeneous among all the consumers, namely, the network value is independent
of individual preference θi and individual consumption qi.

It is assumed that V ′(q) > 0 and V ′′(q) < 0. The degree of network congesta-
bility is defined by the sign of Ψ ′′(Q).

Definition 1. The network is congestible, neutral-congestible, or discongestible
if and only if Ψ ′′(Q) < 0, Ψ ′′(Q) = 0, or Ψ ′′(Q) > 0, respectively.

Remark 1. When the network capacity is large and the maintaining technology
is advanced enough, an increase in one consumer’s consumption will increase
the marginal utilities of others, and so Ψ ′′(Q) > 0. When network capacity and
maintaining technology are limited, consumers are rivals to one another in the
sense that an increase in one consumer’s consumption will decrease the marginal
utilities of others, and thus Ψ ′′(Q) < 0. Finally, when the expansion of network
benefits all the consumers with constant margin, the network value term is a
linear function with Ψ ′′(Q) = 0.

The objective of the monopolist is to design a menu of incentive-compatible
and self-selecting quantity-price pairs {q(θ̂), t(θ̂)} to maximize her own expected
revenue, where θ̂ ∈ Θ is the consumer’s announcement. The timing of contracting
is given by the following procedures:

– Stage 1. The consumer observe his own “type” θ.
– Stage 2. The monopolist offers a contract {q(θ̂), t(θ̂)}.
– Stage 3. The consumer accepts or refuses the contract.
– Stage 4. The contract is executed, both parties get their respective payoffs.

If the monopolist should offer the same menu of contracts for all consumers,
all the consumers except of the lowest type θ1 have incentive to mimic the
lower types, as in the standard adverse selection model, an incentive-compatible
menu {qi, ti}n

i=1 should satisfy participation constraints (IRi) and incentives
constraints (ICij):
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IRi : θiV (qi) + Ψ(Q)− ti � 0
ICij : θiV (qi) + Ψ(Q)− ti � θiV (qj) + Ψ(Q)− tj1

or equivalently, written in the form of information rents as:

IRi : Ui � 0 ,
ICij : Ui � Uj + (θi − θj)V (qj), ∀i, j .

Here the reservation utilities of the consumers are normalized to be zero.
As in standard incentive theory literature, we first analyze the set of con-

straints to find the binding ones2.

Lemma 1. In the second-best optimal contract there are n binding constraints:
IR1, the individual rationality constraint of the lowest-type consumer; and
ICi(i−1), for i = 2, 3, · · · , n, the downward local incentive constraints.

Proof. The proof is omitted since it is standard.

3 Economies with Network Externalities

In this section, we considers the principal’s contract-designing problem in the
presence of network externalities. To get a reference system for comparison, let us
first suppose that there is no asymmetry of information between the monopolist
and consumer. The first-best3 consumption levels are obtained by equating the
consumer’s marginal utility and the monopolist’s marginal cost. Hence, we have
the following first-order conditions:

θiV
′(qi) + Ψ ′(Q) = c, ∀i ∈ {1, 2, · · · , n} . (1)

Under asymmetric information, with the incentive compatible constraints and
participation constraints, the monopolist’s optimization program can be repre-
sented as:

(P)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

{Ui,qi}

{
n∑

i=1

f(θi)
[
θiV (qi)− cqi

]
+ Ψ

(
n∑

i=1

f(θi)qi

)
−

n∑
i=1

f(θi)Ui

}
s.t. IRi : Ui � 0,
ICij : Ui � Uj + (θi − θj)V (qj), ∀i, j

.

By adding incentive constraints (ICi+1,i) and (ICi,i+1),we see that qi+1 � qi,
which is necessary for a implementable mechanism. From Lemma 1 we have
Ui = Ui−1 + ∆θV (qi−1) = · · · = ∆θ

∑i−1
j=1 V (qj). By substituting into these

1 Note that, there is a continuum of consumers in each type, so the individual misreport
has no effect on the total consumption Q.

