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Preface

This volume contains the papers presented at the International Workshop on
Internet and Network Economics held during December 17-20, 2008, in Shang-
hai, China, for its fourth edition. WINE 2008 provided a forum for researchers
from different disciplines to communicate with each other and exchange their
researching findings in this emerging field.

WINE 2008 had ten invited speakers: Fan Chung Graham, Matthew Jackson,
Lawrence Lau, Tom Luo, Eric Maskin, Paul Milgrom, Christos Papadimitriou,
Herbert Scarf, Hal Varian and Yinyu Ye. There were 126 submissions. Each
submission was reviewed on average by 2.5 Programme Committee members.
The Committee decided to accept 68 papers. The programme also included 10
invited talks.

This final program contained papers covering topics including equilibrium,
information markets, sponsored auction, network economics, mechanism de-
sign, social networks, advertisement pricing, computational equilibrium, network
games, algorithms and complexity for games.

December 2008 Christos Papadimitriou
Shuzhong Zhang
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Mechanism Design Theory: How to Implement
Social Goals

Eric Maskin

Institute for Advanced Study, Princeton
maskin@ias.edu

Abstract. The theory of mechanism design can be thought of as the
engineering side of economic theory. One begins by identifying a social
or economic goal. The theory then addresses the question of whether or
not an appropriate institution or procedure (that is, a mechanism) could
be designed to attain that goal.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, p. 1, 2008.
© Springer-Verlag Berlin Heidelberg 2008



Thirty Years of Chinese Economic Reform:
Reasons for Its Success and Future Directions

Lawrence J. Laul2

! President and Ralph and Claire Landau Professor of Economics
The Chinese University of Hong Kong
2 Kwoh-Ting Li Professor in Economic Development, Emeritus, Stanford University
lawrencelau@cuhk.edu.hk

Abstract. What are the principal reasons for the highly successful Chi-
nese economic reform that began in 19787 One may say that they are the
strong Chinese economic fundamentals-surplus labor, abundant savings,
huge domestic market, etc. But the strong fundamentals have always
been there, at least since the 1950s. Why did the Chinese economy not
take off earlier?

The introduction of the market system, first in the rural area, and
then in the urban area, must be regarded as the primary reason for
the success of the economic reform. But the former Soviet Union and
subsequently Russia also introduced the market system, with disastrous
economic results for the entire first decade. Why was China able to do
it while others failed?

Three important reasons can be identified: First, Chinese economic
reform is characterized by openness-China welcomed international trade
with and direct investment from all countries and regions, including
Hong Kong, Taiwan, and the United States, and with trade and di-
rect investment came technology, business models, and ideas that were
new to China. Second, the Chinese economic reformers are characterized
by their pragmatism-they are willing to try almost anything-whatever
works-but they will just as readily abandon whatever that proves not to
work. Third, Chinese economic reform has been implemented in such a
way that it is mostly Pareto-improving, that is, almost everyone is made
better off by the economic reform and no one is made worse off, which
maximizes support, minimizes opposition and preserves social harmony.

What are some future directions of reform? They should consist of
various ways to perfect the market mechanism in China. First, China
has reached a stage of development that it needs to make and keep the
markets truly competitive, through anti-monopoly laws and other means-
and this applies to the both the goods market and the factors (including
capital) market. When markets are not competitive, they may result in
outcomes that are worse than those under central planning. Second, the
markets can also be made more competitive, and hence more efficient, if
information asymmetry can be reduced or eliminated. Thus, the Chinese
Government can set standards for goods and services and assure qual-
ity through government-mandated and operated testing agencies. Third,

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 2 2008.
© Springer-Verlag Berlin Heidelberg 2008



Thirty Years of Chinese Economic Reform

markets frequently fail when there is moral hazard. The Chinese Govern-
ment can reduce the incidence of moral hazard by limiting leverage and
requiring bonding. Fourth, the Chinese Government can also make the
market system more complete by establishing and maintaining socially
desirable markets that do not arise naturally without government inter-
vention, for example, a long-term market for bonds backed by qualified
long-term owner-occupied residential mortgages. Finally, the market sys-
tem is not equipped to redistribute, but redistribution is often necessary
on grounds of fairness and social harmony. The Chinese Government
should design an equitable tax system as well as undertake public in-
vestments in education, health care, environmental protection and mass
transportation so that the benefits of the continuing economic reform
can be shared by the majority of the people.



Average Distance, Diameter, and Clustering in
Social Networks with Homophily*

Matthew O. Jackson

Department of Economics, Stanford University and the Santa Fe Institute
jacksonm@stanford.edu
http://www.stanford.edu/~ jacksonm/

Abstract. I examine a random network model where nodes are catego-
rized by type and linking probabilities can differ across types. I show that
as homophily increases (so that the probability to link to other nodes of
the same type increases and the probability of linking to nodes of some
other types decreases) the average distance and diameter of the network
are unchanged, while the average clustering in the network increases.

Keywords: Networks, Random Graphs, Homophily, Friendships, Social
Networks, Diameter, Average Distance, Clustering, Segregation.

1 Introduction

Communication advances and the social networking via the Internet have made
it much easier for individuals to locate others with similar backgrounds and
tastes. This can affect the formation of social networks. How do such changes in
the ability of individuals to locate other similar individuals affect social network
structure? Answering this question requires having models of how homophily,
the tendency of nodes to be linked to other nodes with similar characteristics,
affects social network structure. Homophily is a well-studied and prevalent phe-
nomenon that is observed across all sorts of applications and attributes including
ethnicity, age, religion, gender, education level, profession, political affiliation,
and other attributes (e.g., see Lazarsfeld and Merton (1954), Blau (1977), Blalock
(1982), Marsden (1987, 1988), among others, or the survey by McPherson, Cook
and Smith-Lovin (2001)). Despite the extensive empirical research on homophily,
there is little that is known about how homophily changes a network’s ba-
sic characteristics, such as the average distance between nodes, diameter, and
clustering.

This paper examines the following questions. Given is a society of nodes that
are partitioned into a number of different groups where nodes within a group are
of the same “type” and nodes in different groups are of different types. A network
formation process is examined that can embody various forms of homophily:
the probability of links between pairs of nodes can depend on their respective

* Financial support from the NSF under grant SES-0647867 is gratefully acknowl-
edged. I thank Ben Golub for helpful conversations.
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types. Holding the degree distribution constant, how does such a network that is
formed with substantial homophily compare to a network formed when types are
ignored? One conjecture is that as homophily increases so that the probability of
links among nodes of similar types increases and the probability of links across
less similar types falls, the average distance and diameter of the network will
increase since the density of links across different types of nodes will be falling.
This conjecture turns out to be false. Even as the probability of links across types
falls, the average distance and diameter are not changed even in some extreme
cases where the relative probability a link between nodes of the same type is
arbitrarily more likely than a link among nodes of different types, provided some
non-vanishing fraction of a node’s links are still formed to nodes of other types.
In contrast, homophily can have a significant impact on clustering. It is shown
that substantial homophily can lead to nontrivial clustering, while a process with
the same expected degrees but no homophily exhibits no clustering.

2 A Model of Network Formation with General Forms of
Homophily and Degree Sequences

A network G = (N, g) is a graph that consists of a set N = {1,...,n} of a finite
number n of nodes along with a list of edges, g which are the pairs of nodes
that linked to each other.

Given that the network might not be connected, I follow Chung and Lu (2002)
in defining average distance in the network to be the average across pairs of path-
connected nodes. In particular, let £,4(7, j) be the number of links in the shortest
path connecting nodes ¢ and j if there is such a path, and let £,(¢, j) be infinity if
there is no path between ¢ and j in gE Thus, the average distance in the network
is defined asi
ity ()00 Lo (8 7)

{{i. 4} : 4g(i, ) # o0}

The diameter of the network is diam(g) = maxy; jy.e,(i,j)00 £g(%,7)-

For the network formation processes considered here, the largest component
contains all but at most a vanishing fraction of nodes and so these definitions
are effectively the same whether we defined them as above, or just work with
the largest component of g which is either the whole network or almost all of it.

The clustering of a node 7 with degree of at least 2 is

CLi(g) = 4.5 i #4 #i{i, 5} € 9,{i,5'} € 9. {4, 5"} € g}
’ (it ri#i#7 Ailigteglifteg]

! Formally, g C 2V such that each element in g has cardinality 2.

% Standard definitions, such as path, are omitted. See Jackson (2008) for such defini-
tions.

3 Self-loops are allowed here, and so under these definitions if there is a self-loop then
a node is a distance of 1 away from itself. This is irrelevant to the results and simply
for convenience. It is easily seen that the results are the same if self-loops are ignored
or if self-distance is set to 0. If there are no links in the network, the AD expression
is 0/0 which can be set to take any value.

AD(g)
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The av&rage clustering is the average of C'L; across nodes ¢ that have degree at
least 2

2.1 A General Random Network Model with Homophily

The following model is a generalization of the random network model from Chung
and Lu (2002) to allow nodes to be of different types and to allow heterogeneous
probabilities of linking across different types.

A set of nodes N = {1,...,n} is partitioned into K groups or types Ny, ...,
Ng. This partition captures the characteristics of the nodes, so that all nodes
with the same characteristics are in the same group Nj. Depending on the ap-
plication a type might embody ethnicity, gender, age, education, profession, etc.
in a social setting, or might involve characteristics of a business in a market
network, or might involve some physical characteristics of a node in a physical
network.

Also given is a degree sequence {di,...,d,} which indicates the expected
degree or number of connections of each node. Let

D:Zdi

and

d=Y"d?/D.

Note that if d; = d for all i, then d = d.

Let Dy = ZiENk. d; be the total degree of all nodes of type k.

A random network is formed according to the following process. For each
pair of types k and k' there is a parameter hygs > 0. This parameter captures
the relative proclivity of groups k and &’ to link to each other. The parameters
satisfy Zk, Dyrhgrr = D for each k. A link between nodes 7 in group k£ and j in
group k' is formed with probability

hiwdid; ) D.

Conditions defined below ensure that this expression does not exceed 1.

In the case where hyy > hyyp for all k and &' # k, then there is homophily, so
that nodes are relatively more likely to form their links to their own types than
to other types. If Ay, = 1 for all k and &’ then types are irrelevant and the model
reduces to the usual Chung and Lu model. Otherwise, this allows for different
patterns of linkings between different types. If d; = d for all ¢, then this is a
generalization of Erdés-Renyi random graphs where links are type—dependent
More generally, the degree distribution could vary across nodes, and power-law
networks are the special case where the frequency distribution of {dy,...,d,}

4 Set clustering to 0 if there are no such nodes.
5 Note, however, that this process allows for self-loops ¢ may connect to 4, although
the probability of this for any node ¢ vanishes as n grows provided d? /D vanishes.
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has a power distribution where the frequency of degree d is of the form cd™" for
some range of d.

An interesting case is where types have some social or spatial geography and
type k can be represented as a vector xp € IR™ for some m and then hgys is
decreasing in the distance between k and k’; for example of the form ¢ — f(|ay —
zj|) where ¢ is a constant and f is an increasing function. One can also consider
some hierarchy among the k’s with the relative probabilities depending on the
hierarchy (e.g., see Clauset, Moore and Newman (2008)). Another case of interest
is where types have a given probability of forming links to their own type and
a different probability of forming links all other types (e.g., see Copic, Jackson
and Kirman (2005) and Currarini, Jackson and Pin (2007)).

2.2 Admissible Models

The main results consider a growing sequence of network formation models,
and so all parameters are indexed by n, the number of nodes. The results use
some restrictions on variation in expected degrees across nodes and a minimum
bound on the proclivity to link across groups. A sequence of network formation
processes is said to be admissible if the following conditions are satisfied.

First, there exists h > 0 such that hgg (n) > h for all k and k" for all large
enough n. This condition does not require that nodes of different types have a
probability of linking that is bounded below, as a node’s degree could be a fixed
number independent of n. This lower bound simply implies that any given node
spreads some of its links on types other than its own type. This still allows for
extreme homophily, as it can still be that hgk(n) — oo and that the probability
of links with own type is becoming infinitely more likely than links with some
other types.

Second, the degree sequence satisfies the following:

e d(n) > log®(n) for some a > 1 and log (c?(n)) /log(n) — 0
e there exists ¢ > 0 such that he > 1, and M > 0, such that d; < Md(n) for
all ¢ and n, and d; > ¢ for all but o(n) nodes,

The first restriction is that the second-order average degree is growing with n,
but more slowly than n. The second requires that no node have an expected
degree that explodes relative to the average expected degree and that all but a
vanishing fraction of nodes have a lower bound on expected degree that is larger
than 1.

3 Diameter and Average Distance in the Model

Let AD(n,d(n),h(n)) and diam(n,d(n),h(n)) be the average distance and di-
ameter, respectively, of a graph randomly drawn according to the process above

5 Here, h is as defined in the restrictions on proclivity to link across types. These
conditions ensure that the degree sequence satisfies (i) and (ii) in Chung and Lu
(2000). They also guarantee (iii) setting U = N and noting that d(n) < M>D(n)/n.
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with n nodes, degree sequence d(n) = (d1(n),...,d,(n)), and homophily pa-
rameters h(n) = (hgr(n)),, ). This average distance and diameter are random
variables for each n. Similarly, let AD(n,d(n)) and diam(n,d(n)) be the aver-
age distance and diameter, respectively, of a graph randomly drawn according
to the process above with n nodes, degree sequence d(n) = (d1(n),...,d,(n)),
and without any homophily (so that hyg (n) = 1 for all k and £).

Theorem 1. Consider an admissible sequence of network formation processes
(n,d(n),h(n)). Asymptotically almost surely
e AD(n,d(n),h(n)) = (1+o(1))log(n)/log(d(n)), and so “D{Fa)R) —
L,
o diam(n,d(n),h(n)) = © (log(n) /1og(£i(n))) and so diam(n,d(n),h(n)) =
O (diam(n,d(n))).

Thus, the average distance and diameter of the admissible processes are not
affected by homophily. Even though there can be an arbitrarily increased density
of links within types, and substantial decrease in the density of links across types,
this does not impact average distance or the diameter in the network. In order
for homophily to affect these aspects of the network, one would have to have the
density of links across most types decrease at a level which vanishes relative to
overall degree. That is, suppose instead that nodes are grouped into evenly sized
groups (up to integer constraints) so that hgg (n) < f(n) for all k and k' with
k' # k for some f(n) such that f(n)ngiv(n)/K(n) is bounded above and where

K (n)/n is bounded away from 0. Then, it is easy to check thatEl almost surely,
AD(n,d(n),h(n)) diam(n,d(n),h(n))

AD(n.d(ny) 00 and so T i)

— 00.
Proof of Theorem [k Consider a network formation process such that each
node has expected degree hd; and hyy = 1 for all kk’. This is the process
(n,hd(n)), and the process (n,h(n),d(n)) is equivalent to a first running the
process (n, hd(n)) and then adding some additional links. Under the admissibil-
ity requirement here, (n, hd(n)) is admissible and specially admissible under the
definitions of Chung and Lu (2002). By Lemma 5 in Chung and Lu (2002), almost
surely the largest component of a random graph under the process (n,hd(n))
contains all but at most o(n) of the nodes. By Theorems 1 and 2 in Chung and
Lu (2002) the average distance and diameter of this process are almost surely

(14 0(1))log(n)/log(hd(n)) = (1 + o(1))log(n)/log(d(n)),

" A lower bound on the average distance is that of a graph where all nodes of a given
type are agglomerated to become a single node. There are K(n) nodes in this graph
and each of these type-nodes has degree of at most dM f(n)n/K (n) which is bounded
above by some C. The average distance is at least order log(K(n))/log(C) which
is proportional to log(n), provided this network has a giant component containing
all but at most a vanishing fraction of nodes. The average distance could only be
smaller than this if the connectivity across types drops so low so that the network
fragments to smaller components.
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nd
' 6 (10g(n)/ 1og(hd(n) ) = © (log(n)/ log(d(n)) ).

respectively. Since the process (n,h(n),d(n)) is equivalent to a first running
the process (n,hd(n)) and then adding some additional links, it then follows
directly that a random graph generated in this way contains all but at most
o(n) of the nodes and has average distance and diameter of this process are
almost surely bounded above by (1 + o(1))log(n)/log(d(n)), and some factor
times log(n)/log(d(n)), respectively.

Next, let us show that these are also lower bounds. Consider any network

where all nodes have degree no more than Md(n). Consider any node i. The
T-the neighborhood of 7 includes fewer than

. (1\4{{(1@))”1 ~ Md(n)
Z ( (n)) B Md(n) — 1

t=1

nodes. Thus, in order to reach all nodes in the largest component from some node
in the largest component (which as argued above contains at least (1 — o(n))n
nodes) it takes at least T'(n) = log((1 — o(1))n)/log (Mg(n)) steps to reach

every other node in the largest component, almost surely. Given that d(n) — oo,
it follows that T'(n) > (1—o(1)) log((n)/ log (J(n)) The average distance is thus

almost surely at least
T(n)

~ N\t
3 (Md(n)) t/n.

t=1
This is at least (1 —o(1))T'(n), almost surely. Thus, the lower bound on average

distance is (1 — o(1))log(n)/log (d(n)) The diameter is at least the average

distance, and so this is also a lower bound on diameter. The result follows by
bounding the realized degrees on nodes asymptotically almost surely.

4 Clustering

Note that in the model with no homophily if (max; d;(n))?/D(n) — 0, then the
average clustering almost surely tends to 0 simply because the most probable
link has a probability that tends to 0. In contrast, if groups are relatively small
(of the order of average degree) and there is substantial homophily, then average
clustering does not vanish. Thus, homophilistic networks exhibit the character-
istics of the “small worlds” discussed by Watts and Strogatz (1998): nontrivial
clustering at the same time as having a diameter on the order of a uniformly
random graph.

Theorem 2. Consider a setting such that (i) there is some m > 0 such that for
large enough n, hgk(n)Dk(n)/D(n) > m for all k, (i1) max; d;(n)/ maxy | Ni|
and min; d;(n)/ max; d;(n) are each (1), and max; d;(n) > 2. Almost surely,
average clustering is §2(1).
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The proof of Theorem [ is straightforward and so only sketched here. Let
max; d;(n)/ maxy |[Nx| > my > 0 and min; d;(n)/ max; d;(n) > mz > 0 for
all large enough n. The probability of a link between any two nodes of the same
type is at least

2 2

(mgmax; d;(n))? ming hgr, (Mo max; d;(n))*m
D maxy, Di(n)
(mamax; d;(n))*m
maxyg ‘Nk (n) | max; dz (n)

> mamym > 0

for all large enough n. Given that there is a bound mg > 0 so that each node
has an expectation of forming a fraction of at least mg of its links within its own
group, and the clustering among pairs of nodes that it is linked to of own type
is at least m3mym > 0, it follows that the expected clustering of any node is
bounded away from 0 (conditional on it having degree at least 2). Given that the
expected clustering of all nodes are bounded away from 0 (conditional on having
at least degree 2), and all nodes have expected degree bounded away from 0 and
so a non-vanishing fraction almost surely end up with degree of at least 2, it can
then be shown that the average clustering is almost surely above 0.

5 Discussion

The results here show that substantial homophily and bias in the way that
different types of nodes link to each other can be introduced without altering
the average distance or diameter of a network. On one level this might not have
been expected, and yet the proof of this is very simple and basically relies on
the fact that some rescaling of the degree of a node up to a fixed factor does not
alter the asymptotic average distance and diameter of the resulting networks.
This does not mean that this leaves the properties of the network unchanged, as
we have seen with clustering parameters. Also, as shown in Golub and Jackson
(2008), networks with substantial homophily can still behave quite differently, so
that even though diameter and average distance remain unchanged, the speed of
learning can decrease by orders of magnitude and mixing time on such networks
can correspondingly increase by orders of magnitude.
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Abstract. We analyze “assignment exchanges”- auction and exchange
mechanisms which are tight simplifications of direct Walrasian exchange
mechanisms. These simplifications are distinguished by their use of as-
signment messages, which parameterize certain substitutable preferences.
The “basic” assignment exchanges respect integer constraints, general-
izing the Shapley-Shubik mechanism for indivisible goods. Connections
are reported between the assignment exchanges, ascending multi-product
clock auctions, uniform price auctions for a single product, and Vickrey
auctions. The exchange mechanisms accommodate bids by buyers, sellers
and swappers and can support trading for certain kinds of complemen-
tary goods.
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Abstract. Auctions for search engine advertising have been one of the
most successful examples of economic mechanism design, at least in the
private sector. This talk will review some of the history, theory, and
practical issues surrounding these auctions.
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Abstract. The rise of the Internet and the emerging E-Commerce ap-
plications has created new economic markets of unprecedented scale.
They have introduced many cross-disciplinary challenges in mathemat-
ics and computer scientists, and engineering, one of which is the algo-
rithmic and complexity issue of economy market equilibrium theory. In
this talk, we examine the mathematical connections as well as the com-
putational equivalences between equilibrium and optimization, between
game equilibrium and market equilibrium, existence and NP-hardness,
and between exact computation and approximation. Being able to com-
pute equilibria numerically also significantly expands the applicability of
game/economy equilibrium theory to a wide range of decision problems.
We present applications of computational equilibrium from developing
communication network protocols in spectrum management and resource
allocation to adopting free trade policies in international trade between
nations.
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Abstract. We will discuss four partitioning algorithms using eigenvec-
tors, random walks, PageRank and their variations. In particular, we will
examine local partitioning algorithms, which find a cut near a specified
starting vertex, with a running time that depends on the size of the small
side of the cut, rather than on the size of the input graph (which can be
prohibitively large). Three of the four partitioning algorithms are local
algorithms and are particularly appropriate for applications arising in
connection with Webgraphs and Internet economics.
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Abstract. Achieving efficient spectrum usage is a major challenge in the
management of a complex communication system. With multiple users
having conflicting objectives who share a common spectrum, some of
whom may be hostile, careful resource allocation is essential for
the effective utilization of the available frequency. Conventionally, spec-
trum sharing is achieved via orthogonal transmission schemes whereby
the available frequency band is divided into multiple tones (or bands)
which are pre-assigned to all the users on a non-overlapping basis. How-
ever, such “static orthogonal spectrum sharing” approach can lead to
low bandwidth utilization. In fact, various recent spectrum occupancy
studies have demonstrated that a typical geographical region has wide
swathes of frequencies (up to 2/3 of the allocated radio spectrum) that
are not used at any given time. While the utilization of spectrum varies
with time, a significant amount of spectrum is available for opportunistic
wireless applications among secondary users.

Spectrum-sensing cognitive radio technology allows devices to dynam-
ically and automatically seek out and use the optimum frequencies and
bandwidth. To take advantage of the unused spectrum capacity, the users
dynamically adapt to the spectral environment and change transmission
or reception parameters on the fly. This allows for more efficient wireless
communication without causing harmful interference with legacy systems
or other devices using the same frequency bands. In these systems all
users are allowed to use all the tones simultaneously. In comparison with
the static spectrum sharing policies, this setup offers significantly greater
freedom in utilizing the spectrum. A major challenge in the development
of opportunistic spectrum sharing technology is to devise efficient algo-
rithms for the distributed management of frequency slots and transmit
power.

This tutorial will describe various optimization and game theoretic
formulations of the dynamic spectrum management and present some
recent results on its complexity, duality and approximation.
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Abstract. There are three major trends in the field of Algorithmic
Game Theory: computational mechanism design, the price of anarchy,
and the computation of equilibria; this talk describes one recent result
in each. We show computational complexity lower bounds on truthful
and approximately efficient mechanisms; we revisit the Roughgarden-
Tardos result on selfish routing when routing decisions are made by the
nodes, not the flows; and we show that Nash equilibria can be approx-
imated well in several broad, unexpected, and useful classes of games.
(Joint work with Costis Daskalakis, Michael Schapira, Yaron Singer, and
Greg Valiant).
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Abstract. The lecture will be an introduction to the model of eco-
nomic equilibrium. The basic concepts: preferences, initial endowments
and market clearing prices will discussed - in general and by means of ex-
amples. I will indicate how fixed point theorems are used to demonstrate
the existence of equilibrium prices and sketch an algorithm for Brouw-
ers theorem. If time permits, there will be some remarks on equilibrium
models with production.
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Abstract. We give a new mathematical formulation of market equilib-
ria using an indirect utility function: the function of prices and income
that gives the maximum utility achievable. The formulation is a convez
program and can be solved when the indirect utility function is convex
in prices. We illustrate that many economies including

— Homogeneous utilities of degree a € [0, 1] in Fisher economies —

this includes Linear, Leontief, Cobb-Douglas

— Resource allocation utilities like multi-commodity flows
satisfy this condition and can be efficiently solved.

Further, we give a natural and decentralized price-adjusting algorithm
in these economies. Our algorithm, mimics the natural tatonnement dy-
namics for the markets as suggested by Walras: it iteratively adjusts a
good’s price upward when the demand for that good under current prices
exceeds its supply; and downward when its supply exceeds its demand.
The algorithm computes an approximate equilibrium in a number of it-
erations that is independent of the number of traders and is almost linear
in the number of goods. Interestingly, our algorithm applies to certain
classes of utility functions that are not weak gross substitutes.