2 Here binding means holding with equality.
3 In this paper we denote by “first-best” the case with complete information, “second-

best” the case with asymmetric information.
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information rent functions, the principal’s objective function in (P) simplifies to
the following form:

n∑
i=1

[
θi −

1− F (θi)
f(θi)

∆θ

]
f(θi)V (qi) + Ψ

(
n∑

i=1

f(θi)qi

)
− c

n∑
i=1

f(θi)qi . (2)

The first-best and second-best consumptions can be thus regarded as the
solutions to the following unconstrained program parameterized on ε:

max
q∈Rn

+

Π(q, ε) , (3)

where

Π(q, ε) =
n∑

i=1

[
θi + εH(θi)

]
f(θi)V (qi) + Ψ

(
n∑

i=1

f(θi)qi

)
− c

n∑
i=1

f(θi)qi , (4)

H(θ) ≡ 1−F (θ)
f(θ) ∆θ, q = (q1, q2, · · · , qn) ∈ Rn

+ and ε ∈ [−1, 0]. If ε = 0, the
solution to (3) is the first-best consumption given in (1); if ε = −1, it is the
second-best consumption characterized by the following proposition. We ignore
the implementability conditions qn � · · · � q1 for the moment, and check at the
end whether they are satisfied in equilibrium.

Proposition 1. If the weak monotone hazard rate condition d
dθ

[
1−F (θ)

f(θ)

]
� 0 is

satisfied, and the Hessian matrix Πqq is negative definite at
(
qSB
1 , qSB

2 , · · · , qSB
n

)
for ε = −1, then the second-best consumption qSB

i satisfies[
θi −H(θi)

]
V ′(qi) + Ψ ′

(
n∑

i=1

f(θi)qi

)
= c, ∀i ∈ {1, 2, · · · , n} . (5)

Proof. Expression (5) can be attained directly from the first order condition
of (3). The weakly hazard rate property H ′(θ) � 0 ensures the implementabil-
ity conditions qSB

i � qSB
i+1, ∀i ∈ {1, 2, · · · , n}, and the negative definiteness of

Hessian matrix Πqq ensures the second order sufficient condition of optimiza-
tion. Thus (5) gives the second-best consumptions.

We now compare the first-best and the second-best consumptions in the following
proposition.

Proposition 2. Suppose that V ′(·) > 0, V ′′(·) < 0, and the weakly monotone
hazard rate property d

dθ

[
1−F (θ)

f(θ)

]
� 0 holds. Then distortion way of consumptions

depends on the degree of network congestibility.

1. If the network is mildly discongestible, i.e., the value of Ψ ′′(Q) > 0 is not
to big such that the Hessian matrix Πqq is negative definite for all q ∈ Rn

+
and ε ∈ [−1, 0],4 then the consumption exhibits one-way distortion: qSB

i <
qFB
i , ∀i.

4 If the Hessian matrix is not negative definite, there might exist no global maximizer
for the principal’s program (3).
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2. If the network is congestible with Ψ ′′(Q) < 0, then it exhibits two-way distor-
tion. That means there exists a threshold value i∗ ∈ {1, 2, · · · , n}, for i > i∗,
qSB
i > qFB

i ; for i < i∗, qSB
i < qFB

i .
3. If the network is neutral-congestible with Ψ ′′(Q) = 0, then it exhibits “one-

way distortion” and “no distortion on the top”: qSB
i < qFB

i , ∀i < n and
qSB
n = qFB

n .

In all these cases the network magnitude is downsized: QSB < QFB.

Proof. Let

Γ ≡ diag{λ1, λ2, · · · , λ3} , (6)

γ ≡
(
f(θ1), f(θ2), ...., f(θn)

)T
, (7)

where λi = [θi + εH(θi)] f(θi)V ′′(qi), then

Πqq ≡ Γ + Ψ ′′(Q)γγT (8)

Πqε ≡
(
H(θ1)f(θ1)V ′(q1), H(θ2)f(θ2)V ′(q2), ...., H(θn)f(θn)V ′(qn)

)T

. (9)

The first-order condition to (3) is Πq = 0. The negative definiteness of Hessian
matrix Πqq acts as the second-order sufficient condition of the principal’s opti-
mization program, and the monotone hazard rate property ensures the imple-
mentability conditions qi+1 � qi, ∀i.

Differentiating the above first-order condition with respect to parameter ε, we
attain

Πqq
dq
dε

+Πqε = 0 , (10)

which implies
dq
dε

= −(Πqq)−1Πqε . (11)

Substituting expressions (8) and (9) into the above expression, we have

dq
dε

= −
[
Γ + Ψ ′′(Q)γγ′

]−1
Πqε = −

[
Γ−1 − Ψ ′′(Q)

Γ−1γ · γ′Γ−1

1 + Ψ ′′(Q)γ′Γ−1γ

]
Πqε .