1 Introduction

The market equilibrium model, common in economics, is that of a market with
m traders and n goods, where the traders are endowed with money or/and goods
and wish to optimize their utilities. Market equilibrium is defined by a price and
an allocation such that no trader has any incentive to trade and there is no excess
demand of any good. While the problem was originally formulated by Walras
[29] in 1874, the existence of such an equilibrium was established by Arrow and
Debreu [I] in 1954 using a fixed-point argument.

The result of Arrow and Debreu does not give much insight into the dy-
namics of the market. How does market find the equilibrium prices? What is

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 19 2008.
© Springer-Verlag Berlin Heidelberg 2008
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the complexity of finding these prices? Interested in answering the first ques-
tion, economists focused on decentralized dynamics that converge to equilibrium.
Most notably, Samuelson [26] formalized Walras’ idea of tatonnement as a set of
differential equations relating the adjustment of the price with excess demand.
Later, Arrow et al. and Nikaido and Uzawa [2/23] showed that in markets with
gross substitute property, the process proposed by Samuelson converges to an
equilibrium. The number of iterations of such a process depends on the utility
functions of the traders.

In computer science literature, the focus has been on designing polynomial-
time algorithms for several special cases using techniques such as primal-dual,
auctions algorithms and convex programming [QT7T3ITET0I30]. The surveys
of Vazirani [28] and Codenotti and Varadarajan [4] discuss these results. These
algorithms (with the notable exception of [8]) are typically centralized.

This paper attempts to combine the advantages of the both approaches for a
restricted class of markets. We present a fast and relatively natural algorithm
for computing approximate equilibrium prices. The number of iterations required
by our algorithm to converge to approximate equilibrium prices is almost linear
in the number of goods and is independent of the number of traders. Another
desirable feature of our algorithm is its distributed nature: it does not need to
gather the information on utility functions and endowments of the traders in
a central place to compute the prices. It only offers the sellers a procedure for
updating the prices based on the difference of demand and supply of their good
that converges to market equilibria. In fact, except a normalization variable, the
only information passed between buyer and seller of a good is the current price
of the goods and the demand corresponding to the current price.

From an algorithm design perspective, our procedure is different from primal-
dual or auction algorithms in the sense that the prices (dual variables) do not
approach the equilibrium from below. The process may underestimate or over-
shoot the equilibrium prices several times before it converges. In that sense, our
algorithm is closest to the results of [12/24]. The analysis uses a new convex
program for characterizing equilibria. For that reason the class of markets for
which we can analyze our procedure is slightly more restricted than the class of
markets comprising weakly gross substitute goods. At the same time, it include
resource allocation markets, which are in fact not gross-substitute markets.

In particular, our algorithm applies to the market model for network conges-
tion control as a part of a larger class of resource allocation markets [18]. For
the case of multiple sources and sinks, the problem of determining, or discov-
ering, equilibrium prices using a tatonnement or combinatorial process, appears
rather challenging, especially since there are no known combinatorial polyno-
mial time algorithms for solving the feasibility of multi-commodity flows in net-
works. Fortunately, approximate solutions are tractable as we illustrate in this

paper.

! The result of [§] has a running time that is independent of both number of traders and
number of goods, but is dependent on some other market parameters. For example,
when all traders share linear utilities, the procedure in [8] may not converge.
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1.1 Results

The new convex program. We give a new formulation of the market equilibrium
problem using indirect utility function. An indirect utility function @ of price
7 € RN and budget (or income) e € R, gives the maximum utility achievable
under those prices and budget as follows:

u(m,e) = max{u(r) |z € N}, 7-x < e}

where u is the utility function defined on allocation of goods. Although indirect
utility functions have been extensively used in Economics to study the behavior
of aggregate demand [20127], here we use them to formulate and solve the market
equilibrium problem. Our formulation becomes a convex program if the indirect
utility functions are convex on a suitably defined set of prices and income. This
enables polynomial-time computation of (approximate) market equilibrium using
standard convex programming techniques.

We show that, in the Fisher setting, the indirect utility functions are convex
if the utility functions are homogeneous of degree 1. Such utility functions in-
clude linear, Leontief, Cobb-Douglas, CES, resource allocation markets. If the
utility function u is increasing in all its components, then a necessary and suf-
ficient condition for convexity of the corresponding indirect utility function is
(see Proposition 2.4 in [25]): —"”aa:&(;;)m < 2 for all z. Surprisingly, this condi-
tion has the same form as those for monotone utilities [7]. They turn out to be
a special case of monotone utilities for which market equilibrium can be com-
puted using ellipsoid method [7]. However, note that polynomial time convergent
tatonnement processes are not known for monotone utilities.

The algorithm. A natural approach to computing the equilibrium price (as orig-
inally envisaged by Walras) is an iterative algorithm termed as tdtonnement
process where the prices of goods are updated locally as a function of excess
demand. Stability of these processes have been studied extensively in the litera-
ture [2I21] (see [22] for a survey). It has been shown that if the utility functions
satisfy the weak gross substitute (WGS) property then the continuous process
is stable and converges to market equilibrium. Polynomial-time convergence of
such a process was only recently established in exchange economies with WGS
utilities by the works of Codenotti et al. [7].

Our formulation enables us to design efficient processes similar to tatonnement
that converge close to a market equilibrium in polynomial time whenever the in-
direct utility functions of traders are convex. This partially answers the question
raised in [I8JT9[7] on convergence of tdtonnement processes for a class of utility
functions that do not satisfy WGS, for example, Leontief and resource allocation
utilities. In order to obtain a (1 + €) (weak) approximate market equilibrium,
our process requires every trader to perform at most O(e 2nlogn) computa-
tions of its demand. For multi-commodity flow resource allocation market, for
example, the demand oracle is the shortest-path computation under the given
edge-lengths (prices). Thus our algorithm needs O(lm) shortest path computa-
tions for a market with & commodities and n edges. This contrasts against the
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algorithm of [I8] for single-source multi-sink markets that needs O(k?) max-flow
computations. We point out, however, that the algorithm of [I8] computes an
exact equilibrium while we compute only an approximate equilibrium.

Organization. The rest of the paper is organized as follows. In Section 2l we
define the market equilibrium problem and formulate a mathematical program
using indirect utility functions. We also outline a convex programming technique
for solving this formulation if the indirect utility functions are convex. Section [3]
then presents the prominent cases where we consider several utilities in Fisher
economy under which the indirect utility functions turn out to be convex. In
Section[d] we present our algorithm for computing approximate market equilibria
assuming convexity of indirect utility functions. Section [l concludes with some
open directions.

2 An Alternate Formulation Using Indirect Utility
Functions

We first describe the exchange market model. Let us consider m economic agents
who represent traders of n goods. Let 7} (resp. "}, ) denote the subset of
R™ where the coordinates are non-negative (resp. strictly positive). The jth
coordinate will stand for good j. Each trader i (i = 1,...,m) is associated with

— a non-empty convex set KC; € R™ which is the set of all “feasible” allocations
that trader ¢ may receive (in many cases, K; = R ),

— a concave utility function u; : IC; — R4 which represents her preferences for
the different bundles of goods, and

— an initial endowment of goods w; = (wj1, ..., win) " € K;.

At given prices m € R", the trader ¢ sells her endowment, and gets the bundle
of goods z; = (x1,...,2in) € K; which maximizes u;(z) subject to budget
constraint] 7 - x < 7 - w;. A market equilibrium is a price vector 7 € R’ and
bundles z; € K; such that: x; € argmax{u;(z) | x € K;,m- 2 < m-w;} for all
i, and ). x; <>, w;. The above described market model is called an ezchange
economy.

We make the following standard assumption on the utility functions:

Assumption 1. For m € R, any xz; € argmaz{u;(z) | v € Kj,m-x < 7-w;}
satisfies m-x; = W w;.

We now define a notion of indirect utility function induced by a utility function.

Definition 2 (Indirect utility function). For trader i, the indirect utility
function w; : R} x P — RNy gives the mazimum utility achievable at given price
and income:

u;(m,e) = max{u;(z) |z € Kj,m-x < e}.

The following theorem characterizes the set of all equilibria.

2 For two vectors z and y, we use z - y to denote their inner product.
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Theorem 3. The following program gives precisely the set of all market equi-
libria in the exchange economy.

D2 <) wi
wi(mym-w;) <u(z;) foralli
T e Ry
x; € K for all i

(1)

Proof. From the definition, it follows that a market equilibrium satisfies the
above inequalities. Now for converse, consider a solution (m,1,...,%;,) of the
above program. From the second constraint and Assumption [T it follows that
w-x; > w-w; for all 4. Furthermore from the first constraint, it follows that
Yo, m-xy < >, - w;. This implies that 7 - x; = m - w; for all ¢ and hence the
solution (m,x1,..., %) is a market equilibrium.

Note that the program () is convex when, for all ¢, the function @;(m, 7-w;) is a
convex function of 7 € 7 and the utility function u; is concave. Unfortunately,
for many interesting utility functions u;, the corresponding indirect utility func-
tion u; is mot convex. It turns out, however, that in many cases (as illustrated
later in the paper), if we restrict the prices 7 to a carefully chosen convex set
II € R that is guaranteed to contain an equilibrium price, the function u;
becomes convex in 7. Therefore the program () reduces to the following convex

program.
DT <D w
Ui(m,m-w;) <u(z;) foralli
T eIl (2)
x; € K;  for all 7.

In order to solve the above convex program using an ellipsoid algorithm, the
convex set IT needs to be given in terms of a membership oracle.

Solving Program (2]). Assuming that the convex sets IT and K; are bounded
and full dimensionalE the convex program (2]) can be solved to an arbitrary
degree of precision by an ellipsoid-like algorithm using the evaluation oracle for
the functions u; and u; and membership oracles for IT and ;. We omit details
here and refer the reader to Theorem 4.3.13 in [16].

3 Convexity of the Indirect Utility Functions

In this section, we give a class of Fisher economies in which the indirect utility
function u; is convex in 7 over a set II. The Fisher economy is a special case of
the exchange economy when KC; = "} and the endowments w; of the traders are
proportional, i.e.,

3 The economies considered in this paper have unbounded IT and K; in their descrip-
tion. However one can usually obtain bounds on the largest value that an allocation
or a price can take. Moreover the cases that I7 is not full dimensional can be handled
using standard projection techniques.
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where w € R, and A1,..., Ay, € Ryq. In this case we let IT = {7 € N7 |
7w = 1}. Thus under any prices 7 € II, the income of trader i is fixed at A;.

We now quote a theorem of K.-H. Quah [25] which gives necessary and suf-
ficient conditions on the utility functions w; under which the indirect utility
functions w;(m, ;) are convex in 7 € II. We drop the subscript ¢ to simplify the
notation.

Proposition 1 (K.-H. Quah [25], Proposition 2.4). Assume that the utility
Junction u : R, — R is continuous, quasi-concave, increasing in all arguments,
and has the property that for any x € R}, the set {x € R}, | u(zx) > u(x)} is
closed. Let A € R4 be a constant.

1. Then, u(m, \) is convez in prices m if and only if the functions p, are convex
for all z, where py : Ry — R is defined by pg(s) = u(z/s).
2. Suppose, in addition, that u is C?, a twice differentiable function. Then fig
2
is conver if and only if ¢(z) = _m-aau?;)m;m < 2 for all x.
Remark 1. Contrast the condition ¢ (z) < 2 above with the condition (x) < 4
which is sufficient to guarantee that the induced demand function is monotone [7].
Recall that the demand function z(7w) is monotone if for any =, 7', we have
(m =) (z(m) — z(x")) < 0. Thus if ¥ is convex, the induced demand function
is monotone.

Corollary 4

1. A concave homogeneous utility function u of degree o where 0 < o <1, i.e.,
u(sz) = s®u(x), results in convex indirect utility function u if u satisfies the
conditions in Proposition [

2. If utility functions uy and us satisfy the conditions in Proposition [ and
induce convex indirect utility functions, then so does ui + us.

Proof. For (1), note that u,(s) = s™“u(x) is a convex function of s. For (2),
note that if pq , and po , are convex functions then so is p 5 + f2,4-

Note, however, that some natural homogeneous utility functions of degree one
(e.g., Leontief utilities and resource allocation utilities, defined later) do not
satisfy the conditions in Proposition [I in particular, the condition that the
utility function is increasing in all arguments. However in the next theorem we
show that the homogeneous utilities induce a convex indirect utility function
even when they are not increasing in all arguments.

Theorem 5. If the utility function u : R} — R is homogeneous (of degree one),
i.e., u(ax) = au(x) for alla € Ry and x € N7, then the indirect utility function
u(m, A) s convex in w for all A € Ry 4.

Proof. Let price vectors m,m,my € R satisfy 7 = amy 4 (1 — a)my for some
0 <a < 1.Let x € R besuch that 7.2 = X and u(x) = u(m, A). Define z; = ﬂ’\*"”
and zo = Tr);”w. Note that 71 - 1 = 72 - 2 = A and hence u(mi,A) > wu(z
and @(me, ) > u(zz). Using the homogeneity of u, we also get that u(x)
M Pu(ry) < " Fa(r, A) and u(r) = 3 u(ze) < ”ixu(ﬂg,/\).

||\_/H



A Fast and Simple Algorithm for Computing Market Equilibria 25
Note that a(m; - ) + (1 — a)(m2 - ) = A\. Now
a Al — A Al — . 1-— .
A=)y _(ad M- (almw) | (- a)m )
T - X T - X T - X T - X A A
:a2+a(1—a)(m.m 772~ac>+(1_a)2

A +20(1—a)+ (1 —a)
=1

g =X T+ X

vV

To complete the proof we now observe

(m, \) = u(z) <u(m)< ad A _O‘)>

T - X T -
T T a\ o - T A1 —a)
<
*( A u(m,)\))m.x—&—( A U(WQ’)\)) Ty - X

= au(m, A) + (1 — a)u(ma, N).

The set of homogeneous utility functions of degree one includes the follow-
ing well-studied utility functions. Here let a € R}. Linear utilities u(z) = a - ,
Leontief utilities u(x) = minjeg ajz; where S C {1,...,n}, Cobb-Douglas util-
ities u(z) = [ 7’ assuming >-ja; =1, CES utilities u(z) = (3, ajm;?)l/p for
—00 < p<1andp#0, and nested CES utilities [5] [6].

It also includes the resource allocation utilities defined as follows. Let k
be a positive integer and let A € %Tk be a matrix and ¢ € R% be a vector. The
resource allocation utility u : R — R is defined as

u(z) = max{c-y |y € R*, Ay < z}. (3)

The columns of matrix A can be thought of as “objects” that the trader wants
to “build”. A unit of an object ! needs Aj; units of resource (or good) j and
accrues ¢; units of utility. The trader then builds ¥; units of object I such that
the total need for resources is at most x and the total utility ¢ -y is maximized.
This framework includes interesting markets like

1. Multi-commodity flow markets (in directed or undirected capacitated net-
works). Here trader ¢ wants to send maximum amount of flow from source
s; to sink ¢; such that the total cost of routing the flow under the prices 7 is
at most her budget. The objects here are s;-t; paths and the resources are
the edges.

2. Steiner-tree markets in undirected (resp. directed) capacitated networks.
Here trader 7 is associated with a subset S; of nodes and wants to build
maximum fractional packing of Steiner trees connecting S; (resp. fractional
arborescences rooted at some r; € S; connecting S; to 7;) such that the total
cost of building under the prices 7 is at most her budget. The objects here
are Steiner trees (resp. arborescences). Note that computing a profit maxi-
mizing demand in undirected Steiner-tree market is NP-hard. Therefore the
running times of the algorithms are only oracle-polynomial.
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From Corollary @ the additive separable concave utilities also induce a
convex indirect utility functions: (1) u(z1,...,zn) =3, aja;?j where a; € R4 4
and 0 < p; < 15 (2) w(zy,...,2n) = 32;10g(l + a;z;) where a; € Ry [3] —
follows from the fact that log(1 4 ) is a convex function of s.

4 The Algorithm

In this section, we present our algorithm to compute a weak approximate market
equilibrium defined as follows. To simplify the definition, we assume that IC; C

", ie., we let x;; take only non-negative values. For some technical reason, we
assume that the set II satisfies the following property: for any vector p € 7},
there exists a € 44 such that ap € II. Note that this requirement is satisfied
by the sets II for the utilities in Fisher markets.

Definition 6 (Weak (1 + ¢)-approximate market equilibrium). A price
vector m € II and bundles x; € K; for each trader i are called a weak (1 + ¢)-
approzimate market equilibrium in the exchange economy if

1. The utility of x; to trader i is at least that of the utility-maximizing bundle
under prices 7: w;(x;) > w;(mw, 7 - w;) for each 1,

2. The total demand is at most (1+¢€) times the supply: >, x; < (14€) Y w;,
and

3. The market clears: w-) ,w; < -y, ;.

Note that item 3 above follows directly from item 1 and Assumption [l If ; €
R, we use a standard technique of “shifting” the space so that z;; are non-
negative. This, however, needs that IC; is bounded below and we know these
bounds. It also weakens the notion of approximate market equilibrium and we
omit the details from this extended abstract. Shifting has also been used to
address similar problems arising while solving linear programs with negative
entries [24].

Without loss of generality, we scale the endowments w; so that >, w; = 1,
the vector of all ones. This also implies that we scale the vectors in IC;. We
emphasize that the algorithm also works without scaling; however the scaling
simplifies the presentation. The algorithm is given in Figure[[l Here § > 0 is a
constant to be fixed later. The algorithm goes in IV iterations. In each iteration,
we first scale the current price vector p so that it lies in II. We then “announce”
this price vector and receive in response the utility-maximizing bundles x; € ;.
We then update the price vector p according to the aggregate demands X; of
goods j as given in Step 2dl

Note that this update is essentially same as (within a (1 + ¢) factor) to the
following natural update in terms of excess demand. Let Z; = X; — Y. w;; =
X; — 1 be the excess demand of good j. We can update p as:

pj — pj(l + (‘50Zj).

This is so because (1 + 60Z;) =~ (14 60X;)(1 — é0), which is in turn true since
Zj = Xj — 1 and 60 is small. The extra factor (1 — 6o) is common to all goods j
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1. Initialize p; =1 for 1 < j < n.
2. Repeat for N = % log, , s n iterations:
(a) Find « > 0 such that ap € II. Announce prices T = ap.
(b) Each trader ¢ computes z; € argmax{u;(z) |z € Ki,7 -z < 7 - w;}.

(c) Compute the aggregate demand X =3 z; andlet 0 = " . where X;
J J
denotes the aggregate demand of good j.
(d) Update for each good j: p; < p; (1 + 60 Xj;).
N .
3. Output for each i: ; = >7=4" """ where zi(r) and o(r) are the values of

POPMRRICO)
z; and o in th%rth iteration.
4. Output 7 = ET:]},U(T)(”)(T) where 7(r) and o(r) are the values of # and o in the
r=1 o(r
rth iteration.

Fig. 1. Algorithm for the convex program (2

and is factored away in the price scaling step. The algorithm in the end outputs,
7w and x; for all 4, the weighted average of the prices and allocations computed
in N iterations.

Lemma 1. The outputs x; and 7 satisfy u;(x;) > w;(mw, 7 - w;) for each i.

Proof. Since u;(w, 7 - w;) is convex when m € IT and u;(z;) is concave when
o) ai(n(r),m(r)w) _ 3, o(r)ui(zi(r)

)< S, () =T s o = i)

The following main lemma about the output is proved below. The proof is

based on the standard application of “experts theorem” or “multiplicative up-

date” technique used previously in solving packing and covering linear pro-

grams [24T2/TT].

x; € K; , we have 'ﬁi(wm-wi

Lemma 2. The outpuls z; satisfy Y., x; < | Ly >, w;.

We set 6 = 1+e) so that 17126 = 1+ €. The proof of Theorem [7 now follows
from Lemmas [l 2] and Assumption [I] on the utility functions.
The main result of this section is summarized in the following theorem.

Theorem 7. Our algorithm computes a weak (1 + €)-approzimate market equi-
librium in an economy for which a set II containing an equilibrium price is
known such that for each i, the indirect utility function w;(m, - w;) is a convex
function of ™ when restricted to m € II.

In the algorithm, each trader i makes O(e ?nlogn) calls to her “demand”
oracle: given prices w € I, compute x; € argmaz{u;(z) |z € Kijym- oz <7 w;}.

Proof of Lemma 2l Let z = ), z; and let (z); denote the jth coordinate of
. To this end, let us define a potential &(r) = 3_, p;(r) Where pz( ) denote the
value of p; in the beginning of rth iteration. From the step [2d| in the algorithm,
we have

D(r+1)=P(r) + bo(r ij
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where X (r) denotes the value of X; in the rth iteration. Thus

D(r+1)

_ pi(r) o\ _
o(r) —1—|—60(T)Zj: o(r) X;(r) = 14+60(r) < exp(bo(r)).

The second equality follows from the fact that 3, p;(r)X;(r) = a(lr) > m(r)
X (r) which is, by Assumption[I] equal to a(lr) 2o m(r) > wij = a(lr) > m(r)
= >_;pj(r) = @(r). Here a(r) is the value of a in rth iteration.

Thus after taking telescoping product, we get

SN +1) <P(1) -exp (620(7")) =n-exp (620(7“)) . (4)

On the other hand, observe that

N
}:mzv+ => T (1 +60(r)X;(r)

j r=1

> Zexp (6(1 —6) ZG(T)Xj(T)>

T

> m]axexp (6(1 —9) ZU(T)XJ‘ (7")>

r

= exp (6(1 —9) mjaxZa(r)Xj (r)) .

The first inequality follows from the elementary fact that 1+ pu > exp(u(1 — 6))
foral0 < p<é < 1. Combining the above observation with [, we get

6(1 -6 maxz r) <log®(N + )Slogn—!—éZaT

Therefore,
max(z); = m XZT o(r)X;(r) 1 logn
Ja @i ? > 0o(r) = 1-6 * (5(1 —-6)>, U(r)) ' (5)

Now we “charge” the second term on the right-hand-side in (Bl to max;(x); as
follows. Note that at least one p; increases by a factor (1 + §) in any iteration.
Thus after N = 7 log, s n iterations, max; p;(N + 1) > n'/%. Also

>, 0(r)X;(r) _ log]l, exp(6o(r)X;(r)) _ logp;(N +1)
> 0(r) 6 0(r) 632, 0(r)

Thus max;(z); > . g%Z(r)' Putting all pieces together, we get

mox(a), < | +<&my@b>.

>

(z); =

1-46

Thus max;(z); < | 5.
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5 Future Work

Our definitions of approximate market equilibrium is weak because the bud-
get constraints of traders are satisfied only in the aggregate sense. Some of the
traders may be spending significantly more than their budget. Moreover, some
positively priced items may not be fully allocated. A notion of strongly approx-
imate market equilibrium may be defined on the lines of [I3], where budget
constraints of no trader may exceed by a factor more than (1 + €) and no item
with positive price is under-demanded. Under this definition it might be possible
to prove the “closeness” of the discovered prices to the equilibrium prices (see

e.g., [I4]). If we set 6 = O(€ %?AA ), where \; is the income of trader i in a Fisher

economy, our tatonnement algorithm obtains a strong (1 + ¢€) approximate mar-
ket equilibrium in the above sense in O(( “%m;\’\l )"2nlogn) iterations. It will be

very interesting to develop a tatonnement afgdrithm that converges to a strong
approximate market equilibrium in near linear number of iterations. Finally, it
is interesting to note that the continuous time version of our process can be de-
scribed as d;tj =m;Zj where Z; = . x;j — >, w;; is the excess demand of good

j. Under what conditions is this process or its “time-average” #; = | f::o mdT
stable and does converge to the equilibrium?
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Abstract. We consider a linear complementarity problem (LCP) arisen
from the Arrow-Debreu-Leontief competitive economy equilibrium where
the LCP coefficient matrix is symmetric. We prove that the decision
problem, to decide whether or not there exists a complementary solution,
is NP-complete. Under certain conditions, an LCP solution is guaranteed
to exist and we present a fully polynomial-time approximation scheme
(FPTAS) for computing such a solution, although the LCP solution set
can be non-convex or non-connected. Our method is based on solving
a quadratic social utility optimization problem (QP) and showing that
a certain KKT point of the QP problem is an LCP solution. Then, we
further show that such a KKT point can be approximated with running
time O((!)log(})log(log(!)) in accuracy € € (0,1) and a polynomial in
problem dimensions. We also report preliminary computational results
which show that the method is highly effective.

1 Introduction

Given a real n by n matrix A, consider the linear complementarity problem
(LCP) to find w and v such that

ATu+v=re, uTv=0, (u#0,v)>0, (1)

where e is the vector of all ones. Note that u”v = 0 implies that u;v; = 0 for
alli=1,---,n. Also, u = 0 and v = e is a trivial complementary solution. But
we look for a non-trivial solution where u # 0 (see Cottle at al. [5] for more
literature on linear complementarity problems).

In this note, we focus on the case that A is symmetric. We first prove that the
decision problem, to decide whether or not there exists such a complementary
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solution, is NP-complete. Under certain conditions, for example, that all entries
of A is non-negative, an LCP solution is guaranteed to exist. Then, we present a
fully polynomial-time approximation scheme (FPTAS) for computing a solution,
although the LCP solution set can be non-convex or non-connected.

Our method is based on solving a quadratic social utility optimization prob-
lem (QP) and showing that a certain KKT point of the QP problem is an LCP
solution. Then, we further show that such a KKT point can be approximated
with running time O((!)log(!)log(log(!)) in accuracy € € (0,1) and a polyno-
mial in problem dimensions. We also report preliminary computational results
which show that the method is highly effective in comparison with other well
known LCP solvers.

2 Connection to Competitive Market and Bimatrix
Game Equilibria

The LCP () rises from the Arrow-Debreu exchange competitive economy equi-
librium problem where it was first formulated by Léon Walras in 1874. In this
equilibrium problem everyone in a population of m traders has an initial endow-
ment of a divisible goods and a utility function for consuming all goods—their
own and others’. Every trader sells the entire initial endowment and then uses
the revenue to buy a bundle of goods such that his or her utility function is
maximized. Walras asked whether prices could be set for everyone’s goods such
that this is possible. An answer was given by Arrow and Debreu in 1954 [1] who
showed that, under mild conditions, such equilibrium would exist if the utility
functions were concave. In general, it is unknown whether or not an equilibrium
can be computed efficiently.

Consider a special class of Arrow-Debreu’s problems, where each of the n
traders has exactly one unit of a divisible and distinctive good for trade, and let
trader ¢, ¢ = 1,...,n, bring good 4, which class of problems is called the pairing
class [13]. For given prices p; on good j, consumer i’s maximization problem is

maximize w; (X1, ..., Tin)
subject to }; pjzi; < pi, (2)
Lij Z 07 VJ

Let 2z denote a maximal solution vector of (2)). Then, vector p is called the
Arrow-Debreu price equilibrium if there exists an z} for consumer ¢, 4 =1,...,n,

such that
i
i

where e represents available amount of goods on the exchange market.
The Leontief exchange economy problem is the Arrow-Debreu equilibrium
when the utility functions are in the Leontief form:

. Lij
w(w) = min {791
j: a;; >0 Q;j
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where the Leontief coefficient matrix is given by

a1l ai2 ... A1n
a a e a
A= 21 W22 2n

An1 Ap2 ... Qpn

It was proved that

Theorem 1. (Ye [13]) Let B C {1,2,..,n}, N = {1,2,...,n}\ B, Agp be
irreducible, and up satisfy the linear system

ALpup =e, ALyup<e, and up>0.

Then the (right) Perron-Frobenius eigen-vector pp of UpHpp together with
pn = 0 will be a Leontief economy equilibrium. And the converse is also true.

Theorem [ has thus established a combinatorial algorithm to compute a Leontief
economy equilibrium by finding a right block B # (), which is precisely a (non-
trivial) complementary solution to the LCP problem ().

The LCP () is also connected to the bimatrix game equilibrium problem
specified by a pair of n x m pay-off matrices C' and R, with positive entries, one
can construct a Leontief exchange economy with n+m traders and n+ m goods
as follows.

Theorem 2. (Codenotti et al. [f|]) Let (C, R) denote an arbitrary bimatriz game,
where assume, w.l.o.g., that the entries of the matrices C' and R are all positive.

Let
r_ (0C
=)

describe the Leontief utility coefficient matriz of the traders in a Leontief econ-
omy. There is a one-to-one correspondence between the Nash equilibria of the
game (C, R) and the market equilibria A of the Leontief economy.

Therefore, computing a bimatrix game equilibrium is also equivalent to comput-
ing a complementary solution of LCP (). The reader may want to read Brainard
and Scarf [2], Gilboa and Zemel [§], Chen, Deng and Teng [3], Daskalakis, Gold-
berg ans Papadimitriou [7], and Tsaknakis and Spirakis [II] on hardness and
approximation results of computing a bimatrix game equilibrium.

3 Decision of the Existence of an LCP Solution

In general, it’s difficult to decide if LCP () has a complementary solution or
not, even when A is symmetric.

Theorem 3. Let A be a real symmetric matriz. Then, it is NP-complete to
decide whether or not LCP () has a complementary solution such that u # 0.
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Proof. Given a symmetric matrix A, it’s NP-complete (see Murty and Kabadi
[10]) to decide if
Ju >0 such that u®Au > 07? (3)

The complement problem is to decide if or not for all v > 0 one has u” Au < 0,
or —A is co-positive plus.

We now prove that the decision problem () is equivalent to the problem that
if or not LCP () has a complementary solution u # 0.

If (@) has a complementary solution u # 0, then

0=u"(e — Au) = eTu — u” Au.

Since u > 0 and u # 0, we have u” Au = eTu > 0.

On the other hand, if the answer to the decision problem (3] is “yes”, then
the maximal value of the following bounded quadratic problem:
(QP) maximize u” Au (4)

subject to elu =1, u>0,

is strictly positive. Let u* be the global maximizer of the problem. Then, u*
must satisfy the Karush-Kuhn-Tucker (KKT) conditions:

—2Au+de=v (5)
uTv =0,
eTu=1,

(u,v) > 0, free.

T *
The first two equations in (@) imply that A = z(ueT)uf" =2(u*)T Au* > 0. Thus,
u = 27{ > 0 is complementary solution of LCP () and @ # 0.
The question remains: given symmetric A, is it easy to compute one if LCP ()
is known to have a complementary solution? Note that, the complementary solu-

tion set of ([IJ), even non-empty, is not convex nor even connected. For example,

let
AT = (f;) (6)

Then, there are three isolated non-trivial complementary solutions:
u' = (1/2; 0), w®=(0; 1/2), u®=(1/3; 1/3).

In the next section, however, we develop a fully polynomial-time approxima-
tion scheme (FPTAS) to compute e-approximate complementary solution for
LCP () when A is symmetric and Z” ai; > 0, that is, the sum of all entries of
A is positive. Here, an e-approximate complementary solution is a pair (u # 0, v)
such that

UTU

ATu+v=ce, (u#0,v)>0, <,
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where a is the largest entry in A:
a = max{a;} (> 0). (7)
0]

In most applications, one can scale A such that a = 1.

4 A Social Optimization and FPTAS

We consider a quadratic “social” utility function u” Au, which we like to max-
imize over the simplex {u : eTu = 1, u > 0}. This can be written as the
quadratic programming problem of QP () in the previous section.

Since e”' Ae > 0 so that LCP (I has at least one non-trivial complementary
solution. Further more, the maximal value of QP (@) is strictly greater than 0
but bounded above by a (recall that a is the largest entry of A). These facts,
together with the proof of Theorem [3], lead to

Lemma 1. Let A be symmetric. Then, every KKT point u of problem (), with
ul Au > 0, is a (non-trivial) complementary solution for LCP ().

In [I4], an interior-point potential reduction algorithm was proved to be a FP-
TAS for computing an e-approximate KKT point of general quadratic program-
ming with bounded feasible region. It can be adapted in solving QP () in a

running time bounded by (’)(("64 log ! +n*logn)(log | + logn)) arithmetic op-
erations. The algorithm reduces the potential function

P(u) = plog (a —u" Au) — Z log(u;),
j=1

where p = (2n + y/n)/¢, by a constant each iteration from the initial point

ul = }Le, till u becomes an e-approximate KKT point.

Note that )
P(u®) = plog (a — 2eTAe) + nlog(n),
n

and for any u € {u: efu=1, u> 0},

- Zlog(uj) > nlog(n).

j=1

Thus, P(u) < P(u®) implies that

1
plog (EL — uTAu) < plog (a 2 eTAe>

or
1

9 el Ae >0,
n

uT Ay >

that is, any KKT point u generated by the algorithm must have v Au > 0. To
conclude, we have
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Theorem 4. There is a FPTAS to compute an e-approximate non-trivial com-
plementary solution of LOP () when A is symmetric and e* Ae > 0. Moreover,
such a solution is an e-approximate equilibrium of the symmetric Leontief econ-
omy when all entries of A are positive.

5 Preliminary Computational Results

Here, we computationally compare three type methods to solve the comple-
mentarity problem of ([I): 1) the QP-based potential reduction algorithm (re-
ferred as QP) presented in this paper; 2) a homotopy-based path-following
algorithm method (referred as HOMOTOPY) developed in Dang at al. [6]; 3)
Mixed Complementarity Problem (MCP) general solvers PATH (Ferris and Mun-
son, http://www.gams.com/dd/docs/solvers/path.pdf) and MILES (Rutherford
http://www.gams.com/dd/docs/solvers/miles.pdf), where both solvers use a
Lemke type algorithm that is based on a sequence of pivots similar to those
generated by the simplex method for linear programming; see Lemke [0].

If one applies Lemke’s algorithm (PATHS or MILES) directly to solving LCP
(@), it will return the trivial solution u = 0, v = e. To exclude it, we rewrite
LCP () into an equivalent homogeneous LCP as follows:

Mz+qg=w, zTw=0, (z,w) >0, (8)

T
M= ( 6‘31 8) €M™ g = (Eﬁ) :

Then, we can obtain a solution for LCP () from a complementary solution
of LCP (8). However, the standard Lemke algorithm may not be able to solve
LCP (B) either, since it may terminate at the second iteration with a non-
complementary “secondary-ray” solution. Thus, as shown below, commonly used
LCP solver PATH or MILES seems cannot successfully solve LCPs (&) most of
times.

Both QP and HOMOTOPY are coded in MATLAB script files, and all solvers
are run in the MATLAB environment on a desktop PC (2.8GHz CPU). For the
QP-based potential reduction algorithm, we set ¢ = 1.e — 8. After the termi-
nation, we use the support of u, {i : u; > l.e — 5}, to recalibrate an “exact”
solution (to the machine accuracy) for LCP ().

For different size n ( n = 20 : 20 : 100,100 : 100 : 1000, 1500 : 500 : 3000), we
randomly generate 15 symmetric and sparse matrices A of two different types
(uniform in [0, 1] or binary {0,1}) and solve them by the three methods. In the
following tables, “mean sup” the average support size of u and “max sup” the
maximum support size of w in the 15 problems, “mean iter” the average number
of iterations of QP and Homotopy algorithms (each iteration solves a system of
linear equations), and “mean time” the average computing CPU time in seconds.

From our preliminary computational results, we can draw few conclusions.
First, LCP (), although the matrix A is symmetric, seems not an easy problem

where z,w € R"H!,
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Table 1. QP for solving uniform symmetric matrix LCP

n mean sup mean iter mean time max sup

20 4.1 39.5 0.1 5
40 4.5 46.0 0.1 5
60 4.5 479 0.1 5
80 4.9 47.5 0.2 6
100 5.3 48.2 0.3 7
200 5.5 53.5 1.2 6
300 5.6 59.3 3.4 8
400 5.7 55.1 5.9 7
500 5.9 62.5 11.3 7
600 5.7 58.8 16.0 7
700 5.8 58.8 23.4 7
800 5.8 62.6 33.8 8
900 5.7 65.1 47.3 7
1000 6.3 65.0 60.2 7
1500 6.1 71.5 187.2 8
2000 5.9 73.5 411.9 7
2500 6.4 74.6 774.5 8
3000 6.2 78.7 1404.2 8

Table 2. HOMOTOPY for solving uniform symmetric matrix LCP

n mean sup mean iter mean time max sup

20 4.1 37.7 0.2 5
40 4.4 52.7 0.4 5
60 4.4 58.3 0.8 6
80 4.6 68.2 1.4 6
100 5.3 72.6 2.2 7
200 4.9 108.9 14.0 6
300 5.5 127.7 49.3 8
400 5.5 160.5 111.9 7
500 5.7 159.7 181.6 7
600 5.5 182.5 317.0 6
700 5.9 202.9 515.6 7
800 5.5 208.9 706.3 6
900 5.7 231.7 1039.2 7
1000 5.9 267.2 1644.0 7
1500 5.9 305.5 4726.4 7
2000 5.7 307.1 10105.2 [§

Table 3. PATH for solving uniform symmetric matrix LCP

n mean sup mean time max sup

20 8.7 0.1004 12

40 13.8 0.3406 23
n>60 fail to solve

37
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Table 4. QP for solving binary symmetric matrix LCP

n mean sup mean iter mean time max sup

20 11.8 35.2 0.1 13
40 16.6 43.3 0.1 20
60 21.1 44.4 0.2 23
80 22.1 46.9 0.3 25
100 23.9 53.3 0.5 27
200 30.0 54.5 1.7 34
300 32.5 66.9 5.2 35
400 34.1 65.1 9.5 38
500 35.4 67.1 16.1 39
600 36.0 82.9 31.4 39
700 37.9 68.0 35.4 42
800 37.8 74.9 55.4 41
900 37.8 78.1 76.5 43
1000 38.7 82.1 106.6 42
1500 40.0 84.9 305.3 43
2000 42.4 91.4 702.2 45
2500 42.9 94.7 1382.8 47
3000 43.9 99.5 1959.4 48

Table 5. HOMOTOPY for solving binary symmetric matrix LCP

n mean sup mean iter mean time max sup

20 11.7 48.6 0.2 14
40 16.2 68.3 0.5 21
60 20.6 75.3 0.9 24
80 22.9 84.0 1.7 26
100 24.3 92.9 2.9 27
200 31.3 111.1 14.6 39
300 32.3 130.4 51.1 39
400 32.4 108.2 79.9 34
500 34.8 153.6 263.7 41
600 34.4 144.8 451.3 37
700 35.6 184.0 572.3 38
800 36.5 208.0 1628.1 37
900 37.2 261.2 4733.4 41
1000 37.2 502.8 5370.1 38

Table 6. PATH for solving binary symmetric matrix LCP

n mean sup mean time max sup

20 8.2 0.0445 12

40 10.2 0.3229 17
n>60 fail to solve
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to solve. Secondly, the QP-based FPITAS algorithm lives up with its theoret-
ical expectation and it is numerically effective. Thirdly, the homotopy-based
algorithm seems able to solve sizable problems, although its computational com-
plexity is not proven to be a PITAS. Finally, as mentioned earlier, the general
LCP solvers, PATH and MILES, may terminate with a “secondary-ray” solution
at the second Lemke pivot, therefore fail to solve LCP (§]). As a result, in our nu-
merical experiments MILES can solve none of our test problems, and PATH can
only solve a small number of test problems with size no more than 50. (PATH
use an alternative default pivoting rule and it switches to original Lemke’s pivot
rule only when the default rule fails or the users force to do so.)

In particular, for the simple example (@) with three isolated non-trivial com-
plementary solutions u! = (1/2; 0), u?= (0; 1/2), w3 = (1/3; 1/3), all three
methods above get the same solution (1/3; 1/3).

6 Further Remarks

We make few final remarks and open questions.

First, is symmetric LCP () in the PPAD class described by [3] and [7]?

Secondly, by restricting A being symmetric for bimatrix game setting de-
scribed in Section 2, we must have R = C, that is, the two payoff matrices are
identical. But in this case, a trivial, pure-strategic, and Pareto-optimal bimatrix
game equilibrium is to simply play the largest entry in C. Thus, it remains to
be seen if the QP-based approach offer a PTAS for computing a bimatrix equi-
librium with a larger support. Note that the constant-approximation result of
Tsaknakis and Spirakis [I1I] was indeed based on computing a KKT point of a
social QP problem.

Thirdly, an important direction is to study the LCP problem (l) where A is
not necessarily symmetric. In this case, even all entries of A being non-negative
may not guarantee the existence of a (non-trivial) complementary solution; see

example:
T (02
4 _(01>.

Finally, the computational results based on randomly generated data show
that the support of u is relative small. Is there a theoretical justification for this
fact or observation?
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Abstract. Completely automated electronic securities exchanges and
algorithms for trading in these exchanges have become very important
for modern finance. In [4], Kakade et al. introduced the limit order mar-
ket model, which is a prevalent paradigm in electronic markets. In this
paper, we consider both online and offline algorithms for maximizing
revenue when selling in limit order markets. We first prove that the stan-
dard reservation price algorithm has an optimal competitive ratio for this
problem. This ratio is not constant, and so we consider computing solu-
tions offline. We show that the offline optimization problem is NP-hard,
even for very restricted instances. We complement the hardness result
by presenting an approximation scheme that runs in polynomial time for
a wide class of instances.

1 Introduction

Electronic exchanges are very important venues for trading many different classes
of financial securities. With the widespread use of such markets, a technique
known as algorithmic trading has become popular among financial institutions
and institutional investors who seek to buy or sell large amounts of a particular
security. Consider, for instance, a pension fund that would like to sell many
shares of a particular stock. Typically, such an investor would not sell large
amounts of stock himself by just submitting an order to a stock exchange, but
rather would seek the expertise of a broker (e.g. an investment bank) to perform
the transaction on his behalf. A standard strategy for the broker is to break the
large order into many smaller orders and to submit the orders gradually over a
given time horizon, with the obvious goal of maximizing his total revenue.
Advances in financial technology have automated this process, and the pension
fund’s entire trade can now be effected by computer with little human interven-
tion: computer programs can choose how to divide the large order into smaller
orders, choose at what time and at what price to submit the smaller orders, and
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then actually execute the transactions on an electronic market. Sophisticated
algorithms for such large trades are offered by most large investment banks and
by many smaller firms specializing in financial technology.

The manner in which an electronic market itself executes the various orders
from clients can also be complex. One of the most important electronic exchange
paradigms is the electronic communication network (ECN), which implements a
limit order market. Prominent ECNs for trading equities and equity derivatives
are operated by NASDAQ), Instinet, and NYSE-Euronext.

In a limit order market, buyers and sellers submit limit orders to buy or sell
a commodity; these orders have semantics such as “I would like to buy v shares,
but I am only willing to pay p USD or less for each share.” The market matches
buyers and sellers based on a transparent function of the orders submitted. Often,
the input order stream is available to market participants, and so algorithms
should be conscious of this market microstructure in order to effectively trade.

In this paper, we will study natural theoretical computer science questions
motivated by algorithmic trading in limit order markets. We consider both on-
line and offline algorithms for placing sell orders in limit order markets, with the
goal of maximizing the revenue generated by selling volume N of a particular
commodity (e.g. a stock). This problem domain was introduced into the theo-
retical computer science literature by Kakade, Kearns, Mansour and Ortiz in [4],
although online trading algorithms in much simpler market models have been
studied for many years.

1.1 The Trading Model: The Mechanics of Limit Order Markets

In a limit order market, market participants submit limit orders, which consist
of three-tuples: o = (0, p,v). The parameter 0 specifies whether the order is to
buy or to sell; p denotes the least competitive price the market participant is
willing to accept, that is, the lowest price per share that is acceptable for a sell
order, or the highest price per share for a buy order; and v denotes the volume,
that is, the number of shares to transact.

A sell order o1 = (S, p1,v1) can be “matched” to a buy order oo = (B, pa, v2)
if p1 < po. If 01 and o9 transact and vy > vo, then oo will be filled, but o7 will
only be partially filled: its volume will be reduced to vy «— v — vo. If v1 < o,
then oy will be filled, and for o2, we have vs « vy — v1. Observe that when
p1 < pa2, any price p € [p1, p2] would be acceptable to both parties. Limit order
markets use the convention that the transaction will occur at the limit price of
the order that arrived first. With this convention, it is advantageous to be the
second of the two matched orders to arrive.

At any time step, buy and sell orders that have been submitted but that have
not yet been paired with suitable counterparties are stored in the buy order book
and the sell order book, respectively. Orders in the book are sorted according to
their prices, with the most competitive orders at the “top” of the book (i.e. in
the buy order book, orders with the highest price are at the top; in the sell order
book, orders with the lowest price are at the top). Ties are broken by placing
the order that arrives first higher in the book. An important property of the two
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books is that the prices of all orders in the buy book are lower than the prices
of all orders in the sell book, since the books consist of orders that have not yet
been matched.

When a new sell order o, = (S, ps,vs) arrives, it is compared with the top
order in the buy book, say o, = (B, py, vp). If ps > pp, then no transaction can
occur and o will be placed in the sell book according to the rules specified in
the previous paragraph. If p, > ps, then min {vp, vs} shares are sold at price py
per share. If vy > vy, then o3 has been filled and is removed from the buy book,
while the volume of o, is adjusted accordingly and a new matching buy order is
sought. If vy < vy, then the order o, is filled, and the volume of o, is adjusted
accordingly. An arriving buy order would be processed in an analogous fashion.
The state of the book is public knowledge in many ECNs and can therefore be
exploited by sophisticated traders.

Table [I] is an example of buy and sell Table 1.
order books. If a new sell order arrived
at price 102.00 and volume 50, then it
would transact with the buy order at
price 102.20. The volume of this buy order
would be reduced by 50.

Buy orders Sell orders
Price Volume Price Volume
102.20 100 102.55 200
102.00 500 102.93 300

1.2 The Trading Problem

The trading over the course of the time horizon is represented by time steps
t =1,...n. At time step t, order o; is placed by some market participant (not
the algorithm). As each order arrives, executions occur and the book is updated
as described above.

The problem that we consider is to design an algorithm that inserts sell orders
into this stream in order to maximize its revenue. At each time step ¢, the
algorithm may place orders before the arrival of o;. It cannot sell a total volume
of more than N, nor can it submit buy orders.

We will consider both online and offline algorithms for this problem. In the
online problem, the algorithm observes the market orders over time and, as they
come in, must insert its own orders. The standard measure of quality of an online
algorithm is defined by its competitive ratio. A randomized profit-maximizing
algorithm has a competitive ratio at most ¢ > 0 if, for all input sequences X,
E[Rev] > ! - OPT, where OPT is the revenue that results from an optimum,
offline placement of orders on input X and E [Rev] is the expected revenue of
the algorithm. We refer the reader to the book by Borodin and El-Yaniv [I] for
an introduction to online algorithms.

1.3 Owur Contributions

We show that the standard online reservation price algorithm yields a competi-
tive ratio of elog R < 2.72log R in the order book model, where R = pmax/Pmin
is the price ratio between the highest and lowest possible prices in the order
stream. This competitive ratio is optimal, in the sense that any randomized al-
gorithm must have competitive ratio at least é log R. All logarithms are base e.
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Our bound on the competitive ratio is an improvement over the O(log R log V)
bound for the reservation price algorithm by Kakade et al. [4], because our bound
has no dependence on N.

Since no online selling algorithm can achieve a competitive ratio that is
o(log R), we examine maximizing revenue in the offline case. We prove that this
optimization problem is NP-hard by reducing from KNAPSACK, even for the re-
stricted case where market participants only submit orders with three distinct
prices. We also show that a simple dynamic programming algorithm will find
the optimum solution. Like KNAPSACK, the running time is pseudopolynomial:
polynomial in N and the largest volume of any order (which in general can be
exponential in the size of the input) when the number of distinct prices that mar-
ket participants may submit is a fized constant k. We then prove that the input
volumes can be adjusted so that running the dynamic programming algorithm
on the adjusted input will yield a polynomial-time approximation scheme when
there is a fixed constant k of distinct prices. The running time with approxima-
tion ration 1 — e is polynomial in n, 1/e and R . We note that all securities indeed
only have a constant number of possible prices (e.g. US equities are traded in
multiples of $.01), although this constant is admittedly large.

The offline optimization problem is a natural and theoretically interesting
question to consider. Although it cannot immediately be applied to the real
online problem faced by a trader, nonetheless these results could be of interest
to a broader audience. The NP-hardness of computing the offline optimum even
with knowledge of the entire order stream is a very strong statement about the
intractability of optimization, for any conceivable context.

Offline algorithms have many potential applications. For instance, an approxi-
mation algorithm can be used for studying historical data, and the output of the ap-
proximation algorithm can be used to compare the realized performance of a trading
algorithm to its theoretical optimum. Also, an offline algorithm could be coupled
with an appropriate statistical model for generating sample paths of the future evo-
lution of market microstructure in order to design realizable trading strategies.

Finally, we generalize some of our results to the buying case.

1.4 Related Work in Theoretical Computer Science

Online algorithms for selling in limit order markets were first introduced by
Kakade, Kearns, Mansour and Ortiz in [4]. Kakade et al. considered selling al-
gorithms that seek to optimize revenue, as well as selling algorithms that seek
to sell shares at the average price of the market (the Volume Weighted Average
Price, which is a popular benchmark for commercially available trading algo-
rithms). Even-Dar, Kakade, Kearns, and Mansour also considered the stability
of limit order dynamics in [3].