(12)
The ith elements of the LHS is then given by

dqi
dε

=
ρ−H(θi)V ′(qi)

[θi + εH(θi)]V ′′(qi)
. (13)

where

ρ ≡
Ψ ′′(Q)

∑n
j=1

f(θj)H(θj)V ′(qj)
[θj+εH(θj)]V ′′(qj)

1 + Ψ ′′(Q)
∑n

j=1
f(θj)

[θj+εH(θj)]V ′′(qj)

.

Note that the Hessian matrix Πqq and hence its inverse Π−1
qq are negative

definite. So for non-zero vector γ we have

γTΠ−1
qq γ = γT

[
Γ−1 − Ψ ′′(Q)

Γ−1γ · γTΓ−1

1 + Ψ ′′(Q)γTΓ−1γ

]
γ=

γTΓ−1γ

1 + Ψ ′′(Q)γTΓ−1γ
<0.
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V ′′(·) < 0 implies every element of the diagonal matrix Γ−1 is negative, so
γTΓ−1γ < 0, and thus the denominator of ρ is positive, namely,

1 + Ψ ′′(Q)γTΓ−1γ = 1 + Ψ ′′(Q)
n∑

j=1

f(θj)
[θj + αH(θj)]V ′′(qj)

> 0 .

The sign of ρ and hence the sign of dqi

dε are determined by the sign of Ψ ′′(Q).

1. If Ψ ′′(Q) > 0, then ρ < 0, dqi

dε > 0, which implies qSB
i < qFB

i .
2. If Ψ ′′(Q) < 0, then ρ > 0. From conditions H ′(θ) � 0, qi � qi+1, and
V ′′(·) < 0, we get H(θ1)V ′(q1) > H(θ2)V ′(q2) > · · · > H(θn)V ′(qn), then
we have the following inequalities:

0 = H(θn)V ′(qn) < ρ <

∑n
j=1

f(θj)H(θj)V ′(qj)
[θj+αH(θj)]V ′′(qj)∑n

j=1
f(θj)

[θj+αH(θj)]V ′′(qj)

< H(θ1)V ′(q1) .

Then there exists a unique i∗ ∈ {1, 2, · · · , n} such that, when i > i∗, we have
ρ > H(θi)V ′(qi), dqi

dε < 0, and consequently qSB
i > qFB

i ; when i < i∗, we
have ρ < H(θi)V ′(qi), dqi

dε > 0, and consequently qSB
i < qFB

i .
3. If Ψ ′′(Q) = 0, then ρ = 0, consequently dqn

dε = 0 , dqi

dε > 0, ∀i < n, which
implies qSB

n = qFB
n and qSB

i < qFB
i , ∀i < n.

The derivative of Q with respective to ε is

dQ
dε

=
n∑

i=1

{
[ρ−H(θi)V ′(qi)] f(θi)
[θi + εH(θi)]V ′′(qi)

}
=

−
∑n

i=1
f(θi)H(θi)V ′(qi)
[θi+εH(θi)]V ′′(qi)

1 + Ψ ′′(Q)
∑n

i=1
f(θi)

[θi+εH(θi)]V ′′(qi)

> 0 .

(14)
Thus, we have QSB < QFB for all cases. Q.E.D.

The result can be interpreted as follows. In order to minimize the information
rent captured by the higher-type consumers, the allocation of lower-type agents
should be reduced relative to the first-best level. This is the basic tradeoff be-
tween allocation efficiency and rent extraction in the standard adverse selection
settings. In contrast to the canonical settings, the consumptions of different
consumers in our model interact through network effects. In a mildly discon-
gestible network, they are complementary to one another in the sense that the
consumptions of higher type are also distorted downward. On the contrary, in a
congestible network, the consumers are rivals to one another, and then the con-
sumptions of the higher-type consumers are distorted upward to “counteract”
the decrease of that of the lower type. If the network is neutral-congestible, this
“feedback” effect of the lower-type users consumption on that of the higher-type
users disappears so that the classical results are still obtained.