The limit order market is a generalization of simpler online trading models.
El-Yaniv, Fiat, Karp, and Turpin in [2] considered the one-way trading, time
series search and two-way trading problems in this framework. This work was
later extended by Lorenz, Panagiotou, and Steger in [5].
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1.5 Preliminaries

The input order stream will be denoted by X' = o4,...,0,, where order o, =
(0, pt, ve) arrives at time ¢. The algorithm’s sequence of sell orders is represented
by a set {o{'}, where o{* denotes a sell order that is placed right before the arrival
of o; € X at time t. If the algorithm places a set of sell orders ¥4 in the order
sequence X, we will denote the new order stream by X - X4.

If the limit prices of all orders in the input stream fall into the interval
[Pmin, Pmax], which is known to the algorithm, then R = pmax/Pmin is the price
ratio. In our paper, we will refer to Lemma 5.3 by Evan-Dar et al. [3]. The lemma
is most easily stated for the case where all orders have unit volume:

Lemma 1 (Stability Lemma [3]). Suppose all orders have unit volume, and
the order stream X' is derived from X by inserting a single order o. (1) If o is
not ezecuted in X', then the sets of executed orders in X and in X’ are identical.
(2) If o is executed in X', then at most 1 order (as specified by id) was executed
in X but not in X'. Conversely, at most 1 order (other than o) was executed in
X but not in X.

From a high-level perspective, the stability lemma states that if we insert an
extra order into the order sequence, it will not affect the set of executed orders
by very much.

2 Optimal Online Algorithms

We show in this section that the reservation price algorithm for selling in the
order book model has an optimal competitive ratio. This algorithm was origi-
nally considered for the maz-search problem (also called the time-series search
problem) by El-Yaniv et al. [2] and later by Lorenz, Panagiotou and Steger in
[5] and by Kakade et al. in [] for selling in the order book model.

The reservation price algorithm is: pick an integer ¢ uniformly at random
between 0 and |log R] and place an order to sell all N shares of stock at price
€'Pmin at time ¢ = 0, where R is the price ratio.

Theorem 2. The reservation price algorithm for selling in the order book model
has competitive ratio elog R. Furthermore, any randomized algorithm must have
competitive ratio at least é log R.

Proof. We first prove that the reservation price algorithm has competitive ratio
at most elog R. Let pres = €'pmin be the reservation price randomly chosen
by the algorithm. Suppose p1,...,pn are the prices realized for the sale of the
N shares by the optimal solution, X4, and let OPT = >1 pi be the optimal
revenue. Let P, = {pj i pres <p; < € - prest be the set of prices of executed
orders that are within a factor of e of the price pres.

Claim. The reservation price algorithm will sell at least | P;| shares at price pres.
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The main idea of the proof, which is omitted for space, is that if of* = (S, pres, N)
is the order placed by the reservation price algorithm, then in the set of execu-
tions of X+ ({oft} U X4), oft will execute |P;| shares, since it will have a higher
priority than the orders in P;. It follows that if o is placed by itself, it will
realize at least as much revenue.

With probability 1/log R, the reservation price algorithm will choose reserva-
tion price pres +— €*Pmin. Then the expected revenue of the algorithm is

[log R] [log R

1 : Dj oPT
E ‘Pz‘ ezpmin Z § g ! = .
~ log R = A logR elogR

Thus, the competitive ratio of the reservation price algorithm is at most e log R.

In order to establish the lower bound, we observe that it is straightforward
to reduce the online maxz-search problem to our problem of selling in a limit
order market. In this problem, a player observes a sequence of prices and tries to
select the highest one. The é log R lower bound on the competitive ratio for any
randomized algorithm for max-search proved by Lorenz et al. in [5] establishes
the lower bound for limit order markets. ad

3 NP-Hardness of the Offline Problem

We prove the NP-completeness of optimal selling by reduction from KNAPSACK.
Our reduction is to the special case of instances in which only three different
prices occur, pn, Pm, D1, where pp > pm > i

We will use several facts about the structure of the optimum solution in the
three-price case.

Lemma 3. There exists an optimal solution that places all its high-price sell
orders at time t = 0. The number of such orders can be arbitrarily large.

Lemma 4. There exists an optimal solution that places all its low-price orders
immediately after the last execution it realizes at either price pp or price pp,.

Lemma 5. There exists an optimal solution that only places a medium-price
order immediately after an execution occurs at a high price.

Lemma 6. There exists an optimal solution, such that if we attempt to insert
another medium-price order after an execution at a high price, then the algorithm
will achieve one less execution at a high price, except when this occurs after the
last execution at a high price.

The proofs of these lemmas show that any optimal solution can easily be con-
verted to satisfy these properties.

We will reduce the NP-complete KNAPSACK problem to offline selling. An
input to KNAPSACK Zx is a set of n pairs, (w;,v;), a capacity C, and a value V.
It is in the language if there exists a subset S C [n] such that ), qv; >V and
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Yicswi < C. Let v* = max;(v;) and let W = . w;. We can assume that all
numbers in the instance are positive integers, and that v* > 1.

The three prices in the selling instance we will create are p; = 1, p,, =
(C 4 1v*, and pp, = (C + 1)v* + 1. Let a; = (C + 1)(wv* —v;) and b; =
((C + 1)(wiv* —v;) + w;)(C + 1)(v*). For 1 < i < n, let 2; be the following
sequence of limit orders:

L. <Bapmvai + wi> 2. <Sapla wi> 3. <val7 wi> 4. <Sapma ai> 5. <vah7ai + bl>
Let {2 be the following order sequence:
L. <Suplu W — C> 2. <vam7me>

Let X be the concatenated order sequence (X1, ..., X, £2). The total volume
of buy orders in X is N = > ,(2a; + 2w; + w;py + b;). N will be the number of
shares to sell. The revenue to raise will be R = p;, >, (a; +b;) +p2, W+ (C+1)V.
Then Zs = (X, N,R) is an input to the offline selling problem. It is in the
language if R revenue can be obtained by selling at most N shares.

Lemma 7. If there exists a solution S C [n] to I with total value V', then there
ezists a solution to Is with revenue of at least R.

Proof Sketch: Given S, first insert the order o' = (S, pn, >, (a; + b;)) at the be-
ginning of X. o' executes with every high-price buy order, which yields revenue
pry_;(a; +b;). If i € S, insert the order o = (S, pm,a; +w;) at the beginning
of X;. When O'ZA is added, then a; + w; sales are made by O'ZA at the medium
price, and a; less sales are made from the high-price buy order at the end of X;.
Therefore the change in revenue from o is pp,(a; + w;) — pn(a;) = (C + 1)v;.
Finally, insert the order o/ 1 = (S, Pm, pm W) after subsequence X, and insert
ol "o = (S, 11, C) at the end of £2. Regardless of the previous insertions, the rev-
enue from o7}, | and o, is p2W + p; (C — > ,cqws) > p2,W. Then the total
revenue obtained is at least pj, >, (a; + b;) + p2, W + (C + 1)V = R. 0

Next we prove the converse of Lemma [[l By Lemma [3] we can assume that the
optimal solution for Zs places a large sell order at price p, at the beginning of 3.
Observe that in the resulting execution, that sell order executes at the high price
after every subsequence Y;. By Lemmal[l we can assume that all medium-price
orders in the optimal solution are each inserted at the beginning either of some
X, or of 2. Let S C [n] be the set of X; subsequences for which this happens.
Finally, by Lemmal[4l we can assume that any low-price order is inserted at some
point after the last high-price or medium-price order is inserted.

Lemma 8. For i € S, there is an optimal solution in which the medium-price
order inserted at the beginning of X; has volume a; + w;.

Proof Sketch: Let 0 = (S, pm,v), i € S, be the medium-price order inserted at
the beginning of X;. If v > a; + w; or v < a;, decreasing v increases high-price
sells and decreases medium-price sells, for a net gain in revenue. Otherwise, v can
be increased to a; + w; without reducing high sells, contradicting Lemma O
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Lemma 9. There is an optimal solution in which any low-price order is inserted
after the X, subsequence.

Proof Sketch: Suppose instead that the low-price order O'IA is inserted before ;.
Consider moving O’lA to the beginning of X;. If JlA reduces the volume of high-
prices transactions before X;, this move would increase net revenue. Otherwise,
the move maintains revenue. O

Lemma 10. There exists an optimal solution with the order (S, pm, pmW) in-
serted at the beginning of {2 and the order <S,pl7 C—> s wi> inserted at the
end.

Proof Sketch: By Lemmas [ Bl and [I0, the solution places a low-price order in (2
that may be preceded by a medium-price order. Inspection shows that including
the medium-price order is optimal. |

We can see by inspecting {2 that the payoff of the orders described in Lemma [I0],
expressed as a function of the volume of the low-price buy book, is:

2
(W Apm(C—1) 0<1<C
p<l)—{p3nw—pm(z—0)0<z<w (1)

Lemma 11. We can assume that ), qw; < C.

Proof. Suppose instead that ), gw; > C. Consider removing the medium-
price order at the beginning of X;, i € S. The sequence loses the p,,(a; + w;) —
pr(a;) = (C+1)v; revenue from that order. The transactions in X; subsequences
are unaffected, but at the end of each there is an additional w; volume in the
buy book at the low price. Equation [Il shows that this volume increases the
revenue obtained by at least (C + 1)v*. Therefore the total change in revenue
is nonnegative, and we can convert this sequence into an optimum such that

Zies w; < C.

Finally, we can show that the optimal revenue of Zs can give us a lower bound
on the value of optimal subsets in Zx.

Lemma 12. If there exists a solution to Ls with revenue of at least R, then
there exists a solution to Iic with total value at least V.

Proof. 1f 3, gv; > V, then, by Lemma [IIl S is a solution to Zx of value at
least V. Suppose otherwise, that ), ¢ v; < V. The solution receives py, >, (a; +
b;) revenue from the initial high-price sell order. It receives (C' + 1)), qv; <
(C + 1)(V — 1) revenue from the medium-price orders in S. We can see from
Equation [ that it receives no more than p2, W + p;(C) revenue from the two
orders in {2. This accounts for all of the revenue R’ of the solution. However,
R —R=(C+1)(V-1)+p(C)—(C+1)V <0, contradicting the assumption
of the lemma. O

Theorem 13. The decision version of optimal offline selling is NP-complete.
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Proof. The decision version of the offline selling problem is in NP, because
we can calculate the revenue of a solution by running the limit order market
algorithm on the total sequence. Also, the previous lemmas show that the input
to KNAPSACK is in the language if and only if its reduction is a member of the
offline selling problem language. a

In contrast to the three-price case, it can be shown that if there are only two
prices in the order sequence, the problem can be solved exactly in O(n) time.
The algorithm simply places one high-price sell order at the beginning and then
tries all positions for the low-price order.

4 Offline Algorithms and Approximation Schemes

In this section, we present approximation schemes for the offline selling problem.
The general approach to our algorithm is similar to the FPTAS for KNAPSACK,
but the technical details are more involved. We first give a pseudopolynomial
dynamic programming algorithm. Then we show that this algorithm can be used
in an approximation scheme by reducing and rounding the order volumes. The
approximation scheme will have running time polynomial in 1/¢, the maximum
price ratio R, and n, if the number of prices at which market participants can
submit orders is a fixed constant.

4.1 Pseudopolynomial Time Dynamic Programming Algorithm

A simple dynamic programming algorithm can compute the optimal placement
of sell orders in polynomial time, under the assumption that the volume of each
limit order is 1, and that the number of distinct prices at which the market
participants can place orders is at most a fixed constant k.

The input to the dynamic programming subproblem is given by: (1) Times ¢,
and t9, such that ¢; < ¢5. (2) The initial buy and and sell order books at time
ti: By, St,. (3) The final order books at time ta: By,, St,. (4) m, the number of
shares to be sold by the algorithm between times ¢; and ts.

Each subproblem is then: Given buy and sell order books By, and S, at
time ¢; (prior to the arrival of order oy, ), find the optimum placement of orders
between times ¢; and to (inclusive), such that the buy and sell order books at
the end of time ¢y are By, and S, and that the number of shares sold by the
algorithm between times ¢; and ts is at most m.

Theorem 14. For the case where each order has unit volume, the dynamic pro-
gramming algorithm will find an optimal solution in time O(N3FTon3k+3) yhere
k is the number of distinct prices.

The details of the algorithm and its analysis follow standard dynamic program-
ming techniques. This algorithm can be used with orders of arbitrary volume,
which adds an additional factor in the runtime.

Corollary 15. If the volume of each order is unrestricted, the dynamic program-
ming algorithm will run in time O(n? N3¥+5(nV)3k+3) “where V is the mazimum
volume of any order.
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4.2 PTAS for the Arbitrary Volume Case

We now show how the input can be preprocessed in two steps so that the dynamic
programming algorithm from the previous section can compute a solution with

revenue at least (1 —€)OPT in time O (n12k+16 (R/6)6k+8)7 for input sequences

with arbitrary volumes in each order.

Step 1: Reduce to the Significant Volume Case.

Our first step will be to modify the instance to ensure that NV is at least a fraction
of the total volume of all orders, which we call the significant volume condition.
X satisfies this condition if (n 4+ 1) - N >V, where V is the maximum volume
of any order in X.

Lemma 16. Given an order stream X, we can construct an order stream II
such that

1. If V is the mazimum volume of any order m; € II, then (n+1)- N > V.

2. If X4 is any set of sell orders with total volume at most N placed by the
algorithm, it will realize the same revenue in II - X4 as in the original input
X.xA

We assume that there is at least one order in the original sequence X, o; =
(tiypiyvi) € X such that v; > N - (n + 1). Since a selling algorithm will only
transact N shares, intuitively its action should have very little effect on order
0, which contains many more shares.

Let transy(o;) denote the set of orders that are matched with o; in the evo-
lution of the order sequence Y. Let unexy(c;) denote the volume of o; that
is unexecuted in the evolution of ¥. Let matchx(c;,0;) denote the number of
shares of o; that are matched with o; in the order sequence X.

Lemma 17. Let X4 be any set of orders placed by the algorithm with an aggre-
gate volume of at most N. Then for any 0,05 € X,

matchy.xa(0i,05) > matchs(o;,05) — N.

The lemma follows from applying the Stability Lemma to the transactions be-
tween o; and 0.

Lemma [I7 implies that o; and o; have excess volume that is, in some sense,
superfluous to the problem of selling at most N shares. We eliminate these in a
new order sequence I1.

For each order o; € X, where o; = (6;,pi,v;), we create order 7; such that
mi = (0i, pi, v;), where v = v; — 3 ctrans, (o,) Max(matchy(oi, 05) — N,0) —
max(unexyx(o;) — N,0). With these new volumes,

vol(m;) < vol(e;) — Y matchg(oi,07) — unexg(o;) + (n+ 1)N = (n+ 1)N.
J

Thus, the modified input sequence II = mq,...,m, satisfies Condition 1 of
Lemma, Condition 2 follows from Lemma [I7
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Step 2: Round Volumes.

Recall that V is the maximum volume of any order. We now assume that our
input has been reduced to the significant volume case, where (n +1) - N > V.
Let M =€+ N/(nR). In the second preprocessing step, we round the volume of
every order in X to the nearest multiple of M. The volume of each order will be
changed by at most M /2 and the number of possible values for the volume of an
order will be V/M = nVR/(Ne) < n(n+ 1)R/e. Let X’ be the input sequence
of orders with rounded volumes.

Lemma 18. Finding the optimum solution to X’ will induce a solution with
revenue at least (1 — €)OPT for the original input sequence X.

Proof. We may assume that N is at most the aggregate volume of all buy orders
in Y. Then, OPT > puyi, - IV, because the algorithm could place the order
(S, Pmin, N) at the beginning and sell to the first N buy orders. We first prove
that there exists a solution with revenue at least (1 —¢/2)OPT for X’. Let X4
be an optimum set of sell orders for the input sequence X~'. We may assume that
the realized price for every order in X4 is the same as the price of the order.

Recall that our rounding scheme changed the volume of each order by at most
M /2. The Stability Lemma therefore implies that the total volume of shares that
are executed in ¥ - X but not in X’ - X4 is at most n - M/2. Therefore, there
are at most n - M /2 shares that the algorithm sold in X - X4 but did not sell in
X' . X4, The total revenue lost is at most

Pmax * néw = ; 'pmin'N < ; - OPT.

An analogous argument will prove that the optimum solution on X’ with
revenue OPT’ will induce a solution on X with revenue at least (1 —¢/2)OPT’.
It can then be inferred that the optimum solution for X’ will induce a solution
on X with revenue at least (1 —¢)OPT. O

We combine the two preprocessing steps with the dynamic programming algo-
rithm to obtain an approximation scheme that runs in polynomial time when
the number of price levels k is constant.

Theorem 19. For any ¢ > 0, dynamic programming with preprocessing will
yield an algorithm with approximation ratio at least 1 — € that runs in time

0 (n12k+16 (R/6)6k+8) .

5 Extension to Buying

In the buying case, the algorithm’s task is to insert buy orders into the order
sequence in order to buy at least IV shares, with the goal of minimizing the total
cost of the trade.

We note that there is an asymmetry between the profit maximization (selling
case) and the cost minimization (buying case) online trading problems. The
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results of Steger et al. [5] for the min-search problem imply that no algorithm
can achieve a competitive ratio better than O(v/R). For improved guarantees, we
consider offline algorithms. The dynamic programming algorithm can be easily
modified to the buying case. During the rounding step , however, we must set
M = aN/n, for any a > 0.

Theorem 20. Let OPT be the cost of the offline optimum solution that buys
exactly N shares. For any o > 0, the dynamic programming with preprocessing
will yield an algorithm that buys at least (1 —a)N shares with cost at most OPT.

The algorithm runs in time O (n12k+16 (1/a)6k+8) .
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Abstract. Predictive pricing (e.g., Google’s “Smart Pricing” and Yahoo’s “Qual-
ity Based Pricing”) and revenue sharing are two important tools that online ad-
vertising networks can use in order to attract content publishers and advertisers.
We develop a simple model of the pay-per-click advertising market to study the
market effects of these tools. We then present an algorithm, PRICINGPOLICY,
for computing an advertising network’s best response i.e., given the predictive
pricing and revenue sharing policies used by its competitors, what policy should
an advertising network use in response? Using PRICINGPOLICY, we gain insight
into the structure of optimal predictive pricing and revenue sharing policies.

1 Introduction

Google’s “Smart Pricing” [4] and Yahoo’s “Quality-Based Pricing” [9] are examples of
a practice we refer to as predictive pricing. The idea behind predictive pricing in pay-
per-click advertising is to charge the same advertiser different prices for click-throughs,
depending on which publisher the click-through originated from. For example, an ad-
vertiser who bid on the keyword “camera” might be charged less for a click-through
from a travel website than one from a photographer’s blog, since the latter would (os-
tensibly) be more targeted to potential camera purchasers than the former. Advertising
networks use predictive pricing to attract publishers and advertisers to their network.

Revenue sharing, which is the practice of paying out a fraction of earned revenues to
the publishers where click-throughs originate, is another tool used by advertising net-
works to attract traffic. Revenue sharing is the reason publishers display advertisements
alongside their content in the first place. In this paper, we study how an online advertis-
ing network can apply predictive pricing and revenue sharing “optimally” — that is, in a
manner that maximizes the advertising network’s profits.

The sheer size of the online advertising market makes this problem interesting and
important. Although predictive pricing and revenue sharing can help advertising net-
works attract and retain lucrative traffic, applying these tools suboptimally can mean
that a network is “leaving money on the table” (either by paying out an unnecessarily
large revenue share, or by attracting less- or lower-quality traffic than they could be).
And in a market that, by most estimates, is worth several billions of dollars, the losses
due to suboptimal pricing policies can be tremendous. Advertising networks that cur-
rently do not apply predictive pricing should feel compelled to start — our results suggest
that they are yielding a significant advantage to their competitors.

The practice of predictive pricing in the pay-per-click advertising market is relatively
new. To the authors’ knowledge, there has been no formal analysis thus far of how to

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 53 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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apply predictive pricing and share revenue properly. Recent research on “click quality”
has focused on a related (but orthogonal) problem i.e., click fraud [24316.8]]. Click fraud
relates to whether a given click-through is valid or invalid. Predictive pricing, on the
other hand, focuses on the probability that a valid click-through becomes a conversion
i.e., the conversion rate. Also, techniques for fighting click fraud are typically not ap-
plied on a per-publisher basis (apart from simple blacklisting). Predictive pricing, on
the other hand, allows for very fine-grained publisher-level control.

1.1 Overview

We begin by constructing a model of the online advertising market as a game between
content publishers, advertising networks and advertisers. We then derive an expression
for an advertising network’s best-response function. That is, if an advertising network
knows the predictive pricing and revenue sharing policies of its competitors, what policy
should the network choose in response, in order to maximize its profits? The expression
we derive for the best-response is implicit — it is the solution to a difficult optimization
problem. We then present an algorithm, PRICINGPOLICY, for solving this optimization
problem, yielding a best-response predictive pricing and revenue sharing policy.

Finally, we apply PRICINGPOLICY toward answering some qualitative questions
about predictive pricing:

— Is it always optimal to charge less for lower-quality traffic? (Yes.)

— Should an advertising network always try to attract as much traffic as it can, regard-
less of traffic quality? (No.)

— If a network is better at targeting, can it offer a lower revenue share? (Yes.)

— Does predictive pricing harm publishers, as has been conjectured in online forums?
(Yes and no — it harms low-quality publishers and helps high-quality publishers.)

In principle, the best-response function can be used as a “subroutine” for computing
equilibrium policies for advertising networks (an equilibrium is, by definition, a fixed
point of the networks’ best-response functions). However, we believe that the practical
value of our algorithm lies in computing best responses, rather than equilibria. It pre-
scribes actions that networks can take “today” in response to their competitors, rather
than waiting for equilibria to unfold. Thus, our focus will be on finding best responses.

2 Model

For brevity, we present only a brief overview of our model here. For a complete de-
velopment, we refer the reader to [7]. Table [Tl gives the reader a sense of the various
quantities involved in our model.

We model the pay-per-click (PPC) advertising market as a one-shot dynamic game
between three classes of players: content publishers, advertising networks and adver-
tisers. Content publishers (or, publishers) publish websites and display advertisements
alongside their content. Advertisers design advertisements (or, ads) and bid on key-
words that describe the interests of their target market. Advertising networks (or, net-
works) act as intermediaries, auctioning off click-throughs (or, clicks) to advertisers and
delivering relevant ads to publishers upon request.
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Table 1. Summary of notation used in our model

Symbol Description
I,J, K Number of publishers, networks and advertisers (respectively)

Vi Volume of clicks on publisher ¢’s site
BP®  Conversion rate of publisher #’s traffic
Cij Fraction of publisher ¢’s clicks sent to ad network j

Yk Advertiser k’s revenue per conversion
R, Advertiser k’s target ROI
A Effectiveness of advertiser k’s ads
vk;  Advertiser k valuation of ad network j’s clicks
;-‘Ie‘ Network j’s skill at matching publishers and advertisers
0; Network j’s expected auction revenue per click

Kj Network j’s “nominal” auction revenue per click
n; Network j’s total profit
77" Network j°s maximum possible profit
gij Predictive pricing factor applied to publisher ¢’s traffic by network j
h; Revenue share paid out by network j
g1 Length-I vector whose i™ element is g1
C  I-by-J matrix whose (i, j)-element is ¢;;
G_; Predictive prices chosen by all networks other than network 1
h_; Revenue shares chosen by all networks other than network 1

Each time a user visits a publisher’s site and clicks on an ad, the advertiser pays
the network a small amount. The network then pays out a fraction of this amount to
the publisher where the click originated. A small fraction of clicks eventually become
conversions e.g., a product purchase, or a sign-up to an email list. The advertiser earns
some revenue each time a click becomes a conversion.

Predictive pricing affects how much the advertiser is billed by the network, whereas
the revenue share determines what fraction of this revenue is paid out to the publisher.
For concreteness, suppose each publisher ¢ receives V; clicks on his website. Suppose
¢;j € [0,1] is the fraction of these clicks that publisher ¢ sends to network j. The total
number of clicks that publisher ¢ sends to network j is then:

Vici; (n

For each click coming from publisher 7, network j bills advertisers for only a fraction
gij € [0,1] of a click i.e., advertisers receive a (1 — g;;) discount. The fraction g;; is
the predictive pricing factor@ that network j applies to publisher ¢’s traffic. The effective
number of clicks publisher ¢ is paid for by network j is then:

Vicijgij )

Of each dollar of revenue from advertisers, network j pays out a fraction h; € [0, 1]
to publishers. The fraction h; is referred to as the revenue share. Suppose 0; is the

! The term “predictive pricing” alludes to network j’s prediction about the quality of publisher
¢’s traffic (i.e., accounting for click-through rates, click fraud and conversion rates).
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expected auction revenue per click on network j. Then, the total revenue to publisher ¢
from network j is:
Vicijgijh;t; 3)

We refer to {g;; Vi} and h; together as network j’s pricing policy.
Our one-shot dynamic game is, therefore, comprised of two steps:

1. In the first step, each network j selects and announces its pricing policy (i.e., its
revenue share, h;, and predictive pricing factors, { Jij Vi}).

2. Inthe second step, each publisher ¢ decides which networks to sell its clicks on (i.e.,
its allocations, {c;; Vj}). Simultaneously, each advertiser k& decides how much it is
willing to pay for clicks from each network j (i.e., its valuations, {vy; Vj}).

After the second step, payoffs are realized: a) publishers sell clicks (i.e., display ads) on
their chosen networks, and b) advertisers pay the networks, who then pay the publishers.

3 Optimal Pricing Policies

Network j’s goal is to maximize its own profit, ;. In [[7], it is shown that:

nj = B (Z V%ﬂf‘“’Cij) (1= hj)k, “)

Clearly, network j’s profit depends on the decisions made by publishers and advertisers
(see Table[I)). However, the networks act first in our game: publishers and advertisers
observe the networks’ decisions in the first step before deciding on their allocations and
valuations in the second step. In other words, the outcome in the second step (i.e., pub-
lishers’ allocations and advertisers’ valuations) is the market’s reaction to the first-step
outcome (i.e., networks’ pricing policies). Therefore, to maximize profit, each network
7 will: a) assume that an equilibrium will be played in the second step, and b) choose a
pricing policy that induces the most profitable equilibrium in the second stelﬂ

Network j’s profit depends not only on j’s pricing policy, but also on the pricing
policies chosen by competing networks in the first step. For example, if the revenue
share h; offered by network j is relatively low, then very few publishers may send
traffic to j (i.e., ¢;; = 0 for most ¢), leading to a low 7;. If h; were relatively high, more
publishers may choose network j, but 77; might be low again since j would be paying
out too large a fraction of revenues to publishers. Therefore, network j must account
for the actions of all other networks when choosing its own pricing policy.

We will now compute the best response for network 1, holding the policies of all
other networks fixed, and assuming an equilibrium in the second stelﬂ. It can be shown
that network 1’s best response is a solution to the following optimization problem:

2 For a given first-step outcome {g;; V(i,4)} and {h; V;}, an equilibrium in the second step is
defined as a scenario where every advertiser k chooses its valuations {vg; Vj} optimally and
every publisher ¢ chooses its allocations {c;; Vj} optimally.

3 Our choice of network 1 is without loss of generality. Obviously we can compute the best
response for any network j in a similar manner.
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maximize 7, = A1 (Z %ﬂfnb(}m) (1 —h1)k1

subjectto  X;; = V;g;;h;0; V(i,7)
> ciXij = max Xy Vi

J
ZCij =1W
J

9]‘ = R;a; VJ
o = g (B Viea )
T (X Vicijgig)
0 < g1, hi,ci5 <1 Y(5,) )

The objective in (@) is an expression for network 1’s profit (see @)). The first three con-
straints encode the assumption that each publisher chooses allocations optimally in the
second step. The fourth and fifth constraints say that advertisers also choose valuations
optimally. Thus, the first five constraints together imply that there is an equilibrium in
the second step between publishers and advertisers. The final constraint gives ranges
for the decision variables we are interested in.

Network 1’s optimization problem (3) is highly non-convex, so even feasible points
are not easy to find. One of our main contributions is an iterative algorithm, which we
call PRICINGPOLICY, for finding approximate solutions to (3).

In [[7], we show how to construct a geometric programming (GP) relaxation of (3)
around a given point (h1, g1, C). GPs are log-convex [[]], and therefore can be solved
globally and efficiently. PRICINGPOLICY works by solving a sequence of these GPs.
It outputs a sequence of feasible (but not-necessarily optimal) points, where each point
yields weakly higher profits for network 1 than the previous point. The sequence of
solutions to the relaxed problem converge to an approximate solution to (3).

4 Experiments

Using PRICINGPOLICY, we can gain some interesting insights into the structure of
best-response pricing policies.

Our first experiment examines whether networks that apply predictive pricing gain a
competitive edge, compared to networks that do not. Consider a market with J = 2 net-
works and I = 20 publishers. Each publisher ¢ receives 100 clicks (i.e., V; = 100 Vi),
and the quality of 4’s traffic, 3F'°, is linear in i with values ranging from 0.25% to 5%
(i.e., B = 0.0025i). The networks are equally effective at matching up publishers
and advertisers i.e., ﬂll"e‘ = ﬂg’e‘ = 1.0. We assume k1 = ko = 10, which means the
auction mechanisms used by each network are also equally efficient.

We used PRICINGPOLICY to compute the best-response pricing policy for network
1, assuming network 2 does not use predictive pricing (i.e., g;2 = 1 Vi) and offers

* Such a range is realistic — 5% would be considered a high conversion rate in practice.
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Algorithm 1. PRICINGPOLICY
Require: G_;,h_;, T
1: Select arbitrary initializations h(lo) and g(lo)
2: Use fixed-point iteration to compute second-step equilibrium, cO, assuming other networks
play (h_1, G_1) and network 1 plays (h§°>, g§°>)
3:fortel,...,Tdo
4:  Solve GP-relaxation of () to find an optimal point (h}, g}, C’) that is “close to”

(h(lt_l), g(lt_l), C(t_l)), assuming other networks play (h_1, G_1)

50 (n?.8".CY) — (b8l

6: end for

7: Use fixed-point iteration to recompute second-step equilibrium, cD, assuming other net-
works play (h—1, G_1) and network 1 plays (hgT) , ggT))

8: return (h(lT),g(lT), C<T))

publishers a revenue share of 50% (i.e., ha = 0.5). To solve the GP-relaxation of (@) in
line @ of PRICINGPOLICY, we used CVX, a package for specifying and solving convex
programs [5]. We initialized the algorithm with random choices of g; and h;.

Figure shows the revenue share hgt) output at each iteration ¢, as well as the

market share } 3", cz(-?, estimated profit 77@ and actual profit ngt) at each iteratiorJ. The

“estimated profit” is computed using the estimated allocations C(*) output by iteration

t of PRICINGPOLICY, whereas the “actual profit” is computed using the actual second-

t t
0,)

From Figure [[(a), we see that the algorithm converges after roughly 7" = 50 iter-
ations. The estimated profit tracks the actual profit reasonably well — in this case it is
an underestimate of the actual profit, but in other experiments we ran it was an overes-
timate. As iterations progress, hgt) steadily decreases — PRICINGPOLICY recommends
progressively better predictive prices ggt), allowing network 1 to offer progressively
lower revenue shares. Observe that the algorithm converges to a revenue share of 29%,
which is much lower than the 50% being offered by network 2. Despite offering a lower
revenue share, network 1 manages to attract 74% market share. Thus, the use of predic-
tive pricing is giving network 1 a significant advantage.

It may seem surprising that the market share in Figure is also falling across
iterations. The lowest-quality (i.e., lowest 37*®) publishers are essentially being driven
from network 1 to network 2. Figure[I(b)} which shows the final set of predictive prices
ggT), suggests why these publishers leave network 1. Advertisers are being charged
very low prices (i.e., low g;1) for traffic from low-quality publishers (i.e., low 3F®).
Consequently, network 1 offers to pay these low-quality publishers very little for their
traffic, causing them to choose network 2 instead.

stage equilibrium allocations that would result if network 1 played ( h

> From @), note that . < (32, ViBi™®) k1B = n™, which is the maximum possible profit

max

network 1 can attain in any outcome. Thus, in Figures[I(a)land2l we normalize profits by n7"*.
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Fig. 2. The effect of network 1’s skill at matching publishers and advertisers (i.e., B

Observe that the optimal predictive prices in Figure are increasing in ¢, and
consequently in the conversion rate, 47°. That is, advertisers are being charged less for
traffic from publishers whose conversion rate is lower. We ran several other experiments
(not discussed here), and found that the optimal g;; was increasing in 87" in every case.

Essentially, a “lemons market” effect is avoided on network 1 as a result of predictive
pricing. The lack of low-quality publishers on network 1 raises the average quality of
network 1’s traffic, causing advertisers’ bids to increase. The high-quality publishers
get paid more per click, and are willing to settle for a lower revenue share as a result.

Our second experiment considers the impact of targeting (i.e., ﬂ?’e‘) on market out-
comes. In particular, if a network is more effective than its competitors at matching
publishers with advertisers, does it translate to higher profits for that network? Consider
a market with J = 3 networks and I = 20 publishers. We assume 3/*® = 0.000125i2
i.e., 8P is quadratic in 4, with values ranging from 0.0125% to 5% (there are many low-
quality publishers and a few high-quality ones). Networks 2 and 3 are equally skilled at

matching i.e., 53 = B} = 1.0. We assume that g;o = 208" (i.e., network 2 uses a
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predictive pricing rule that is linear in publisher 7’s conversion rate), and network 3 sets
gis = 1 Vi (i.e., it does not use predictive pricing). Network 2 offers a lower revenue
share than network 3, i.e., ho = 0.5 and h3 = 0.6.

We computed optimal pricing policies for network 1, for various values of 3! rang-
ing from 0.7 to 1.3. Recall that 3! greater than (less than) 1.0 means that network 1
is better (resp., worse) at targeting than networks 2 and 3. Figure 2] shows network 1°s
optimal revenue share h} and its resulting profits (normalized by n"**). As we might
expect, network 1 earns higher (lower) profits when 3" is higher (resp., lower). From
Figure 2l we see that network 1 is able to offer a lower revenue share when B is
higher, since network 1 is generating more conversions for advertisers, causing bids
(and consequently publishers’ revenues) to increase.

5 Conclusion

Using PRICINGPOLICY, we found that predictive pricing and revenue sharing can be
very effective tools for advertising networks to attract publishers and advertisers, espe-
cially if their competitors are not using predictive pricing. It is not necessarily optimal
to attract as much traffic as possible — quality can be just as important as quantity. Being
more effective at matching publishers and advertisers can increase a network’s profits,
so improving their matching algorithms may be a worthwhile investment for networks.
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Abstract. Given a network in which the edge capacities and the com-
modities are owned by the players, a cooperative multicommodity flow
(MCF) game (N, v) can be defined such that v(S), the value of a sub-
coalition S, is the maximum profit achievable within S by shipping its
commodities through the sub-network owned by its members. In this pa-
per, we study MCF games under a partially decentralized setting where
the players make their own routing and resource exchange decisions given
a set of capacity prices determined by a central authority.

Keywords: Multicommodity Flow Game, Dual Payoffs, Core, Mecha-
nism Design, Exchange Prices.

1 Introduction

A network is called a collaborative one if its users share with each other the
resources on the edges or nodes. Examples of such resource sharing occur in
transportation networks where vehicle capacities or in communication networks
where bandwidth are shared. Generally speaking, a routing plan which max-
imizes the social welfare, such as the total network throughput, is desirable.
However, the network users aim at maximizing their own revenues. These issues
are tackled by cooperative game theory via flow game models. In [4], a flow game
is defined on a directed network G in which every edge is owned by a unique
player and there exist a unique source and sink. The value of a sub-coalition
is the maximum flow that can be pushed through the network owned by its
members. The multicommodity flow (MCF) game is a generalization in that the
underlying network has multiple sources and sinks. In this paper, we study a
recent model of MCF games with multiple owners of the capacities on a single
edge which generalizes the existing models.

A cooperative game theory framework assumes that a centralized overseer
manages all the edge capacities and routing decisions, and then distributes the
total revenue in a fair manner. However in real life applications which tend to
be decentralized to a certain extent, the capacity management and commod-
ity routing decisions are commonly made by individual users. Therefore, it is
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important to understand how to design the incentives within the network such
that individual players, motivated solely by self-interests, end up following the
socially optimal routing plan even under a decentralized setting. In [I], a collab-
oration mechanism based on capacity exchange prices is proposed to serve this
purpose. Players must pay for the edge resources they use at pre-determined
unit prices, and at the same time, receive their shares of the money charged
on each edge proportional to their ownership levels. These prices alter the final
revenue of network users and modify their behaviours. This approach is not only
practical, but also has been shown to be effective in [I].

However, cooperation within the grand coalition will be vulnerable if some
sub-coalition does not profit enough. In game theory, the notion of the core is
used to characterize the collection of all fair allocations of the total revenue such
that each sub-coalition gets at least as much as it can achieve playing alone.
Much effort has been devoted to characterize the core in cooperative games ([2]
[14]). One of the well-known results concerns the Linear Production (LP) Game
studied by Owen in [7], in which the value of a sub-coalition can be found by
solving a linear program. In [7] it is concluded that in a LP-game, an allocation
in the core can be obtained by solving a dual linear program, but in general the
core is not fully described by such dual payoffs.

In this paper, a partially decentralized MCF game with multiple owners on
a single edge is studied under the collaboration mechanism based on capacity
exchange prices introduced in [I]. With a set of good exchange prices, each
player’s net payoff naturally provides an allocation of the value of the grand
coalition. This paper focuses on the relationship of such profit allocations arising
from a multicommodity network operated under a capacity exchange economy,
and the core of the MCF game defined on the network. It shows that the dual
payoffs can be achieved by the careful design of the exchange prices but not every
fair allocation in the core can be realized in this way. Furthermore, it is proven
in [I] that if all edges are uniquely owned, both the social optimum and a fair
allocation in the core can be guaranteed under good exchange prices. This paper
further generalizes the above result by showing that even with multiple owners of
the resources on a single edge, the conclusion still holds under certain conditions.
We also give an example that provides insights into how diseconomies arise from
multiple ownership of edge capacities and their impact on players’ payoffs.

2 Notation and Preliminaries

2.1 A Multicommodity Flow Game

The formulation of the MCF Game used in this paper is mainly from [I]. For-
mally, a MCF Game is defined on a directed graph G = (V, E). Let N be the set
of players. Each commodity type is described as a triplet (o, d, i) such that o and
d are the corresponding source and sink, and i is the player who owns demand
to be shipped from o to d. Let d(, 4 be the amount of the existing demand of
commodity (o, d, i) and r(, 4, be the unit revenue of it. D% = {(o,d, i)|Vi € S} is
the demand set of coalition S. Denote D™V as D. Each edge e € E has a capacity
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e, which is the maximum amount of flow allowed on e. Player ¢ owns a fraction
of 7% of the capacity on edge e. Let v = > ics Ve be the fraction of capacity on
edge e owned by coalition S. Obviously, v = >",. v 7i =1 Ve.

For modelling convenience, we introduce a fictitious edge (d, 0,7) from node

d to node o for every commodity type (o,d,). Let feo 49 he the amount of

commodity (o,d, %) shipped through the edge e. Let IEdges(v) = {(u,v),Vu}
and OFEdges(v) = {(v,w),Vw}. The value of the coalition S, v(.5), is defined to
be the optimal value of the following linear program:

0,d,1)
PS):  w(S) =max S O 1)
(0,d,i)eDS
s.t. Z (0d3) _ Z flod) <0 YoeV V(o,d,i)eD% (2)
{e:e€IEdges(v)} {e:e€OFEdges(v)}
Z flodid < cnS Vee E (3)
(0,d,i)eDS
f(;)j; = d(o,d,i) V(Ov d7 Z) € DS (4)
f=z0. ()

After solving the above linear program for every sub-coalition, we define a
MCF game (N, v), where N is the number of players and v is the value of coali-
tions. An allocation in the core of such a game, i.e., the set C' = {z|) .y i =
V(N); D es i > v(S),VS C N}, can be efficiently computed by solving the
dual problem of P(NN). Mathematically, if we denote the optimal dual solutions
assoclated with constraints (3) and (4) in P(N) as ag, Ve € E, and f(, ; ,;
Y(o,d,i) € D, then the dual payoff, as defined in (@), is in the core.

={r;=Y atcevit D Bloandodn}- (6)

ecE (0,d,i)eD?

However, it is a known fact that in a MCF game defined above, the core is not
fully characterized by the dual payoffs in general [I]. Moreover, such an allocation
scheme requires a central planner to take full control over the operations of the
resources, and to allocate the revenue obtained as a result in the grand coalition
exactly in the way as described in (@), which is not realistic in most applications.

2.2 A Collaboration Mechanism Based on Exchange Prices

Consider the MCF game defined in 2.1 under a decentralized setting. Players
make their own routing decisions and interact with each other via capacity ex-
changes which are commonly paid in dollars per unit in market applications. In
order to achieve the collaborative optimum, a centralized authority intervening
minimally may design a price system on the edge capacities to provide enough
incentives for the selfish players to choose the social optimal routing for their
commodities.
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Formally, tag the edge capacities with a set of exchange prices cost = {cost.}.
All players pay for all the edge resources they use, and at the same time get part
of the revenue generated by capacity exchanges on every edge proportional to
their ownership levels. We model the behaviour of each player by assuming that
one makes the routing decision as if he could route all the flow in the network.
Such assumption leads to results with desirable properties even in more complex
applications. Mathematically, a coalition S solves the following linear program

P to maximize his payoff as in (7) under the same constraints as in P(N).
max > flaerean+ Y costelyS D feMD—(1=48) Y fleth] ()

(0,d,i)eDS eck (0,d,i)¢ DS (0,d,i)eDS

s.t. @) — @) in P(N). (8)
A good set of exchange prices makes the social optimum most attractive to

every sub-coalition. The following definition captures this idea. Let f* be the
socially optimal routing solution, which is also the optimal solution to P(N).

Definition 1. A set of exchange prices cost is inverse feasible with respect to
f*af f* is an optimal solution to Pf(;gt for all sub-coalitions S C N.

In [, it is shown that the set of inverse feasible exchange prices can be identi-
fied efficiently by solving a linear program. Specifically, a set of inverse feasible
exchange prices must satisfy a set of constraints (J;c 5 I ¢, which contains all the
dual constraints and complementary slackness constraints associated with f*
and the problem PC"O—S , for every player il

Theorem 1. A set of exchange prices cost is inverse feasible if and only if
Usen I' with cost as parameter is feasible. Such exchange prices always exist
given any MCF game defined in 2.1. (from [1])

3 Achieving Allocations in the Core by the Mechanism
Based on Exchange Prices

With a set of inverse feasible exchange prices cost, the payoff of player i is

Bm Y et costeli Y 20t Y g,

(0,d,i)eD? ecE (0,d,i)¢ D (0,d,i)eD?
(9)

Because the total profits earned from edge capacity exchanges summed over
all the players is 0, {z'} as in (@) naturally provides an allocation of the amount

2 (0.di)eD f&(zjsl)T(o,d,i) = v(N) as defined in ([)-(@). In other words, inverse
feasible exchange prices can serve as a practical tool to realize profit allocations
in a MCF game under decentralized settings. This section deals with the problem
of how to design the exchange prices such that the resulting profits of players

happen to be identical to some allocation in the core.

i

1 See the full paper on the author’s webpage for the complete description of Uien I"
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3.1 Dual Payoffs

The dual optimal solutions associated with P(N) are important in the sense that
every element of it defines a fair payoff allocation in the core [7]. They are also
termed as market prices in [3] to emphasize on their economic interpretation.
In this section, they are further shown to be inverse feasible in the mechanism
based on exchange prices. The full result is introduced in Theorem 2/

Theorem 2. In a MCF game defined in 2.1, the payoff vector induced under
the mechanism based on exchange prices is identical to the dual payoff defined
in (@) if the exchange prices are set to be the market prices of edge capacities.

Theorem 2 is closely related to the economic notion of competitive equilibrium
studied in the Edgeworth model of exchange economy such as in [2], [I2], [13].
Please refer to a recent working paper by the authors for details.

3.2 An Arbitrary Allocation in the Core

Although all the dual payoffs can be achieved under the mechanism based on
exchange prices as explained in the previous section, this cannot be slated for
an arbitrary allocation in the core. Consider the following simple MCF game.

Example 1. A network has two nodes o and d and an edge e from o to d. There
are 2 players. Each player owns 0.5 units of capacity on e. Player I has 0.4 units
and Player II has 0.7 units of demands to be shipped from o to d. The unit
revenue of either commodity is 1.

By simple calculations we conclude that the exchange price on e is inverse
feasible if and only if it is 1. So only the dual payoff [0.5, 0.5] can be achieved
under the mechanism based on exchange prices. However, since v(I) = 0.4,
v(IT) = 0.5 and v(I U II) = 1, there are infinitely many solutions in the core
that cannot be realized in this way.

To conclude, given a MCF game, let D be the set of dual payoffs as in (@), C
be the core, and I be the set of allocations induced by inverse feasible exchange
prices. It is always true that D C C and D C I. However, generally speaking,
C ¢ I, and it is also easy to find a counter example to I C C (see Examples 2
in section 4.2).

4 The Inverse Feasible Exchange Prices and the Core

While inverse feasibility ensures that every selfish player chooses to follow the
social optimum when he plays within the grand coalition, the resulting allocation
must be in the core to sustain the stability of the grand coalition. In general,
it is hard to tell whether the allocation generated by an arbitrary set of inverse
feasible exchange prices is in the core. In [, it is proven that under the assump-
tion of unique ownership of the edge capacities, inverse feasibility automatically
guarantees the long-term cooperation of all players, i.e., I C C.

2 See the full paper on the author’s webpage for the proof of Theorem 2.
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Theorem 3. If each edge of the network has an unique owner, the payoff vector
x = {x;} given by () lies in the core of the multicommodity flow game as long
as the set of exchange prices in use is inverse feasible. (from [1])

However, as it is mentioned in [I5], diseconomies can arise when an arc is not
owned by a unique player, and when diseconomies exist desirable properties of
a flow game may be violated. In order to further understand the relationship
between the core and the allocations induced by inverse feasible exchange prices
under a more general setting, multiple ownership of the capacities on a single
edge is allowed here. It is concluded that only a certain type of edges is needed
to be uniquely owned in order to reach the conclusion in Theorem 3.

4.1 A Single Sub-coalition Problem

Our analysis begins by studying the payoff to a particular sub-coalition S. First
we introduce some notation. let Mg = {e|0 < v < 1}. Let f(—S) denote one
feasible solution to P(N \ S) [@)-(@) and define the utilized capacity on edge
e within the coalition N \ S to be u;*° = > (0,d,i)g DS F(=S)D 1f S =

ce(1—~2), we say that there are no excess resources within N '\ S under f(—S).

Theorem 4. If there exists a solution f(—S) under which there are no excess
resources within N \ S on every edge in Mg, then under every set of inverse
feasible exchange prices, ° > v(9).

Proof. The theorem is proven by showing that, under our assumption, there is
a feasible routing for S such that the payoff induced is guaranteed to be no less
than v(S). See the full paper on the author’s webpage for the complete proof. 0O

N
— X «—

payoff under a feasible routing for §

> VO <

0 a| money S pays on resources|h c
owned by its members

money paid by N\ S for capacities

Fig. 1. An illustration of the proof of Theorem 4

Fig. 1 illustrates the main idea of the proof to Theorem 4. It also explains
the relationship between ° and v(S), which largely depends on the payments
made and gains received from capacity exchanges. Specifically, if a single edge
e is owned by multiple players and is also used by at least one of its owners
who, after joining the grand coalition, will be paying for his own resources on
e which should be free for him, i.e., ab > 0 in Fig. 1. Hence diseconomies arise
from multiple ownership of edge capacities. The power of the unique ownership
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condition lies in the fact that it guarantees any sub-coalition to not pay for edge
capacities owned by its members, i.e., ab = 0, hence always leads to I C C.

Meanwhile, it should be noticed that the capacity exchange mechanism en-
ables players to earn extra profits from other parties. The key effect of the
no-excess-resources condition in Theorem 4 is to guarantee that there exists a
feasible way for the coalition S to route the flows such that the money paid by
N\ S covers the amount S pays on its own resources, i.e., ac > ab in Fig. 1.
In this way the diseconomies resulting from multiple ownership can be remedied
and 2% > v(S) whenever a set of inverse feasible exchange prices is used.

However, no such conclusions can be made in general. In fact, the condition
in Theorem 4 is sometimes necessary to obtain the conclusion.

4.2 On Excess Resources

The following example illustrates how the payoff to coalition S induced by inverse
feasible exchange prices is affected by the excess resources within N \ S, so that
x° > v(8) is violated.

Example 2. A network has only two nodes o and d and an edge e from o to
d. Player I owns c.y} units of the capacity, but his demand exceed the total
capacity, i.e., d(,,4,1) > ce. On the other side, Player IT owns no shipping demand
but only c.(1 —~}) units of capacity. The unit revenue is T(0,d,1) = 1.
Obviously the collaborative optimal solution is to ship ¢, units of Player I's
demand. Denote the exchange price as cost. Consider the objective functions in

Pp}&gt and Pf&st. We conclude that cost is inverse feasible iff 0 < cost < 1_173.

Calculate Player I's payoff under an inverse feasible exchange price cost.

xt = ce[1 — cost(1 — 7)) (10)
=v(1) +ce(1 =41 — cost). (11)

By (), z* < v(1) if cost > 1. Since Player I owns a positive fraction of capac-
ityone, 1< 1717;. Hence, any inverse feasible exchange price in the nonempty
, 1—1'v1] leads to ! < v(1).