4 Conclusion

This paper presents a model of nonlinear pricing in the joint presence of network
externalities and asymmetric information. We give a full characterization of the
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nonlinear pricing contract. We showed that in mildly discongestible network, net-
work externalities and asymmetric information together lead to a downward dis-
tortion for all consumers’ consumption levels, which is in line with Hahn(2003),
Segal(1999,2003) and Csobra (2008) ; while in a congestible network, the con-
sumptions of different types of consumers will be distorted in opposite directions;
in a neutral-congestible network, the results obtained in canonical settings are
still available.
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Schäfer, Guido 239
Schapira, Michael 351, 531
Schoppmann, Florian 665
Schwartz, Galina 716
Shetty, Nikhil 716
Shoham, Yoav 154
Singer, Yaron 351
Skopalik, Alexander 286
Sørensen, Troels Bjerre 684
Sperber, Heike 82
Spirakis, Paul G. 210, 222
Sun, Lei 724

Tamir, Tami 109
Tan, Jinsong 639
Telelis, Orestis A. 490
Tennenholtz, Moshe 675
Tian, Guoqiang 724
Tsaknakis, Haralampos 222

Uetz, Marc 362, 414

van Loon, Joyce 362
Varian, Hal R. 13
Vassilvitskii, Sergei 597
Vazirani, Vijay V. 498
von Stengel, Bernhard 506

Walrand, Jean 716
Wang, Lei 498
Wang, Zizhuo 126
Widmayer, Peter 251
Wilfong, Gordon 386
Woeginger, Gerhard J. 82
Wu, Fang 334
Wu, John 166

Yadati, Narahari 438
Ye, Yinyu 14, 31, 126
Yu, Changyuan 231, 402, 498
Yu, Guosong 446

Zhang, Guochuan 446
Zhou, Yunhong 566
Zhu, Zhisu 31
Zohar, Aviv 531


	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks 1: Special Session
	Mechanism Design Theory: How to Implement Social Goals
	Thirty Years of Chinese Economic Reform: Reasons for Its Success and Future Directions

	Invited Talks 2: Plenary Session
	Average Distance, Diameter, and Clustering in Social Networks with Homophily
	Introduction
	A Model of Network Formation with General Forms of Homophily and Degree Sequences
	A General Random Network Model with Homophily
	Admissible Models

	Diameter and Average Distance in the Model
	Clustering
	Discussion
	References

	Assignment Exchanges
	Search Engine Ad Auctions
	Computational Economy Equilibrium and Application

	Invited Talks 3: Tutorial Session
	Four Graph Partitioning Algorithms
	Dynamic Spectrum Management: Optimization and Game Theoretic Formulations
	Some Recent Results in Algorithmic Game Theory
	The Elements of General Equilibrium Theory

	Session A.1: Market Equilibrium
	A Fast and Simple Algorithm for Computing Market Equilibria
	Introduction
	Results

	An Alternate Formulation Using Indirect Utility Functions
	Convexity of the Indirect Utility Functions
	The Algorithm
	Future Work
	References

	A FPTAS for Computing a Symmetric Leontief Competitive Economy Equilibrium
	Introduction
	Connection to Competitive Market and Bimatrix Game Equilibria
	Decision of the Existence of an LCP Solution
	A Social Optimization and FPTAS
	Preliminary Computational Results
	Further Remarks
	References

	Online and Offline Selling in Limit Order Markets
	Introduction
	The Trading Model: The Mechanics of Limit Order Markets
	The Trading Problem
	Our Contributions
	Related Work in Theoretical Computer Science
	Preliminaries

	Optimal Online Algorithms
	NP-Hardness of the Offline Problem
	Offline Algorithms and Approximation Schemes
	Pseudopolynomial Time Dynamic Programming Algorithm
	PTAS for the Arbitrary Volume Case

	Extension to Buying
	References

	Predictive Pricing and Revenue Sharing
	Introduction
	Overview

	Model
	Optimal Pricing Policies
	Experiments
	Conclusion
	References

	Dual Payoffs, Core and a Collaboration Mechanism Based on Capacity Exchange Prices in Multicommodity Flow Games
	Introduction
	Notation and Preliminaries
	A Multicommodity Flow Game
	A Collaboration Mechanism Based on Exchange Prices

	Achieving Allocations in the Core by the Mechanism Based on Exchange Prices
	Dual Payoffs
	An Arbitrary Allocation in the Core

	The Inverse Feasible Exchange Prices and the Core
	A Single Sub-coalition Problem
	On Excess Resources
	A Sufficient Condition for $I \subset C$

	Open Problems
	References


	Session B.1: Congestion Games
	Graphical Congestion Games
	Introduction
	Related Work
	Our Contribution

	Model
	Existence, Convergence and Complexity
	PresumedSocialCost
	Perceived Social Cost
	Load Balancing Games
	References

	How Hard Is It to Find Extreme Nash Equilibria in Network Congestion Games?
	Introduction
	Preliminaries
	Worst Pure Nash Equilibrium
	Best Pure Nash Equilibrium
	References

	On the Road to $\mathcal{PLS}$-Completeness: 8 Agents in a Singleton Congestion Game
	Introduction
	Notation and Contribution
	Our Contribution

	The General Method
	SCG-(8) Is $\mathcal{PLS}$-Complete
	References

	Conflicting Congestion Effects in Resource Allocation Games
	Introduction
	Our Results

	Model and Preliminaries
	Proportional Sharing Rule – Useful Observations
	Longest Processing Time (LPT) Rule

	Equilibrium Existence and Computation
	No Equilibrium under the Uniform Sharing Rule
	Equilibrium under the Proportional Sharing Rule
	Convergence of Best-Response Dynamics

	Equilibrium Quality
	References

	The Price of Malice in Linear Congestion Games
	Introduction
	Related Work

	Preliminaries
	Nonatomic Congestion Games
	Anarchy, Regret, and Malice

	Parallel Links
	General Congestion Games
	References


	Session C.1: Information Markets
	Parimutuel Betting on Permutations
	Introduction
	Previous Work
	Our Contribution

	Parimutuel Call Auction Model
	Permutation Betting Mechanisms
	Fixed Reward Betting
	Proportional Betting

	Pricing in Proportional Betting
	Pricing the Outcome Permutations
	Maximum Entropy Criterion
	Complexity of the Maximum Entropy Model
	An Approximation Algorithm

	References

	Strategies in Dynamic Pari-Mutual Markets
	Introduction
	Related Work
	Our Contributions

	Dynamic Parimutuel Markets
	Strategic Model of DPM
	Symmetry Property
	Strategic Actions
	Definition of Strategies

	StrategiesComparison
	Payoff Equivalence

	Simulations and Observations
	Observation: Market Capitalization
	Observation: Payoff
	Observation: Share Ratio and Market Probability

	Conclusions and Discussions
	References
	A Appendix: Proofs
	A.1 Proof of Theorem 3.1
	A.2 Proof of Corollary 3.2
	A.3 Proof of Theorem 3.5
	A.4 Proof of Lemma 4.1
	A.5 Proof of Lemma 4.2
	A.6 Proof of Proposition 4.4

	B Appendix: Figure of Subsection 3.3

	Truthful Surveys
	Introduction
	Model
	Generating Random Values
	Mechanism Description
	Graphical Interpretation

	Mechanisms for Truthful Surveys
	Conclusion
	References

	Correlated Equilibrium of Bertrand Competition
	Introduction
	Preliminaries
	Bertrand Model
	Correlated Equilibrium

	The Main Result
	Literature
	Discussion
	Open Questions
	References

	Diffusion of Innovations on Random Networks: Understanding the Chasm
	Introduction
	Model
	The Configuration Model
	Symmetric Threshold Model

	Main Results
	Contagion Threshold of a Random Graph
	Phase Transition in the Contagion Model
	Dynamic of the Epidemic

	Exact Asymptotics
	Conclusion
	References


	Session A.2: Nash Equilibrium I
	An Efficient PTAS for Two-Strategy Anonymous Games
	Introduction
	Definitions and Notation
	Statement of Results
	Overview of the Proof of Theorem 1
	Details of Stage 1
	Details of Stage 2
	The Case $m \geq K^3$
	The Case $m<k^3$
	Concluding Stage 2

	References

	Equilibria of Graphical Games with Symmetries
	Introduction
	Preliminaries
	Complexity of the Pure Equilibrium Problem
	Symmetry and Self-symmetry
	Self-anonymity and Two Different Payoffs
	Self-symmetry and Two Different Payoffs
	Self-symmetry and Larger Neighborhoods

	Interlude: Generalized Satisfiability in the Presence of a Matching
	Mixed Equilibria
	Open Problems
	References

	Equilibrium Points in Fear of Correlated Threats
	Introduction
	Definitions and Notation
	Contribution and Roadmap

	The Correlated Threat Point
	The Mutual Advantage Case
	Handling Games with No Mutual Advantage
	References

	Performance Evaluation of a Descent Algorithm for Bi-matrix Games
	Introduction and Definitions
	Algorithm Description
	ConvergenceRate
	Evaluation Scenaria
	Evaluation of the Results
	Discussion
	References