Fig. 2 illustrates how Player I accumulates his profit as the shipping amount
increases if cost > 1. The line segment ob demonstrates the situation in which
all resources in use are exchanged at a price of cost. By ([I0), Player I earns a
unit profit of 1 — cost(1 — L) from his shipping business, hence the slope of 0b
is 1 — cost(1 —~}) which is nonnegative by inverse feasibility. From this point of
view, Player I benefits from the excess resources owned by Player II. However,
() implies that the profit accumulation process can also be understood in
another way. At first, Player I plays alone to use up his own resources with a
unit profit 1, which is the slope of the line segment oa. Then he joins the coalition
and ships more using the capacities owned by Player II. By (), the unit profit
he actually earns after joining the grand coalition, which is the slope of ab, is
1 — cost. Hence, the excess resources owned by Player II in fact undermines the
total profit of Player I since 1 — cost is negative when cost > 1.

interval (1
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1
Cole  Ce X

Fig. 2. Payoff accumulation of player I in Example 2, where z denotes the shipping
amount as well as the resources used on e, and y denotes the profit earned

Notice the condition in Theorem 4 is necessary in Example 2 to guarantee z1/} >
v({I}) when an arbitrary inverse feasible exchange price is used.

4.3 A Sufficient Condition for I C C

By considering every sub-coalition using Theorem 4, we can easily derive the
following sufficient condition for every set of inverse feasible exchange prices to
induce a payoff vector in the core.

Theorem 5. If Vi € N, Ve € |J,cy M;, there exists a feasible solution f(i) to
P(i), under which there are no excess resources within {i} on e, then every set
of inverse feasible exchange prices leads to a payoff allocation vector in the core.

Theorem 5 requires that the edges are uniquely owned only if there exists some
player who cannot use up his own resources on them by his shipping demands.
As the assumption of unique ownership of edge capacities implies | J;. y M; = 0,
Theorem 3 is indeed an extreme case of Theorem 5.

5 Open Problems

In section 3.1, it has been shown that the implementation of the collaborative
mechanism with market prices as exchange prices promotes cooperation among
selfish players. However, this approach sometimes results in allocations with
undesirable properties. Because the market price of every partially used edge
should be zero, players who own resources on those edges are very likely to
provide free service to edge users if the exchange prices are indeed set to be
the market price. This phenomenon might deviate players’ behaviours from the
social optimum, thus is a serious drawback. Our present study finds a cutting
plane algorithm to correct the exchange prices so that the problem is tackled.
We also consider the resulting allocations and study their properties.

Another open problem concerns the fact that there are many examples in
which C' C I and the core can be fully described by inverse feasibility. The open
problem is to characterize the situation under which this desirable result is true.
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Abstract. We consider congestion games with linear latency functions
in which each player is aware only of a subset of all the other players.
This is modeled by means of a social knowledge graph G in which nodes
represent players and there is an edge from i to j if ¢ knows j. Under
the assumption that the payoff of each player is affected only by the
strategies of the adjacent ones, we first give a complete characterization
of the games possessing pure Nash equilibria. We then investigate the
impact of the limited knowledge of the players on the performance of
the game. More precisely, given a bound on the maximum degree of G,
for the convergent cases we provide tight lower and upper bounds on
the price of stability and asymptotically tight bounds on the price of
anarchy. All the results are then extended to load balancing games.

Keywords: Algorithmic Game Theory, Nash Equilibrium, Price of An-
archy, Price of Stability, Congestion Games, Social Knowledge.

1 Introduction

Congestion games constitute a well-known class of non-cooperative games in
which a set of facilities F is available to the players and the strategy set of each
player i can be any S; C 2F. The cost of each facility e € E (usually called
the latency of e) is a function of the number of players using e and the latency
experienced by each player ¢ is the sum of the latencies of all the facilities used
by 1.

Congestion games have been introduced by Rosenthal [I7] in 1973. By defining
an elegant potential function he showed that they always possess (and always
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LUS (IST-015964).
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converge to) pure Nash equilibria [I6]. In the last decade, they have come across
the analysis of the Computer Science community with the purpose of charac-
terizing the complexity of computing their pure Nash equilibria and evaluating
their suboptimality in terms of price of stability and anarchy. One of the most
interesting and studied special cases is the class of the linear congestion games,
in which the latency of each resource e is defined as a linear function of the
number of players using e.

A major concern related to the model of multiplayer games is given by the
fact that it is always assumed that each player knows all the context parame-
ters, is aware of the existence of all the other ones and, more important, of the
consequences of their choices in the definition of her payoff. Such interdepen-
dent effects clearly represent the core of each non-cooperative game, but with a
huge number of players in highly dynamic and distributed environments such a
global knowledge might be unfeasible. Therefore, Harsanyi in his two pioneering
works on games with incomplete information [I1I12] introduced Bayesian games,
where players may have different types and are uncertain about each others types
according to a probability distribution over all possible type profiles. Bayesian
congestion games have then been studied in [2I7I8O/T0]. Recently, Koutsoupias
et al. applied a similar model to load balancing games [13].

Along the line of incomplete information, a further realistic step is to assume
that each player is aware only of the strategies played by a subset of players
representing somehow her neighborhood. The idea of exploiting and modeling
the locality of mutual influences constitutes the basis of another famous class of
games, called graphical games. These games have been introduced in [I4] with
the main purpose of providing a succinct form for representing non-cooperative
games in the cases in which the payoff of a player is influenced only by the choices
performed by a relative small subset of the players in the game. General non-
cooperative games, in fact, are usually represented in normal form by using n
matrices each of size m”™, where n is the number of players and m is the number of
strategies available for each player (assuming for simplicity that all the strategy
sets have the same cardinality). In graphical games, a game is represented by
a social knowledge graph G with n nodes and a set of n matrices. Each player
corresponds to a node in the graph and the set of her neighbors in G to all
players directly influencing with their choices her payoff. When the maximum
degree in G is small, say a constant A, each of the payoff matrices will have size
equal to m?.

In this paper we push this idea a little further by associating a given game a
social knowledge graph in such a way that the payoff matrices of the resulting
game will be determined on the basis of those of the initial game and of the
neighborhoods yielded by the topology of the social knowledge graph.

1.1 Related Work

After Rosenthal’s seminal paper [I7], in [I5] it was shown that congestion games
are isomorphic to exact potential games. The price of anarchy of general con-
gestion games is known to be arbitrarily high and cannot be better than n (the
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number of players in the game). Thus, a lot of research has been devoted in
the study of linear congestion games with respect to two different social func-
tions: the total latency, that is the sum of all the latencies, and the maximum
experienced latency. In [1/4] it is shown, among the various results, that in case
of total latency social cost the price of anarchy of pure Nash equilibria is 5/2,
while for mixed Nash equilibria or pure Nash equilibria of weighted players it is
2.618. Moreover, in [] it is also shown that the price of anarchy of the maximum
latency social cost is ©(y/n). The price of stability of linear congestion games
has been studied in [5] where it was shown that for the total latency social cost
it is between 1 + \}3 ~ 1.577 and 1.6. Such a value has been fixed to 1 + \}3

in [3].

1.2 Owur Contribution

We analyze the impact of the social knowledge among the players on congestion
games with linear latency functions. Under the assumption that the payoff of
each player is affected only by the strategies of the adjacent ones in the social
knowledge graph, we first give a complete characterization of the games possess-
ing pure Nash equilibria. Namely, if the social graph G is undirected the game is
an exact potential game and thus isomorphic to a classical congestion game. As
a consequence, it always converges and possesses Nash equilibria. We then show
that if G is directed an equilibrium is not guaranteed to exist, but the game is
always convergent and an equilibrium can be found in polynomial time if G is
acyclic, even if finding the best equilibrium remains an intractable problem.

We then investigate the impact of the limited knowledge of the players on the
performance of the game. More precisely, given a bound A on the maximum de-
gree of G, for all the convergent cases we bound the respective prices of stability
and anarchy.

Such results are determined for the social cost functions (i.) total presumed
latency, that is the one the players believe to pay due to the fact that they are
only aware of the existence of their neighbors, (ii.) maximum presumed latency,
(iii.) total perceived latency, i.e. actually experience due to all and not only the
known players using the same facilities and (iv.) maximum perceived latency.

All the results are then extended to load balancing games, that is congestion
games in which every pure strategy consists of a single facility.

We provide tight and asymptotically tight bounds for 31 of the 32 arising
cases. Such results are summarized in Tables [ and [, where G(A) and AG (4)

Table 1. Presumed latencies: bounds for congestion and load balancing games

PoS*"™, PoS™ PoA™™, PoA™*"
G(Aa) 2,0(A+1) O(A+1),A+1

—

G(A) O(A+1),A+1 O(A+1), A+1
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Table 2. Perceived latencies: bounds for congestion and load balancing games

Congestion games Load balancing games

PoS#™  PoS™** PoA®™ PoA™* PoS®™ PoS™* PoA®"™, PoA™""
G(A) n,nnV/A+1 O(n(A+1)) n, O(n) O(n)
AG(A)  Om(A+1)  O(n(A+1)) 6(n) o(n)

are the classes of all the symmetric (or undirected) and directed acyclic social
graphs with maximum node degree bounded by A, respectively.

In some sense our result seems contradictory: the more players know, the worse
the prices of stability and anarchy are. This is actually true for A approaching
to n, with the worst case being A = n/2. Note also that, in all our lower bound
constructions, A is upper bounded by a constant fraction of the number of
players. However, in the case of perceived latencies, it is possible to see that if
every player knows at least a certain number of other players A, that is if A is
a lower bound on the minimum degree, then as A > n/2 approaches n all the
prices gradually tend to O(n). For A < n/2 all our results coincide with the ones
where A is the maximum degree, as dummy players can be added using only
dummy facilities of null cost so as to induce social graphs of minimum degree
at least A. Another crucial observation is that better bounds can be obtained
for specific social graphs. In fact, for the undirected complete graph constant
bounds derive directly from the classical congestion game.

Besides the particular results, our framework is particularly effective in mod-
elling situations in which users choices are done a priori or modified during a
preprocessing phase under partial knowledge of the arising system performance
in the following operating phase, during which preemption or alternative strat-
egy selections are not allowed or yield excessive costs. As an example, we have
particular routing protocols, real traffic networks and in general contexts in
which users must subscribe conflicting services in advance. More in general, the
framework can be applied to all non-cooperative games in which a complete
knowledge among the players cannot be achieved or can be guaranteed up to
a limited extent. Thus, we believe that it will possibly capture future research
attention.

2 Model

A graphical congestion game is defined by a tuple H = (G =
(N, M), E,(S:)ien, (fe)ecr) where G = (N, M) is a directed graph, called social
knowledge graph, N = {1,...,n} is a set of n players, E is a set of facilities,
S; C 2F is a set of pure strategies for player i, each consisting of a set of facil-
ities, and f, is the latency function for the facility e depending on the number
of players using e.
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Roughly speaking, the graph G defines the social knowledge among the play-
ers. In fact, the players j adjacent to a player ¢ in G, that is such that (i, j) € M,
are all and only the ones whose strategy choices are known by ¢ and can poten-
tially influence her strategy choice. This models the fact that a player may be
not aware of the choices of all the other players, and thus her choices are affected
only by the strategies played by a restricted neighborhood. Clearly, any complete
symmetric social graph induces a classical congestion game.

Let 6;(G) be the (out-)degree of player ¢ in G, and a(A) be that class of
all the social graphs with maximum node degree bounded by A. Moreover, let
G(A) and A—>g (A) be the subclasses of the symmetric (or undirected) graphs and

of the directed acyclic graphs in E)(A), respectively.

The pure strategy profile (state) set of the game is S = [, Si. Given a pure
strategy profile s = (s1, S2,...,8n) € 5, we denote with G¢(s) the subgraph of
G induced by the set of players using facility e, i.e. Ge(s) = (Ne(s), Mc(s))
where N.(s) = {i € N : e € s;} and M.(s) = {(i,j) € M :4,j € Ne(s)}. Let
ne(s) = |Ne(s)] and me(s) = |Me(s)| be the number of nodes and arcs in G(s)
respectively, and 6¢(s) be the degree of node i in G(s). The cost of player i in
the strategy profile s is ¢;(s) = Y., fe(ni(s)), where ni(s) is the number of
nodes adjacent to i in G.(s), i included, that is nl(s) = 6i(s)+1 = |{j € N.(s) :
j=iV (5,]) € M(s)}

We focus on the case in which the latencies of the facilities are linear func-
tions with nonnegative coefficients, i.e. fo(x) = @ex + B, with ae, 8. > 0,
for any e € E. Moreover, we consider four different social cost functions of
a strategy profile s : the total presumed social cost CER"(s) = > ey ci(s) =
Yoecr Diecs, Je(ni(s)) given by the sum of all the players’ costs, the mawi-

mum, presumed social cost CPE"(s) = maxien ¢i(s) = maxien Y. e, fe(ni(s)),

sum

that is the maximum players’ cost, the total perceived social cost CEa*(s) =

Yoecr 2uiecs, Je(Me(8)) = Y ocpne(s)fe(ne(s)), ie., the total cost due to the
actual congestion of the facilities, and finally the mazimum perceived social cost
O (s) = maxien Y,e, fe(ne(s)).

The objective of a player i is to choose the pure strategy minimizing her own
cost, given the strategy of the players adjacent to 7 in G. Given a strategy profile
s = (51,82, 8iy...,8n), we denote as s® s; = (s1,2,...,8%,...,S,) the strat-
egy profile obtained from s if player ¢ changes her strategy from s; to s;. A (pure)
Nash equilibrium is a pure strategy profile such that no player can reduce her cost
by seceding in favor of a better strategy, given the strategies of the other players.
More formally, a Nash equilibrium is a pure strategy profile s = (s1, s2,...,55)
such that Vi € N and strategy s, € S;, it holds ¢;(s) < ¢;(s @ s}). Denoting with
N the set of all the possible Nash equilibria, the price of anarchy (PoA) of a game
‘H for the total presumed latency social cost is defined as the worst case ratio
maxsen Cpg"(s)

among the Nash versus optimal performance, i.e., POAZEF (H) = ™ Prsum ()

where OPTFE*(H) = minges CP1*(s). On the other hand the price of stabil-
ity (PoS) of H is defined as the best case ratio among the Nash versus opti-

mal performance, i.e., PoS§4"(H) = mlg}effci(l?;)(s) PoADE (H), PoASE (H),
PR
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PoABE(H), PoSEE*(H), PoSpy*(H) and PoSEE*(H) can be defined accord-
ingly. In the following, when clear from the context, we will drop the indices
sum and max and the argument H from the notation.

3 Existence, Convergence and Complexity

In this section, we focus on the existence and convergence to Nash equilibria and
completely characterize the complexity of finding a generic Nash equilibrium and
an optimal one. We first consider undirected social knowledge graphs.

Theorem 1. Every graphical linear congestion game defined over an undirected
social graph is an exact potential game, and thus always converges to a Nash
equilibrium.

Proof. Given the strategy profile s = (s1,s2,...,5,), the potential function es-
tablishing the result is @(s) = > . Fe(s), where Fe(s) = ae (me(s) + ne(s)) +
Bene(s).

Let i be a player reducing her cost by changing her strategy from s;
in s to s;, thus yielding a new strategy profile s = s @ s,. The change
of the potential function, @(s’) — &(s), is then equal to Zees;\si

(Fe(s') — Fe(s)) — Zeesi\s(i (Fe(s) — Fe(s") = ZeEs;\si (QE(éé(SI) +1)+ /Be) -
ZeESi\s; (ae(éé(s) + 1) + ﬂe) = ZeEs;\si (aenze(sl) + ﬂe) - ZEESi\S; (aené(s)—k
Be) = ci(s') — ¢i(s). O
We now turn our attention to directed social knowledge graphs, by first showing

that each game converges to a Nash equilibrium and an equilibrium can be
efficiently determined.

Theorem 2. FEach graphical congestion game defined over a directed acyclic
social graph converges to a Nash equilibrium. Moreover, there always exists a
sequence of at most n best replies which can be computed in polynomial time
ending to a Nash equilibrium.

Notice that the above theorem holds for any latency function, and this is in
contrast with the hardness for the undirected case, where the PLS completeness
follows from [6] by restricting to complete social graphs. However, the following
theorem shows that for directed social graphs determining an equilibrium with
minimum social cost remains an intractable problem. We simply refer to social
cost, since slight modifications of the same reduction apply to all the four social
functions.

Theorem 3. Given a graphical linear congestion game with directed acyclic so-
cial graph and an integer k > 0, determining whether there exists a Nash equi-
librium with social cost at most k is an NP-complete problem.

On the other hand, if the social graph contains cycles, Nash equilibria might not
exist.

Theorem 4. There exists a graphical linear congestion game defined over a
directed social graph not admitting any Nash equilibrium.
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4 Presumed Social Cost

In this section we first analyze the prices of stability and anarchy with respect
to the social cost C3R"(s) = > ,cn ci(s), and then sketch how to extend our
results to the max presumed latency social cost.

We provide matching and asymptotically matching upper and lower bounds
for the games defined over the social graphs always guaranteeing the convergence
to Nash equilibria, i.e. undirected and directed acyclic graphs.

We first focus on graphical games defined over undirected social graphs, and,
by exploiting the potential function defined in Theorem [, we prove that the
price of stability is equal to 2, regardless of the maximum degree of the social
graph.

Theorem 5. For any graphical linear congestion game H defined over an undi-
rected social graph, PoSEE(H) < 2.

Theorem 6. For any € > 0 there exists a graphical linear congestion game H
with an arbitrarily large number of players defined over an undirected social graph
such that PoSEE(H) > 2 —e.

As the following theorems state, both the price of anarchy of graphical linear
congestion games defined over undirected social graphs and the price of stability
of graphical linear congestion games defined over directed acyclic social graphs
cannot be upper bounded by a constant, but are linear in A. Notice that if the
social graph has no edges, the price of anarchy is trivially 1, since in any Nash
equilibrium all the players experience the lowest possible cost. Thus, for clarity
of presentation, in the following we focus on graphical games defined on graphs

belonging to G(A) U AG(A) with A > 0.

Theorem 7. For any A > 0 there exists a graphical linear congestion game H
with an arbitrarily large number of players defined over a social graph G € G(A)
such that PoA$ (H) > 24+,

Theorem 8. For any A > 0 there exists a graphical linear congestion game H

with an arbitrarily large number of players defined over a social graph G € ./TQ(A)
such that PoS3 (H) > 411

The following theorem provides asymptotically matching upper bounds on the
price of anarchy for undirected social graphs, and on the prices of stability and
anarchy for directed acyclic social graphs.

Theorem 9. Given any graphical linear congestion game H defined over a social
—
graph G € G(A) UAG(A), PoABF (H) <1+ A.

By combining Theorem [0 with Theorem [7] and Theorem [ respectively, we have
that the price of anarchy for undirected and directed acyclic social graphs is
O(A + 1), as well as the price of stability for directed acyclic social graphs.
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Let us finally sketch how to extend our results to the max presumed latency
social function.

Exactly matching bounds on the price anarchy can be shown by very similar
arguments and constructions; the same holds for the price of stability of games
defined over directed acyclic social graphs (see Table [[]). Different results hold
for the price of stability of games defined over undirected social graphs. In fact,
the potential function argument of Theorem [B] cannot be applied to establish
the same upper bound. However, while a trivial A 4+ 1 upper bound is given by
the price of anarchy, an asymptotically matching lower bound is established in
the following theorem.

Theorem 10. For any A > 0 there exists a graphical linear congestion game 'H
with an arbitrarily large number of players defined over a social graph G € G(A)
such that PoSTA*(H) > “51.

5 Perceived Social Cost

In this section we first analyze the prices of stability and anarchy with respect
to the social cost CEF"(s) = D cpne(s)fe(ne(s)), in which we are interested
in minimizing the sum of the latencies actually perceived by the players. We
then sketch how to extend our results to the maximum perceived latency social
function.

Again we provide matching and asymptotically matching upper and lower
bounds for the games defined over the social graphs always guaranteeing the
convergence to Nash equilibria, i.e. undirected and directed acyclic.

We first focus on the price of stability of graphical games defined over undi-
rected social graphs. By the same potential function technique of Theorem[R], we
prove that it is equal to n regardless of the maximum degree of the social graph.

Theorem 11. For any graphical linear congestion game H defined over an undi-
rected social graph, PoS$4(H) < n.

Theorem 12. For any € > 0 there exists a graphical linear congestion game
H with an arbitrarily large number of players defined over an undirected social
graph such that PoS$4(H) > n —e.

We now show that there exist graphical congestion games defined on undirected
social graphs G for which the price of anarchy is 2(n(A+1)), and that there exist
graphical congestion games defined on directed acyclic social graphs for which
this bound holds even for the price of stability. Notice that if the social graph
has no edges, by the same arguments in the proof of Theorem [I2] the prices of
stability and anarchy are lower bounded by n. Thus, for clarity of presentation,
in the follow_il}g again we focus on graphical games defined on graphs belonging
to G(A) UAG(A) with A > 0.

Theorem 13. For any A > 0 there exists a graphical linear congestion game 'H
with an arbitrarily large number of players defined over a social graph G € G(A)
such that PoARE (H) = 2(n(A +1)).



78 V. Bilo et al.

Proof. Let us consider a graphical linear congestion game H with n = 2kd play-
ers, where d = |A/3] and k is an arbitrarily large integer. The social graph of
the game is G = (NgU Ny -+ UNg_1 UN]_ |, Mo UMyU---UMy_1 UM],_,)
(see Figure [I(D)), where for every h = 0,....,k — 1, N, = {p},...,p}},
N}/L = {q}lmaqg}v Mh = {{thszthl) mod k;} | 7’7] € {177d}} and M}/L =
{{p27q{h+1) mod k) | 4 € {1,...,d}}. The set of facilities is £ = {e} U Ey U
... U Ej_1, where for every h = 0,...,k — 1 E, = {e},...,el}, and for every
I =1,...,d the latency functions are f,: (x) = x; moreover, fe(z) = dz. Each
player p!, has the strategy set {{€},}, E(4+1) mod } and each ¢}, has the strategy
set {{e}},{e}} (see Figure [[(a)). For the sake of clearness, we refer to the first
strategy of each strategy set as the small strategy, and to the second one as the
big strategy.

Clearly, if each player chooses her small strategy, the achieved social cost is
equal to 4kd; thus OPTpr < 4kd.

o
W TN T

)

(a) The optimal assignment and a Nash equilibrium (in
dashed lines)

My

(b) The social graph of H

Fig. 1. Lower bound of Theorem [I3]
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Moreover, the strategy profile § in which each player chooses her big strategy
is a Nash equilibrium; in fact, each player pél has a cost equal to d in 8, and
she would experience a presumed cost equal to d + 1 by changing her strategy.
Moreover, each player qﬁl has a cost equal to d in 5, and she would experience
a presumed cost equal to d + 1 by changing her strategy. The perceived social
cost of § is lower bounded by the sum of the latencies on facility e, that is equal
to d(kd)? = k2d®. Therefore, the price of anarchy of H is at least 2(kd?) =
2n(A+1)). O

Theorem 14. For any A > 0 there exists a graphical linear congestion game 'H

with an arbitrarily large number of players defined over a social graph G € A—>Q(A)
such that PoSPE' (H) = 2(n(A+1)).

The following theorem provides asymptotically matching upper bounds on the
price of anarchy for undirected social graphs, and on the prices of stability and
anarchy for directed acyclic social graphs.

Theorem 15. Given any graphical linear congestion game H defined over a
-
social graph G € G(A) U AG(A), PoARE (H) = O(n(A +1)).

Notice that by combining Theorem [[3] and Theorem [I4] with Theorem [I5] we can
derive a price of anarchy ©(n(A + 1)) for undirected social graphs and prices of
stability and anarchy @(n(A + 1)) for directed acyclic social graphs. Moreover,
for A = 7, Theorem [ combined with the following theorem provides an exactly
matching bound to the price of anarchy for undirected social graphs, expressed
in the number of players.

Theorem 16. There exists a graphical linear congestion game H with an arbi-

trarily large number of players defined over an undirected social graph such that
2

PoAZg (H) =", .

Again, for the maximum perceived latency social function the same bounds on
the price anarchy can be shown by very similar arguments and constructions; the
same holds for the price of stability of games defined over directed acyclic social
graphs (see Table 2)). The potential function argument of Theorem [[I] cannot be
applied to establish the same upper bounds on the the price of stability. However,
while an £2(n) lower bound still holds by the same construction of Theorem [I2]
the following theorem improves upon the trivial O(n(A+ 1)) upper bound given
by the price of anarchy. It exploits a novel technique showing that a high price of
stability for the maximum perceived social function would imply a high price of
stability for the total perceived social function, thus contradicting Theorem [Tl

Theorem 17. Given any graphical linear congestion game H defined over a
social graph G € G(A), PoSTa*(H) < ny/A+ 1.