	Worst-Case Nash Equilibria in Restricted Routing
	Introduction
	Preliminaries and Notations
	PoA of $\lambda$-Good Restricted Routing
	An Application in Coordination Mechanism
	References


	Session B.2: Network Games I
	Stackelberg Routing in Arbitrary Networks
	Introduction
	Model
	Limits of Stackelberg Routing
	A Bicriteria Bound for General Latency Functions
	Bounds for Specific Classes of Latency Functions
	References

	Computational Aspects of a 2-Player Stackelberg Shortest Paths Tree Game
	Introduction
	Stackelberg Network Games
	Our Problem
	Our Results

	NP-Hardness of the {\sc Stack}SPT Game
	TheCase |EP| = 2
	A Faster Algorithm

	TheCase |EP| > 2
	References

	Local Two-Stage Myopic Dynamics for Network Formation Games
	Introduction
	Notation
	Utility Model
	Contracting
	State of the Game

	Static Game
	Stability and Efficiency
	Dynamics
	Results
	Discussion of Results
	References

	Interference Games in Wireless Networks
	Introduction
	Our Contribution
	RelatedWork

	Model and Definitions
	A Simple Interference Game
	Two Players and Arbitrarily Many Strategies
	Arbitrarily Many Players
	Repeated Interference Games
	References

	Taxing Subnetworks
	Introduction
	Preliminaries
	NP-Hardness for Multi-commodity Networks
	Parallel Links with Linear Latency Functions
	Candidate Supports Sets
	Problem Parametrization
	A Polynomial-Time Algorithm for Computing Optimal Taxes

	References


	Session C.2: Solution Concepts
	Anonymity-Proof Voting Rules
	Introduction
	Additional Motivation

	Definitions
	The Characterization of Anonymity-Proof Rules
	Discussion
	Extension: Group Strategy-Proofness
	Future Research
	References

	Overlapping Coalition Formation
	Introduction
	Background
	Related Work
	Our Model
	Core Characterization
	Convex OCF Games Have a Non-empty Core
	Conclusions, Extensions, and Future Work
	References

	A Network-Based Asymmetric Nash Bargaining Solution
	Introduction
	The Model
	Convergence
	Asymmetric Nash Bargaining Solution
	The Weakness of Weak Ties
	Conclusion and Extensions
	References

	How Public Opinion Forms
	References

	A Game-Theoretic Analysis of Games with a Purpose
	Introduction
	An ESP Model with Match-Early Preferences
	Effort Level of Players under Match-Early Preferences
	The Effect of Rare-Words First Preferences
	References


	Session A.3: Algorithms and Optimization I
	Inapproximability of Combinatorial Public Projects
	Introduction
	Model and Motivation
	The Model
	Overlay Networks

	Subadditive Valuations
	Lower Bound for Subadditive Valuations
	A Truthful $\sqrt{m}$ Approximation Algorithm

	Inapproximability of CPPP with General Valuations
	References

	Algorithms for Optimal Price Regulations
	Introduction
	Model
	Our Results

	Parameter and Tax Level Optimization
	Optimization of European Regulation
	Price Regulation by Tax
	Parameter Optimization

	Computational Results
	Experiments

	Conclusion
	References

	Improving the Efficiency of Load Balancing Games through Taxes
	Introduction
	Efficient Taxes for Graph Balancing Games
	Non-refundable Taxes in Symmetric Load Balancing
	Minimizing the Makespan
	References

	Network Formation and Routing by Strategic Agents Using Local Contracts
	Introduction
	Local Contract and Routing Formation Game
	Player Strategies and Nash Equilibria

	Good Equilibria and Price of Stability
	References

	Network Creation Games with Disconnected Equilibria
	Introduction
	The Model and Initial Results
	Disconnected Equilibria
	PriceofAnarchy
	Strong Equilibria
	References


	Session B.3: Mechanism Design I
	Randomized Truthful Mechanisms for Scheduling Unrelated Machines
	Introduction
	Our Results

	Preliminaries and Notations
	Scheduling Two Machines
	Unified Randomized Truthful Mechanisms $M_f$
	Lower Bound for Task Independent Mechanisms

	Scheduling $m$ Machines
	References

	Optimal Mechanisms for Single Machine Scheduling
	Introduction
	Optimal Mechanisms for the 1-Dimensional Setting
	Optimality Versus Efficiency
	The 2-Dimensional Setting
	Bayes-Nash Implementability and the Type Graph
	On Optimal Mechanisms