6 Load Balancing Games

In this section we sketch how to extend our results to load balancing games, that
is congestion games in which every pure strategy consists of a single facility.
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Almost all the previous results implicitly consider load balancing instances,
with the exception of the lower bounds established in Theorem [I3] and [I4] for
the perceived latencies. Both for the total and the maximum perceived latency,
lower bounds equal to n come directly from the respective price of stability con-
structions, that in fact are load balancing ones and hold for games defined over
both undirected and directed acyclic social graphs. The following two theorems
show corresponding asymptotically matching upper bounds.

Theorem 18. Given any ﬂphical linear load balancing game H defined over
a social graph G € G(A) U AG(A), PoA3 (H) < 8n.

Proof. Given any Nash Equilibrium s, for every i = 1,...,n let ¢;(s), or simply
ci, be the latency of player i in s, and ¢ be the latency of ¢ in a fixed optimal
strategy profile s*. Without loss of generality, let us assume that players are non-
increasingly ordered with respect to the ratio between the latency at equilibrium
and the one at optimum, i.e. E% > > if Consider the largest index r such

n

cr PoApgr r ) >ii¢i _ Cpe(s) . n *
that o > 7572 Then 375, ¢; = 77577 = 777, as otherwise 3 0 ¢j >

Z?:H_l POQXDE > %;ZL(Z = 22‘%1 ¢, getting a contradiction.

Moreover, since Z;Zl cj > 2’31 “ , there must exist a facility e having latency
function fe(r) = aex + B. with at least half of the clients using it at Nash
equilibrium belonging to the first r players. Let J = {ji,...,jn, } be the set of
such n/, players, and n. be the overall number of players using facility e at Nash
equilibrium, with n/, > (”261 . Consider all the facilities eq, ..., e; used by at least
one player of J in s* . For every h = 1,...,k, let fe, () = ae,x + Be, be the
latency function of e;, and o > 0 be the number of players of J using e, in s*.

We consider two distinct cases.

If (e + Be) PoApr < 2(aen.+B.), it clearly follows that PoApgp < 2n. < 2n.

It remains to analyze the case in which (a. + Bc)PoApr > 2(aene +
0e). Since players in J cannot unilaterally decrease their latencies, a. +
Be < ae,(ne, + 1) + Pep, for every h = 1,...,k, where n., is the num-
ber of players using facility ep in s. Moreover, ae,0n + Be, = c;f <

POQZDE = 2(‘;‘5072;66)7 because j < r is a player belonging to J. By combin-

ing the last two inequalities, it follows that n., +1 > 21(32;4;22()%;35? Oi"‘g;.

Summing up over all h = 1,... k, recalling that (ae + B.)PoApr >
k E on((aet+fe)PoApr—pfe, PoApE)
2(aene + ﬂe)72n 2 Zh:l (neh + 1) 2 Zh:1 2(acne+3c)—f8chP’01APE =
E  on(aet+Be)PoApr k PoA _ PoA k n,PoApg
Zh:l " 2(aene+pBe) Z Zth OhaQac(;LePE - %nfE Zh:] Ohp, 2 2Nne 2
PoA .
4T as gy > e
Therefore, PApg < 8n. a

By exploiting a similar technique it is possible to prove the following theorem.

Theorem 19. Given any graphical linear load balancing game H defined over
—
a social graph G € G(A) U AG(A), PoABE (H) < 2n.
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As a consequence of the above theorems and discussion, while for the presumed
latencies all the bounds coincide with the congestion game ones (Table [I), the
tight results shown in Table 2] hold.

Acknowledgements. We thank Elias Koutsoupias and Tim Roughgarden for
helpful comments.
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Abstract. We study the complexity of finding extreme pure Nash equi-
libria in symmetric (unweighted) network congestion games. In our con-
text best and worst equilibria are those with minimum respectively
maximum makespan. On series-parallel graphs a worst Nash equilibrium
can be found by a Greedy approach while finding a best equilibrium is
NP-hard. For a fixed number of users we give a pseudo-polynomial algo-
rithm to find the best equilibrium in series-parallel networks. For general
network topologies also finding a worst equilibrium is NP-hard.

Keywords: Network congestion game, unsplittable flow, makespan ob-
jective, extreme equilibria, complexity.

1 Introduction

In the last years there has been a lot of interest in algorithmic game theory
combining aspects of game theory and computer science. Driven by growing de-
mand for faster and larger communication networks more and more questions
were asked: How do non-cooperative users interact in such networks where in-
creasing load on individual parts of the network causes a degradation in service,
often in the form of reduced transfer speed? How does this congestion effect
influence the whole network? Is there some kind of self-regulation among the
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users? Classical game theory provides qualitative answers such as existence of
equilibria, states of the network in which all users are satisfied, and computer
scientists added more quantitative question and concepts. It is a well known fact
(cf. Pigou [1), that in general selfish non-cooperative behaviour does not lead to
social optimal outcome. Papadimitriou [2] coined the term price of anarchy for
the ratio of the social cost of a worst Nash equilibrium and the minimal social
cost. The KP-Model named after Koutsoupias and Papadimitriou [3] describes
the situation in which users of possibly different size assign their traffic to par-
allel links with linear latency functions. For pure assignments this corresponds
to uniform/related machines in scheduling. Fotakis et al. [4] came up with the
question whether a best or worst pure equilibrium w.r.t. to makespan can be
computed efficiently and established that in the KP-Model both problems are
strongly NP-hard. Gairing et al. [5] added that it is even hard to approximate
the worst equilibrium social cost on identical links while there is a PTAS for the
best equilibrium social cost. Fischer and Vécking [6] considered the worst mixed
equilibrium.

The hardness proofs for extreme equilibria stated above are based on the
users’ different sizes, i.e., the amounts of unsplittable traffic they send through
the network and the close relationship to scheduling and bin-packing problems.
The question arises whether finding extreme Nash equilibria for unit-size users
is substantially easier as for the unit-size case the corresponding scheduling and
bin-packing instances become polynomially solvable. We will show that most
versions of finding extreme equilibria are still NP-hard even for unit-size users.
Up to now the complexity status of finding extreme equilibria with respect to the
makespan was only considered for the KP-Model. However, in this case finding
extreme equilibria for unit-size users is trivial because even for arbitrary non-
decreasing latency functions on parallel links all Nash Equilibria have equal and
minimal makespan as shown by Epstein et al. [7].

The game describing unit-size users sending their unsplittable traffic through
arbitrary directed networks with latency functions on edges is called network
congestion game and was already studied in the 1970’s by Rosenthal [8]. He
established that the more general congestion games possess pure strategy Nash
equilibria. Fabrikant et al. [9] established that for symmetric (single-commodity)
network congestion games an arbitrary equilibrium can be computed in polyno-
mial time, but for asymmetric network congestion games or general symmetric
congestion games it is PLS-complete to find an equilibrium. Fotakis et al. [10]
introduced that the greedy approach yields a pure Nash equilibrium not only on
parallel links but also on series-parallel graphs.

Contribution. We consider (unweighted) network congestion games with arbi-
trary non-decreasing latency functions on edges. Our negative results need only
linear latencies f.(x) = a.x.

We establish that finding a best or a worst Nash equilibrium concerning
makespan social cost is not equally hard in the following meaning: We prove
that on series-parallel graphs finding a best equilibrium is NP-hard. It is strongly
NP-hard if the number of users is part of the input and weakly NP-hard
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otherwise. Moreover, we suggest a pseudo-polynomial time algorithm that de-
termines a best Nash equilibrium on series-parallel graphs if the number of users
is fixed. This indicates that this problem is not strongly NP-hard. In contrast to
this we show that a worst pure equilibrium is found by the Greedy approach of
Fotakis et al. [10] on these graphs.

In general networks also finding a worst equilibrium is NP-hard. In fact, we
prove it to be NP-hard in the strong sense already for two users on an acyclic
network with linear latencies.

Road Map. The paper is organized as follows: Section [2] introduces our notation
and preliminary results such as existence of pure equilibria and computation of
an arbitrary equilibrium. In Section [3 we discuss our results on finding a worst
Nash equilibrium and in Section [ for a best Nash equilibrium, respectively.

2 Preliminaries

We consider N users of the same size, i.e., each routing the same amount of
unsplittable flow from a single source s to a single sink ¢ through a directed
graph G = (V, E). The edges of G are equipped with non-decreasing latency
functions £, : Ng — R for all e € E modelling the congestion effects. An
instance of the game is thus given by (G = (V, E), (le)ecr,s € V,t € V,N). By
scaling the latency functions appropriately we assume without loss of generality
all users to have unit size.

Let P denote the set of all simple s-t-paths in G and thus the strategy set
of all users. In our context a flow is a function f : P — Ny that assigns integer
values to paths in the network. The latency on a path is the sum of the latencies
on its edges that depends on the total flow on the edge:

tp(f) =Y L St (1)

eepP P'eP:ecP’

We denote by fo := > pcp..cp fp the flow on edge e uniquely induced by
the flow f defined on paths. Note that there may be different so-called flow-
decompositions or flows on paths that correspond to the same flow on edges.
Example [Il shows that we need the information about paths for modelling the
users’ behaviour in our game.

A Nash equilibrium is a stable situation in which no user wants to deviate
from her chosen path because she cannot decrease her experienced latency this
way:

Definition 1 (Nash Equilibrium, Nash Flow). A flow on paths f =(fp)pep
is at Nash equilibrium, if and only if for all paths P1, Py with fp, > 0 we have
fp=1 ifP="P
Cp (f) <Llp,(f) with fp =< fp+1 if P="P. (2)
fp otherwise
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Existence of Nash Equilibria. Rosenthal [§] used the following potential
function IT : 7 — R defined on the set of feasible flows F to prove the existence
of pure Nash equilibria in network congestion games:

fe
() =Y (i) (3)

ecE i=1

Flows corresponding to local optima of this potential function constitute Nash
equilibria. Fabrikant et al. [9] establish that one equilibrium can be computed
in polynomial time because a min-cost flow in the following instance MCF(G)
minimizes Rosenthal’s potential function and is thus a Nash flow.

Definition 2 (Min-cost Flow Instance, MCF(G)). Given a network con-
gestion game (G = (V,E), (le)ecr,s € V,t € V,N) construct the corresponding
min-cost flow instance as follows:

For every edge e € E we need N copies with costs ce;, = (i), i =1,...,N.
The capacities of all edges are 1 and we send N units of flow from s to t.

Observe that every path decomposition of every optimal solution of the min-cost
flow instance MCF(G) yields a Nash equilibrium as the negative cycle optimality
condition for optimal min-cost flows directly implies that no user wants to deviate
from her chosen strategy. However, not every Nash equilibrium is also an optimal
solution of the min-cost flow instance (cf. Examples B and Hl).

Note that there are instances and Nash flows (not global but local optima
of Rosenthal’s potential) such that a different path decomposition of the flow
on edges induced by a Nash flow is not again Nash (cf. Example [[]). Thus, it is
necessary to have the information about the flow on paths as the output of the
game.

Ezample 1 (Nash equilibria and flow decompositions). Consider the instance
given in Figure [l in which two users travel from s to ¢. The latency functions
are given as edge labels. In order to distinguish parallel edges (s, u) (or (u,t)),
we call them upper and lower edge between s and u (u and t).

Observe that the flow sending the first user on edge (s, t), the second user on
the path consisting of the upper edge from s to u and the lower edge from u to
t and the third user on the path containing the so far unused edges is a Nash
equilibrium. The flow on every edge is equal to 1.

But if we change the flow decomposition and send the second user on both
upper and the third on the lower edges this last user becomes unsatisfied be-
cause she would be better off changing to edge (s,t). Hence, not every path
decomposition of a flow on edges yields a Nash equilibrium.

xT x

Fig. 1. Nash equilibrium property might depend on flow decomposition (Example [)
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Social Cost. In this paper, we consider minimizing the makespan as the social
objective function. This notion comes from scheduling and is a priori only ap-
plicable to parallel link networks. Flows minimizing the following more general
makespan definition are sometimes also called min-max flows.

Definition 3 (Makespan, Social Cost). Given a flow on paths f = (fp)pep
the makespan is given by

Crmax(f) = Pegl:?}}gwfp(f) (4)

Epstein et al. [7] showed that on parallel links all Nash equilibria have equal
makespan but this does not hold in general:

Ezample 2 (Nash equilibria with different non-optimal makespans). Consider the
instance given in Figure 2] for two users. If every edge is used by exactly one user
and the paths are alternating between upper and lower edges then an optimal
solution with makespan 12 is achieved. Observe that in any Nash equilibrium
there is exactly one user on every edge between s and u; and between u; and us
and there are two users on the upper edges between uo and us and between ug
and t. A best Nash equilibrium with makespan 13 can be obtained if both users
alternate between upper and lower connection on the first two edges. However,
one user may also choose the lower connections on both first edges. This yields
again a Nash equilibrium, which is worst and has makespan 14.

2x 2z 2z 2z

O OWOWlOWlO
3z 3z S5z S5z

Fig. 2. Instance with several Nash equilibria

As in general the makespan of different Nash equilibria as well as an optimum
makespan are not equal, we are now interested in computing two extreme Nash
equilibria.

Extreme Nash Equilibria. We introduce the following two problems of finding
a best or worst pure equilibrium, respectively.

WORST NAsH EQUILIBRIUM (W-NE for short):

Given: Network congestion game (G = (V, E), (le)ecr, s€V,t €V, N)
Output: Nash equililbrium f with maximal makespan amoung all Nash
equilibria.

BEST NAsH EQUILIBRIUM (B-NE for short):

Given: Network congestion game (G = (V, E), (le)ecr, s€V,t €V, N)
Output: Nash equililbrium f with minimal makespan amoung all Nash
equilibria.

Note that the decision versions of these two problems are in NP for acyclic
networks G as in those networks for a given flow f a longest path w.r.t. to the
fixed edge lengths ¢.(f.) can be computed in polynomial time [IT].
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Unfortunately, it can be shown that in general neither a best nor a worst Nash
equilibrium is an optimal solution of MCF(G):

Ezample 8 (Best Nash flow not optimal in MCF(G)). Reconsider the instance
of Example [ and observe that the unique solution of MCF(G) is the Nash
equilibrium with makespan 14 and thus not the best one.

Ezample 4 (Worst Nash flow not optimal in MCF(G)). In case of the worst
Nash equilibrium consider the instance given in Figure [J] for two users:

Fig. 3. The unique worst Nash equilibrium does not imply an optimal min-cost flow
(Example [4)

The optimal solution f* of MCF(G) for the graph given in Figure 3] is unique
and has a unique path decomposition sending one user on Q1 = (s, u1,uy,t) and
Q2 = (s,us,us,t) each with makespan Chax(f*) = 2. However, f with fp, =
fp, = 1 where P; = (s,u1,uo,t) and Py = (s,us,uq,t) is a Nash equilibrium
with Chax(f) = 3.

The fact that in general no worst Nash equilibrium is an optimal min-cost flow
in MCF(G) is quite interesting because in the special case of series-parallel
graphs there always exists a worst Nash equilibrium that is an optimal solu-
tion of the min-cost flow problem MCF(G). This follows from the result that the
Greedy approach determines a worst Nash equilibrium in series-parallel graphs

(cf. Section B]).

Series-Parallel Graphs. As already mentioned we consider not only arbitrary
network topologies but also series-parallel networks. Series-parallel graphs can be
defined inductively. A single edge e = (s, t) is series-parallel with start terminal
s and end-terminal ¢ by definition. Let G; be series-parallel with start-terminal
s; and end-terminal ¢; (i = 1,2). Then the graph S(G1,G2) obtained by iden-
tifying ¢, as sy is a series-parallel graph, with s; and t5 as its terminals (series
composition). And the graph G = P(G1,G2) obtained by identifying s; as so
and also t1 as to is a series-parallel graph (parallel composition). This graph has
s1(= s2) and t1(= t3) as its terminals (cf. [10]).

This class of graphs has some very nice properties: Bein et al. [I2] established
that the Greedy approach solves the min-cost flow problem in series-parallel
graphs. Combined with the min-cost flow instance introduced by Fabrikant et
al. [9] this yields that the greedy approach of iteratively assigning the users to
a shortest path with respect to the latency induced by the current flow plus an
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additional user on every edge yields a Nash equilibrium on series-parallel graphs.
This result was also obtained by Fotakis et al. [I0] who call this algorithm GBR
(greedy best response) and we keep this notation.

3 Worst Pure Nash Equilibrium

In this section the complexity status of determining a worst Nash equilibrium
is investigated. We prove that a Greedy strategy solves the problem on series-
parallel graphs and show strong NP-hardness for the problem on general graphs.

Special Case of Series-Parallel Graphs. In the following we show that the
Greedy Best Response (GBR) algorithm introduced by Fotakis et al. [T0] always
leads to a worst Nash equilibrium in series-parallel graphs. The idea of this algo-
rithm is as follows: If one considers a setting where the users arrive consecutively,
a new user routes her path such that her personal latency is minimized given
the flow induced by the users currently in the network. This choice is irrevo-
cable, i.e., no user can change the strategy in the future. More formally, let us
denote by

LT(f) = min »_Le(fe+1) ()
ecP

the minimum latency for a new (N+1)%" user given a flow f sending N users
from s to t. According to GBR the new user chooses her path Py1 such that
the latency of Py is LT(f). If a flow f’ is obtained by a given flow f where a
single user is added according to GBR we use f' = f ® Py1. For series-parallel
graphs it has been shown in [I0] that if f is an arbitrary Nash equilibrium then
f' = f®Pn.y1 is again a Nash equilibrium. Note that this property does not hold
in general graphs. As a consequence GBR always leads to a Nash equilibrium if
all users have the same size and the underlying network is series-parallel. In this
paper, we strengthen this result and show that the obtained Nash equilibrium
is always a worst Nash equilibrium. This holds for all latency functions that
are non-decreasing. The next lemma, which is a key point in order to prove our
result, has already been used implicitly in [10]. It states that if we start with
a Nash equilibrium and add one more user according to GBR then the latency
of the new user is not less than the latency of all the previous users in the new
flow.

Lemma 1. Let G = (V, E) be a series-parallel graph and f a Nash equilibrium
for N users. If we choose Pyy1 € P according to GBR we obtain a new Nash
equilibrium f' = f ® Pn.y1 such that

ZPN+1(f/) = Cmax(f/)'

The next two lemmata are dealing with the two compositions in the definition of
series-parallel graphs. In fact, we give a characterization of a Nash equilibrium
in S(G1, G2) and P(G1, Gs). Before the results are stated the following notation
is introduced. Let G; be a series-parallel graph and f; : P; — Ny a flow in G; for
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i = 1,2. Then the set of all simple s-t-paths in P(G1,G2) is given by P; U Pa.
We define a new flow f in P(G1,G2) by f := f1 U f2, where f : P; UPy — Ny
and f|p, = f; for i =1,2.

Lemma 2. Let f; be a flow in a series-parallel graph G; for i = 1,2. Then
f = fiU fa is a Nash equilibrium in P(G1,G2) if and only if the following
conditions are satisfied:

1. f; is a Nash equilibrium in G; fori=1,2,
2. La (fl) > Cmax(fQ) and ng (f2) > Cmax(fl)-

We want to establish a similar result for the series composition. Therefore let
G; be series-parallel and f; : P; — Ny a flow in G; for ¢ = 1,2 for N users. Let
us assume without loss of generality that the users choose the paths Py, ..., Py
(Q1,...,QnN) in G (G2). For each permutation ¢ of {Q1, ..., QN } we can obtain
a new flow f in S(G1,G2) if we define a new path for user i by P; = P; U Qi)
The set of all flows that can be obtained this way will be denoted by f1 ® fs.

Lemma 3. Let f; be a flow in G; fori=1,2. Let f € f1i ® fa then f is a Nash
flow in S(G1,Ge) if and only if f; is a Nash equilibrium in G; for i =1,2.

Using these lemmata we are able to prove the following theorem by induction on
the composition steps. The detailed proof is omitted due to space restrictions.

Theorem 1. If G is a series-parallel graph then the Nash equilibrium obtained
by GBR is a worst Nash equilibrium.

Complexity Status on General Graphs. Before proving NP-hardness of the
problem of finding a worst Nash equilibrium, we consider a related problem that
is called Blocking Path problem:

BLoCKING PATH PROBLEM (BlockP for short):

Given: Digraph G = (V, E) with source s € V and sink t € V.

Question: Does there exist an s-t-path P € P such that after deleting the
edges of P there is no path from s to ¢?

Theorem 2. The Blocking Path Problem is strongly NP-complete even on acyclic
networks.

The proof is a reduction from 3SAT and due to lack of space postponed to
the full version of this paper. The Blocking Path Problem is used to show that
determining a worst Nash equilibrium in general networks is NP-hard even for
two users.

Theorem 3. Determining a Worst Pure Nash equilibrium is strongly NP-hard
even for two users on acyclic networks and with linear latency functions.

Proof. Consider an instance I(BlockP) of the strongly NP-complete Blocking
Path problem. Let G = (V, E) be the acyclic network of instance I(BlockP) with
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s,t € V. An instance of I(W-NE) of determining a worst pure Nash equilibrium
is defined as follows: I(W-NE) is defined on a graph G’ = (V, E’) which contains
the same vertex set as G and E' = EU{(s,t)}. Since G’ is acyclic it is possible to
define a bijective function = : V' — {1,...,n} such that n(¢) < w(j) if (¢,5) € E.
Given any such bijection 7 the latency functions are given by

le(z) = (7(j) —m(i))z, e=(i,j)€E.
Observe that due to this definition of the latency functions of edges in G every
path from s to t is a shortest path with respect to the edge lengths £.(1). Let
L* be the length of a shortest path from s to ¢ in G with respect to edge lengths
lc(1) for e € E. Then the latency of (s,t) is defined by £, 4 (z) = (L* + })z.

We show that there exists a blocking path P* for I(BlockP) if and only if
the answer to the decision problem corresponding to I(W-NE) is “yes” for K =
L* 4+ ;, i.e. there exists a Nash equilibrium f in G’ with cost Cpax(f) > L* + é

Given a blocking path P* in I(BlockP) we construct a feasible flow f in G’ by
sending one user on P* and the other on edge (s, t) inducing Crax(f) = L* + %
Observe that indeed both users are satisfied and this flow constitutes a Nash
equilibrium.

On the other hand, assume that there exists a Nash equilibrium f with
makespan Crax(f) > L* + é Analysing the different cases of flow values on
(s,t), the Nash property of f together with the lower bound on Cpax(f) tell us
that in this setting one user is sent over (s,t) and one on a path P* in G'. The
fact, that the user on (s,t) does not want to change to G’ implies that P* is in
fact a blocking path. O

4 Best Pure Nash Equilibrium

In this section, we show several complexity results concerning the problem of
determining a best Nash equilibrium. All results given in this section hold even
for series-parallel graphs. We show that computing a best Nash equilibrium for
N users is strongly NP-hard if N is part of the input. If the number of users
is fixed then the problem remains weakly NP-hard. At least for series-parallel
graphs this result is best possible because there exists a dynamic programming
algorithm with pseudo-polynomial running time.

Strong NP-Hardness Result. In this subsection, we prove that finding a best
Nash equilibrium on series-parallel graphs is strongly NP-hard if the number of
users is part of the input. We show this by a reduction of the corresponding
decision problem to the numerical 3-dimensional matching problem, which is
known to be strongly NP-complete (see [11]).

NUMERICAL 3-DIMENSIONAL MATCHING (N3M for short):

Given: Disjoint sets X,Y, Z, each containing m elements, a weight w(a)
for all elements a € X UY U Z and a bound B € Z*.

Question: Does there exist a partition of X UY U Z into m disjoint sets
Ay, ..., Ay such that each A; contains exactly one element from

each of X, Y and Z and ), 4 w(a) = B for all 1 <i <m.
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Theorem 4. Determining a best Nash equilibrium is strongly NP-hard on series-
parallel graphs if the number of users is part of the input.

Proof. Consider an instance I(N3M) of N3M. Observe that we may assume
without loss of generality that w(a) < 2w(b) and w(b) < 2w(a) for each pair
a,b € X. Otherwise a large number M can be added to all elements in the set
X and to B until the desired condition is satisfied. An analogue property holds
for Y and Z.

Based on this instance we construct the following series-parallel graph G =
(V,E): Let V = (s,u,v,t) and for each element in the set X (Y, Z) we introduce
a directed edge from s to u (u to v, v to t). The latency function of an edge e is
given by f.(z) = w(a)x where w(a) is the weight of the corresponding element
in the instance I(N3M).

Observe that in a best Nash equilibrium every edge is used by exactly one user.
Hence, there is a one-to-one correspondence between the subsets A; i =1,...,m
and the paths of the users and therefore there exists a Nash equilibrium with m
users in G with social cost at most B if and only if 7(N3M) is a YES-instance. O

Weak NP-Hardness for Fixed Number of Users. This subsection deals
with the problem of determining a best Nash equilibrium if the number of users
N is fixed. The proof is a reduction from Even-Odd Partition. As it works similar
to that of the previous section it is omitted here.