	Conclusion
	References

	Welfare Undominated Groves Mechanisms
	Introduction
	RelatedWork

	Preliminaries
	Tax-Based Mechanisms
	Properties of Tax-Based Mechanisms
	GrovesMechanisms

	Anonymous Groves Mechanisms
	Multi-unit Auctions with Unit Demand
	Optimal-in-Expectation Linear Redistribution Mechanisms
	Characterization of Welfare Undominated Groves Mechanisms That Are Anonymous and Linear

	Public Project Problem with Equal Participation Costs
	Public Project Problem: The General Case
	Summary
	References
	A Dominance Is Distinct from Welfare Dominance

	Redistribution of VCG Payments in Assignment of Heterogeneous Objects
	Introduction
	Relevant Work
	Contributions and Outline
	The Model and Notation

	Optimal Worst Case Redistribution When Objects Are Identical
	A Redistribution Mechanism for the Heterogeneous Setting
	Individual Rationality of HETERO

	Experimental Analysis and Empirical Evidence
	Simulation 1
	Simulation 2: Bidders with Binary Valuation

	Conclusion
	References

	Bin Packing of Selfish Items
	Introduction
	Computing a Nash Equilibrium
	Bounding the Price of Anarchy
	References


	Session C.3: Network Games II
	Restricted Core Stability of Flow Games
	Introduction
	Definitions
	Flow Game
	Restricted Core Stability

	Restricted Core Characterization
	Restricted Core Stability
	References

	Three Selfish Spanning Tree Games
	Introduction
	Definitions and Notations
	Contribution and Related Work
	TheMin \sc{sst}-Game
	TheMax \sc{sst}-Game and the Bottleneck \sc{sst}-Game
	Concluding Remarks
	References

	Stochastic Submodular Maximization
	Introduction
	Related Work

	Problem Definition
	An Example: Stochastic Maximum $k$-Cover

	Near-Optimal Non-adaptive and Adaptive Policies
	Adaptivity Gap: An Upper Bound of 1.59
	References

	On Pure and (Approximate) Strong Equilibria of Facility Location Games
	Introduction
	Unweighted Agents on Metric Networks
	Approximate Strong Equilibria for Weighted Agents
	References

	Efficiency, Fairness and Competitiveness in Nash Bargaining Games
	Introduction
	Uniform Nash Bargaining Games
	Preliminaries
	Price of Bargaining
	Full Competitiveness
	Fairness
	References


	Session A.4: Equilibrium
	Computing an Extensive-Form Correlated Equilibrium in Polynomial Time
	Introduction
	Incentive Constraints
	Existence Proof
	Algorithm for Games without and with Chance Moves
	References

	Homogeneous Interference Game in Wireless Networks
	Introduction
	General Nash Equilibria
	Coordinated Nash Equilibria
	The Power of Uniform Profiles
	Exogenous Penalties
	Endogenous Penalties

	Conclusion and Open Questions
	References

	A Network Coloring Game
	Introduction
	Several Lemmas
	Proofs of the Main Theorems
	References


	Session B.4: Mechanism Design II
	Asynchronous Best-Reply Dynamics
	Introduction
	Synchronous, Simultaneous, and Asynchronous Environments
	Max-solvable Games
	Max-solvable Games – Definitions
	Asynchronous Best-Reply Dynamics and Max-solvable Games
	Weakly-Max-solvable-Games

	Potential Games and Asynchrony
	References

	Fault Tolerance in Distributed Mechanism Design
	Introduction
	Our Results

	Definitions
	Distributed Nash Implementation
	Distributed Ex Post Nash Implementation
	References

	Bargaining Solutions in a Social Network
	Introduction
	Preliminaries
	Linear Utility Functions: Characterizing All Equilibria
	Existence of Equilibrium for General Utility Functions
	Effect of Network Structure on NBS Equilibrium
	Computing Approximate PBS Equilibria on Trees of Bounded Degree
	References


	Session C.4: Online Advertisement
	Sharing Online Advertising Revenue with Consumers
	Introduction
	Model
	Schemes for Revenue Sharing
	Cashback as a Fraction of Posted Price
	Cashback as a Fraction of Search Engine Revenue
	Comparison between Schemes

	Conclusion
	References

	Budget Constrained Bidding in Keyword Auctions and Online Knapsack Problems
	Introduction
	Results
	Related Work

	Online Knapsack Problems
	A Matching Lower Bound

	Bidding Strategies for Keyword Auctions
	Multiple-Slot Bidding Strategies

	Experimental Exploration
	Simulation and the Sniping Heuristic
	Evaluation Using Real Bidding Data

	Concluding Remarks
	References

	Position Auctions with Bidder-Specific Minimum Prices
	Introduction
	Model
	Generalized Second Price (GSP) Auctions
	VCG Auctions
	References


	Session A.5: Sponsored Search Auctions
	A Cascade Model for Externalities in Sponsored Search
	Introduction
	Related Work

	Click-through Models and Allocations
	The Cascade Model
	Generalized Cascade Models
	Slot Allocation and Incentive-Compatibility

	Winner Determination in the Cascade Model
	Incentive-Compatible Mechanism Design

	Multiple Ad Slates
	Ignoring Small Probabilities
	Description of the Algorithm

	Position-Dependent Multipliers
	Discussion and Future Research Directions
	References

	Sponsored Search Auctions with Reserve Prices: Going Beyond Separability
	Introduction
	Our Contribution

	The Extended Separability Condition
	Auctions with Reserve Prices
	The Modified Laddered Auction

	The Symmetric Nash Equilibrium with Reserve Prices
	A Truthful Scheme for the Seller
	The Syndicated Sponsored Search
	Separable Budget Balanced Syndicated Market

	References

	Auctions for Share-Averse Bidders
	Introduction
	Related Work
	Single-Item Auctions with a Prior
	Regular Auctions
	Convex Share-Averseness Functions

	Single-Minded Combinatorial Auctions
	A Sufficient Condition for a Truthful Mechanism
	A $\sqrt{m}$ Approximation Algorithm

	Further Directions
	References

	Sponsored Search Auctions with Markovian Users
	Introduction
	Our Contributions
	Related Work

	Markov User Click Model
	Properties of the Optimal Assignment
	Concluding Remarks
	References

	On the Equilibria and Efficiency of the GSP Mechanism in Keyword Auctions with Externalities
	Introduction
	Results

	Model
	Mechanisms

	Nash Equilibria in the GSP Mechanism
	The Efficiency of GSP Equilibria
	Conclusions
	References
	Appendix
	A Proof of Theorem 1



	Session B.5: Voting Problem
	Biased Voting and the Democratic Primary Problem
	Introduction
	The Democratic Primary Problem
	The Classic and Simplest: The Voter Model
	The Biased Voter Model
	A Markov Chain Lemma
	The Impossibility Result

	A Protocol for DPP
	An $\epsilon$-Nash Protocol for Democratic Primary Game
	References

	Frequent Manipulability of Elections: The Case of Two Voters
	Introduction
	Preliminaries
	Main Theorem
	References

	The Power of Small Coalitions in Cost Sharing
	Introduction
	Collusion-Resistance
	Our Contribution
	Further Related Work

	The Model
	Resistance against Coalitions of Bounded Size
	Some Preliminary Implications by SP and WUNB
	$k$-GSP Is Strictly Weaker Than GSP
	Upper Continuity and 2-GSP Together Imply GSP
	Separability and 2-GSP Together Imply GSP
	Separability and 2-WGSP Do Not Imply WGSP
	2-GSP Implies WGSP
	Collusion-Resistance and Non-bossiness Properties

	References

	Social Context Games
	Introduction
	Basic Definitions
	The Competitive Ranking Game
	The Best-Member Collaboration Game
	The MinMax Collaboration Game
	The Surplus Collaboration Game
	(The Lack of) Potential Functions
	References


	Session C.5: Algorithms and Optimization II
	Approximability and Parameterized Complexity of Minmax Values
	Introduction
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Conclusions and Open Problems
	References

	An “Ethical” Game-Theoretic Solution Concept for Two-Player Perfect-Information Games
	Introduction
	Introductory Examples
	A Definition of Ethical Behavior Based on Iterated Solutions
	An Alternative Characterization Based on Global Pruning
	A Fast Implementation of IBIPL
	Conclusions
	References

	The Secretary Problem with a Hazard Rate Condition
	Introduction
	The Model
	Main Result
	References

	Impact of QoS on Internet User Welfare
	Introduction
	Model
	Analysis
	Single Service Class
	Two Service Classes (Divided Capacity)
	Network Regulations

	Results
	Discussion and Conclusion
	References

	Nonlinear Pricing with Network Externalities
	Introduction
	Economic Environments
	Economies with Network Externalities
	Conclusion
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