Theorem 5. Determining a best Nash equilibrium is weakly NP-hard even for
two users and on series-parallel graphs.

A Pseudo-Polynomial Time Algorithm for Series-Parallel Graphs. In
this subsection, we discuss a dynamic programming approach to find a best Nash
equilibrium in series-parallel graphs if the number N of users is not part of the
input. Let f be a Nash equilibrium in a graph G for k£ users which choose the
paths Py, ..., P;. Then we define a multiset

C(f) = {EPI (f)’ s ’£Pk<f)}

which will be called cost profile of f. Note that several Nash equilibria can have
the same cost profile. The idea of the algorithm is to decide if for a given multiset
C={c1,...,cx} with 0 < k < N there exists a corresponding Nash flow f with &
users. This is done using the inductive definition of series-parallel graphs. In order
to decide if a cost profile can be realized by a Nash flow f = f1U fo in P(G1, G2)
we need to know LT (f;). More formally, for a given multiset C = {c1,...,cx}
and a graph G we define

Sc(0) :=max{LT(f) | C(f) = {c1,...,ck}, f is a Nash flow}.

If such a Nash equilibrium does not exist we set Sg(C) := —oo. Hence, all cost
profiles with S¢(C) > 0 do have a corresponding Nash flow f. Let us discuss the
algorithm in more detail.
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1. A single edge (s,t)
For the simplest series-parallel graph there is a unique flow for all0 < £k < N
and all users have latency £, ;) (k). Thus, we obtain immediately

i = =k<
56(C) = {E(s@(kjtl) if C = {l(oy (k). Lisy(B)}, [C] =k <N,

—00 otherwise.

2. The series composition
Let C' = {cy,. .., ck} be given. Note that this cost profile can only be obtained
by a Nash flow f € f1 ® fo with C; := C(f;) = {c},...,ci} fori =1,2 and
C ={cl +ci(1), . c,1€+c§)(k)} for some permutation ¢. If such a permutation
exists we write C1; ® Cy = C. Moreover, LT(f) = LT (f1) + L™ (f2) because
every s — t path in G has to pass the vertex t; = so. Thus, we obtain

Sa(C) =  max {56,(C1) + Sa(Ca)}. 6)

3. The parallel composition

Let C = {c1,...,ci} be given. A corresponding Nash flow f is of the form
f1U fo with Cy == C(f1) = {C%, .. .7611“}, Cy = C(f2) = {C%, .. .,C%Z},
ki1 + ko =k and C = C7 U Cy. Moreover the conditions from Lemma [3] have
to be satisfied, i.e., max{ci,...,c; } < Sg,(Co) and max{ci,...,c;,} <
Sc, (C1). The shortest path in G with respect to the flow f is given by
min{L*(f1), LT(f2)}, because the shortest path in P(G1, G2) chooses either

a path with edges in Gy or in G5. Thus,
S5a(C) = oax min{S¢g, (C1), 5S¢, (C2)} (7)

|C1]+|C2|=k
max{c|c€C1}<Sa,(C2)
max{c|c€C2} <SG, (C1)

is satisfied.

Note that it is straightforward to get the best Nash flow at the end if the
corresponding flows which determine S (C) during the algorithm are stored as
well. In order to analyze the running time of this algorithm note that for a

graph G and a fixed number & of users there are at most (W}lf)k = O((|V|L)*)
different multisets, where L := max.cp le(N) is the maximum latency on an
edge and a simple path can have at most |V| edges. Due to the fact that this
is needed for all 0 < k < N the number of multisets that have to be stored
is at most N(|[V|L)N = O((|V|L)N). It is easy to see that for the series and
parallel composition (@) and (7)) can be done in polynomial time with respect to
the number of multisets. Thus, the proposed dynamic programming approach is
pseudo-polynomial which implies that B-NE is indeed not NP-hard in the strong
sense for series-parallel graphs.
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Abstract. In this paper, we investigate the complexity of computing locally opti-
mal solutions for Singleton Congestion Games (SCG) in the framework of PLS,
as defined in Johnson et al. [25]]. Here, in an instance weighted agents choose
links from a set of identical links. The cost of an agent is the load (the sum of
the weights of the agents) on the link it chooses. The agents are selfish and try to
minimize their individual cost. Agents may form arbitrary, non-fixed coalitions.
The cost of a coalition is defined to be the maximum cost of its members. The po-
tential function is defined as the lexicographical order of the agents’ cost. In each
selfish step of a coalition, the potential function decreases. Thus, a local mini-
mum is a Nash Equilibrium among coalitions of size at most k—an assignment
where no coalition of size at most k has an incentive to unilaterally decrease its
cost by switching to different links. The neighborhood of a feasible assignment
(every agent chooses a link) are all assignments, where the cost of some arbi-
trary non-fixed coalition of at most k reallocating agents decreases. We call this
problem SCG-(k) and show that SCG-(k) is PLS-complete for £ > 8. On the
other hand, for k = 1, it is well known that the solution computed by Graham’s
LPT-algorithm [14/16/22] is locally optimal for SCG-(k).

We show our result by tight reduction from the MAXCONSTRAINTASSIGN-
MENT-problem (p, ¢, 7)-MCA, which is an extension of GENERALIZED SAT-
ISFIABILITY to higher valued variables. Here, p is the maximum number of
variables occurring in a constraint, g is the maximum number of appearances
of a variable, and r is the valuedness of the variables.

To the best of our knowledge, SCG-(k) is the first problem, which is known
to be solvable in polynomial time for a small neighborhood and P LS-complete
for a larger, but still constant neighborhood.

1 Introduction

Routing on Parallel Links. Routing games model large scale networks, like e.g. traffic
networks. These networks often lack a central regulation due to their size or the fact
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that users may be free to act according to their private interest. Such an environment
can be modeled as a non-cooperative game [28]. A famous solution concept for non-
cooperative games is the concept of Nash equilibrium. A Nash equilibrium is a state in
which no player can improve its objective by unilaterally changing its strategy. In a pure
Nash equilibrium, all players choose a pure strategy and in a mixed Nash equilibrium,
all players choose probability distributions over strategies. Routing games belong to
the class of congestion games, introduced by Rosenthal [31]]. In a congestion game, the
strategy set of each player is a subset of the power set of given resources. The cost of
a player for some choice of strategy is defined as the sum (over the chosen resources)
of functions in the number of players sharing this resource. Routing games are defined
on general graphs, but special attention is given to the model of routing on parallel
links. In terms of a congestion game, strategies are then single resources and the class
of games is therefore often referred to as singleton congestion games. This model has
been intensively studied [[7U15019]], starting with the seminal paper of Koutsoupias and
Papadimitriou [26]. On parallel links, the degradation of social welfare due to the selfish
behavior of the players — usually coined as price of anarchy or coordination ratio — has
been thoroughly investigated, [9/19126]. In contrast to that, little progress has been made
in the investigation of the complexity of computing (pure) Nash Equilibria. For general
congestion games, Fabrikant et al. [13] and Ackermann et al. [3]] show that the problem
of computing a Nash Equilibrium is P LS-complete. Skopalik and Vocking [34] prove
that even the approximation is PLS-complete. For parallel links, it is well known that
Graham’s LPT-algorithm [[14416/22]] computes a pure Nash Equilibrium.

Coalitions and Local Search. A natural and convincing concept to model limited collu-
sion in games is to allow agents to form coalitions. This concept has been investigated in
several areas of computer science. In mechanism design, agents form a coalition, such
that no player decreases its utility and at least one player strictly increases its utility.
Differing from that, we allow players in non-fixed coalitions to sacrifice some of their
own utility for the welfare of the group. Similar to Hayrapetyan et al. [23] and Fotakis
et al. [17], we assume full cooperation among the members of a coalition, who aim to
minimize their collective cost. Thus, sets of agents of constant size can collaborate and
collectively improve. Here, individual deficits may be compensated by e.g. monetary
transfers between the members of a coalition. Similar to Fotakis et al. [[17], we define
the cost of a coalition to be the maximum cost of its members and in any improving
step, the maximum cost of a coalition has to decrease. In contrast to this, Hayrapetyan
et al. [23]] define the cost of a coalition to be the sum of the costs of its members and in
any improving step, the sum of the costs of the players has to decrease. To investigate
the complexity of computing a pure Nash Equilibrium on parallel links, we formulate
the problem as a local search problem, since pure Nash equilibria are the local optima
for the heuristic of selfish steps.

Local search is a natural approach to approximate solutions of hard combinatorial
optimization problems. Local search algorithms are well-known to lead to very power-
ful heuristics for many hard problems [4421]. Starting from an arbitrary (feasible) so-
lution, a sequence of (feasible) solutions is iteratively generated, such that each solution
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is contained in the neighborhood of its predecessor solution and strictly improves the
objective function. If no improvement within the neighborhood of a solution is possi-
ble, a local optimum (or locally optimal solution)—in our case a Nash Equilibrium—is
found. In practice, local search algorithms often require only a few iterations to com-
pute a local optimum. However, their running time depends on the objective function,
and thus is pseudo-polynomial in general and exponential in the worst case. In many
papers, local algorithms have been investigated for the MULTIPROCESSOR SCHEDUL-
ING-problem (MPS), [Sl6]. In an improving step, either the makespan decreases or the
number of makespan-machines decreases. Lately, the MPS-problem was shown to be
PLS-complete for the k-move neighborhood for a sufficiently large k, [12], where in
the k-move neighborhood up to k jobs may be relocated in an improving step. This
local version of the MULTIPROCESSOR SCHEDULING-problem can be viewed also as a
Singleton Congestion Game, but has a different cost function than the one we study in
this paper. The concept of local search has also been successfully applied to other areas
of computer science. For an overview of the application of local search, confer Aarts
et al. [2]].

Polynomial Time Local Search. Johnson, Papadimitriou, and Yannakakis, [25], in-
troduced the class PLS (polynomial-time local search) in 1988 to investigate the com-
plexity of local search, Essentially, a problem in PLS is given by some minimization or
maximization problem over instances with finite sets of feasible solutions together with
a non-negative cost function. A neighborhood structure is superimposed over the set
of feasible solutions, with the property that a local improvement in the neighborhood
can be found in polynomial time. The objective is to find a locally optimal solution.
The notion of a PLS-reduction was also defined in Johnson et al. [25] to establish re-
lationships between P LS-problems and to further classify them. Similar to reductions
from problem A to problem B in AP, one asks for a mapping from instances of A
to instances of B. While in AP, the question is about the existence of a solution with
the desired properties, in PLS the challenge is to actually compute locally optimal so-
lutions. By definition of P LS-reductions, local optima carry over from B to A. Not
many problems are known to be PLS-complete, since reductions are mostly techni-
cally involved. Also, since the goal should be to show that P LS-problems with a small
neighborhood are P LS-complete, N'P-reductions are of little help, since the neighbor-
hood is usually unbounded in these reductions. The first problem, which was shown to
be PLS-complete is CIRCUIT/FLIP [25]. In the meantime, only a handful of problems
were shown to be P LS-complete. Our knowledge about PLS is still very limited and
not at all comparable with the rich knowledge which we have about the class A'P.

Our Contribution. In this paper, we investigate the complexity of computing locally
optimal solutions for Singleton Congestion Games (SCG). Here, in an instance weighted
agents choose links from a set of identical links. The cost of an agent is the load (the
sum of the weights of the agents) on the link it chooses. The agents are selfish and
try to minimize their individual cost. Agents may form arbitrary, non-fixed coalitions.
We consider coalitions up to size k, for some k£ € IN. The cost of a coalition is defined
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to be the maximum cost of its members. In a selfish step of a coalition, a coalition of
size at most k£ improves its cost by unilateral deviation. The potential function is de-
fined as the lexicographical order of the agents’ cost. In each selfish step, the potential
function decreases and a local minimum is a Nash Equilibrium among coalitions of size
at most k—an assignment where no coalition of size at most k£ has an incentive to uni-
laterally decrease its cost by switching to different links. This problem is contained in
PLS, the objective is to find a local minimum with respect to the lexicographic order
of the agents’ costs. The neighborhood of a feasible assignment (every agent chooses
a link) are all assignments where the cost of some arbitrary non-fixed coalition of at
most k reallocating agents decreases. We call this problem SCG-(k) and show that
SCG-(k) is PLS-complete for k > 8. On the other hand, for k = 1, it is well known
that the solution computed by Graham’s LPT-algorithm [[16/22] is locally optimal for
both models and also the standard algorithm problem can be solved for both models in
polynomial time [[14424]. We show our result by reduction from the MAXCONSTRAIN-
TASSIGNMENT problem (p, ¢, 7)-MCA, which is an extension of weighted, GENER-
ALIZED SATISFIABILITY (confer problem [L06] in [20] for a formal description) to
higher valued variables. Here, p is the maximum number of variables occuring in a
predicate, ¢ is the maximum number of appearances of a variable, and r is the valued-
ness of the variables. The problem (p, g, r)-MCA is known to be PLS-complete for
triples (3,2,16), (2,3,18), (3,3,3), and (6,3,2), [L0.27]. In detail, we use a tight reduction
from (3,2,7)-MCA and we want to stress that the parameter r does not have a neg-
ative influence on the size of the neighborhood in the proof of PLS-completeness of
SCG-(k). The tightness of our reduction implies that there exist instances of SCG-(8)
with assignments such that every sequence of selfish steps of coalitions starting in such
an assignment has exponential length. Furthermore, this implies that it is PSP.ACE-
complete for SCG-(8) to compute a Nash equilibrium among coalitions of size at most
k reachable by successive selfish steps of coalitions from a given initial assignment.
To the best of our knowledge, SCG-(k) is the first problem that establishes the PLS-
completeness of computing a Nash Equilibrium for the class of routing games on par-
allel links. Structurally, it is the first type of a problem, which is known to be solvable
in polynomial time for a small neighborhood and P LS-complete for a larger, but still
constant neighborhood. Also, it is one of the first purely numerical problems shown
to be PLS-complete and it contributes to the narrow class of known P LS-complete
problems.

Further Related Work. Survey articles about local search algorithms can be found in
several books [[LI2121]]. P LS was defined in [25] and the fundamental definitions and re-
sults are presented in [25032]]. Further findings on the complexity of computing a locally
optimal solution are presented in [3I8I13l27]. Results considering the approximation of
PLS-problems can be found in [8I29I34]. The book of Aarts et al. [1]] contains a list
of PLS-complete problems known so far. Computing Nash equilibria for coalitions of
agents has been considered in [17]. Local search has been applied to a large number of
scheduling problems (see chapters in [112)21]). Besides the complexity of computing a
locally optimal solution, the quality of the obtained solution has also been investigated
[SU6IT8I33]].
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2 Notation and Contribution

In this section, we describe the notation, classes and problems used in the paper. For
all j,k € N with j > k, denote [j : k] = {j,....k}, [k] = {1,...,k}, and [k]op =
(k] U {0}

PLS, Reductions and Completeness, [25]. A PLS-problem L = (Dy,, Fy,, c¢r,, Np,
INIT, COST,, IMPROVE],) is defined as follows: The set of instances is given by
Dy C {0,1}*, membership in Dy, can be decided in polynomial time. Every in-
stance I € Dy, has a finite set of feasible solutions F,(I), where feasible solutions
s € Fp(I) have length bounded by a polynomial in the length of I. Every feasi-
ble solution s € Fp(I) has a non-negative real cost ¢ (S, ) and a neighborhood
Np(s,I) C Fr(I). The three polynomial-time algorithms are as follows: Algorithm
INIT/, (I) computes an initial feasible solution s € Fy,. Algorithm COST/(s,I) com-
putes the cost of a solution s € F,(I). Algorithm IMPROVE/ (S, I), given an instance
I € Dy, and a feasible solution s € F,(I), finds a better solution in N, (s, I) or returns
that there is no better one.

We consider maximization and minimization problems. A solution s € Fr(I) is
locally optimal, if it holds for every neighboring solution s’ € Ny, (s, I) thatey(s',I) <
cr(s,I) in case L is a maximization PLS-problem and ¢y, (s’,I) > ¢ (s, I) in case
L is a minimization PLS-problem. A search problem R is given by a relation over
{0,1}* x {0,1}*. An algorithm “solves” R, when given I € {0,1}* it computes an
s € {0,1}*, such that (I,s) € R or it correctly outputs that such an s does not exist.
Given a PLS-problem L, let the according search problem be Ry, := {(I,s) | I €
Dy,s € Fr(I) is alocal optimum}. Then, the class PLS is definedas PLS := {Ry, |
LisaPLS-problem}. A PLS-problem L, is PLS-reducible to a PLS-problem Lo
(written Ly < L), if there exist two polynomial-time computable functions & :
Dy, — Dy, and ¥ defined for {(I,s) | I € Dyp,,s € Fr,(®(I))} with ¥(I,s) €
Fyp,, (I),suchthatforall [ € Dy, andforalls € Fy,(®(])) it holds that, if (®(1),s) €
Ry, then (I,¥(I,s)) € Ry,. A PLS-problem L is PLS-complete if every PLS
problem is PLS-reducible to L.

Let L be a PLS-problem and I € Dy, be an instance of L. The transition graph
TG(I) of the instance I is a directed graph with one vertex for each feasible solution
to I and with an arc s — ¢, whenever ¢t € N(s,]) and cr(t, I) is strictly better than
cr(t, I) (i.e., greater if L is a maximization problem, and smaller if L is a minimization
problem). Schiiffer and Yannakakis [32] define a PLS-reduction (&, ¥) from PLS-
problem L; to Ly to be tight if for any instance I € Dy, there exists a subset %
of feasible solutions for the image instance J = $(I) of Lo, so that the following
properties are satisfied: (1) % contains all local optima of J. (2) For every feasible
solution 8 € F, (I), we can construct in polynomial time a solution t € # of J such
that U(t, I) = s. (3) Suppose that the transition graph of J, TG(J), contains a directed
path g — --- — ¢/, such that ¢, ¢’ € %, but all internal path vertices are outside of %,
andletp = ¥(q,I) andp’ = ¥(¢’, I) be the corresponding feasible solution of . Then,
either p = p’ or TG(I) contains an arc from p to p’. The standard algorithm problem
is to compute a locally optimal solution reachable by a sequence of local improvement
steps from a given initial solution.
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Problems (p, ¢, 7)-MCA and SCG-(k). We next describe the PLS-problems that we
consider in this paper. For sake of readability, we write limitations to a problem as a
prefix and the size of the neighborhood as a suffix. For the PLS-problems L studied
in this paper, the algorithms INITz, COST,, and IMPROVE/, are straightforward and
polynomial-time computable. The size of the neighborhood is limited by a constant
that is independent of the size of the input and therefore algorithm IMPROVEY (S, I)
can search the neighborhood of Ny, (s, I') in polynomial time.

Problem 1. We first present the base of our reduction — MAXCONSTRAINTASSIGN-
MENT — which is an extension of GENERALIZED SATISFIABILITY (confer problem
[LO6] in [20] for a formal description) to higher valued variables. We allow variables to
take values from a set [r] with » € IN and we replace the sequence of weighted clauses
by a sequence of functions (constraints), where each function returns the weight of
the constraint for the given assignment. We consider the subclass of instances by lim-
iting the maximum length of any constraint (where the length of a constraint is the
number of variables it depends on), the number of appearances of any variable in all
constraints and the values any variable can take. The problem is then to compute an
assignment maximizing the sum of the weights. A feasible solution a is locally optimal
for an instance I in the change neighborhood (one variable changes its assignment), if

(Iv a) € R(p,q,r)—MCA‘

Definition 1 ((p,q,r)-MCA). An instance I € D (p,q,r)Mca of problem (p,q,r)-MAX-
CONSTRAINTASSIGNMENT is a set C = {C4,...,Cy} of constraints, where each
constraint has length at most p, over a set of variables X := {x1,...,x,}, where
each variable appears in at most q constraints, and variables can take values from [r)].
For every constraint Ci(4,, ..., i, ) € G there is a function wg, : [r]P* — Rxo.
The set of feasible solutions F,, , »y-mca (1) to instance I consists of all assignments
a : X [r] of values to variables. Given an assignment & € F(;, 4 -y-mca (I), the cost is
C(p,q,r)-Mca (@, 1) = Zci(wil s, )ECWC (a(zi,),...,a(zi,, ). The neighborhood
of assignment a consists of all assingments, where the value of one variable is changed.

Problem 2. The main problem we study in this paper is the SINGLETONCONGES-
TIONGAME-problem (SCG-problem). Here, in an instance weighted agents choose
links from a set of identical links. The cost of an agent is the load (the sum of the weights
of the agents) on the link it chooses. The agents are selfish and try to minimize their
individual cost. Agents may form arbitrary, non-fixed coalitions. We consider coalitions
up to size k, for some k € IN. The cost of a coalition is defined to be the maximum cost
of its members. In a selfish step of a coalition, a coalition of size at most k improves its
cost by unilateral deviation. The potential function is defined as the lexicographical or-
der of the agents’ cost. In each selfish step, the potential function decreases and a local
minimum is a Nash Equilibrium among coalitions of size at most k. The neighborhood
of a feasible assignment (every agent chooses a link) are all assignments, where the cost
of some arbitrary non-fixed coalition of at most k reallocating agents decreases. Note
that any solution in the neighborhood of a solution a has a better cost than a. Denote
by swap the special neighborhood operation, where coalitions of two or more agents
mutual exchange their choice of links.
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Definition 2 (SCG-(k)). An instance I € Dscg.() to problem SINGLETONCONGES-
TIONGAME is a set of selfish agents A = {ay,...,ayn}, a functionw : A— IN and a
number m € N of identical links. The set of feasible solutions Fscg.(x)(I) consists of
all assignments of all agents to links. Let @ : A — [m] be a function that assigns agents
to links. The cost of an agent is the load on the link to which it is assigned. Here, the
load on some link j € [m] is the sum of the weights of the agents assignedto j in a. The
cost of a coalition is the maximum cost of one of its members. The cost cscg-(x) (a, 1) of
a solution @ € Fscg.() (1) is the n-vector of the costs of all agents. The order is given
by the lexicographical order on vectors. The neighborhood Nscg.(x) (@, I) of solution
a € Fscg.(k)(I) consists of all assignments, where coalitions of up to k agents can
relocate, such that the cost of the coalition decreases.

2.1 Our Contribution

We prove the following theorem where we omitt some parts of the proof due to lack of
space. They can be found in the full version, [[1L1]].

Theorem 1. (3,2,7)-MCA <,;; SCG-(8) via a tight reduction for all r € IN.

3 The General Method

In this section, we present the general method that our reduction relies on. We build
on the PLS-completeness of (3,2, r)-MCA, [10], and we may assume that every con-
straint has length three and every r-valued variable appears in two constraints. Our
reduction is constructed such that the parameter r does not have a negative influence on
the size of the neighborhood. We model the set of variables X and the set of constraints
C with agents and links.

The Links. We introduce r — 1 links for every variable, one link for every constraint
and one repository-link. All links have identical speed.

The Agents and Their Weights. Using the weights of the agents, we create a frame-
work where the given MCA-instance is simulated in. Here, the actual weights of the
constraints from the MCA-instance play a secondary role compared to the weights of
the agents in the SCG-instance that ensure the framework. Of course, there is some sim-
ilarity between our construction and known AP-reductions; confer the proof of strong
N'P-completeness of BINPACKING (see pp.204 in [30]). We introduce three types of
agents: The variable-agents simulate the double appearance of every variable and its
r values in the set of constraints C. The frame-agents simulate the assignment of val-
ues to variables in every constraint C; € C. The base-agents, which are sub-divided
into variable-base-agents, constraint-base-agents and one repository-base-agents, cre-
ate some large base load. The weight of a variable-base-agent for some variable z € X
is tailored such that the two variable-agents for variable z € X and some arbitrary val-
uedness fit on a link and create a load, which is equal to the average load on every link.
The weight of the constraint-base-agent is tailored to fit one frame-agent and the three
variable-agents for the respective assignment and their load is the average load on every
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link plus the cost of the assignment for the constraint. Furthermore, the weight of the
repository-base-agent is tailored to fit on a link with all remaining frame-agents, which
are not on a link with one constraint-base-agent or a variable-base-agent.

The Core Ideas. In the design of our reduction, we bear the size of the neighborhood
in mind at all times. A key is to use a direct reduction from the MCA-problem, where
every variable appears exactly twice. On the upside, this double appearance of vari-
ables significantly lowers the size of the neighborhood required to simulate the MCA-
problem and is conceptionally crucial in the design of the variable-agents. We want
to stress that for triple appearances, our construction would not work. On the down-
side, it leaves us with a higher valuedness and here, a core idea is to mask the actual
valuedness of variable-agents with matching numbers. Furthermore, we only require
three types of agents. The variable-agents and the frame-agents naturally arise from the
MCA-problem and the only newly introduced base-agents serve as a classification of
the identical links. With these three types of agents, we are able to ensure the intended
framework in every locally optimal solution with the exchange of at most 6 agents. We
prove this technical main result in Lemma [3l Furthermore, the simulation of the local
search in the MCA-instance is possible by exchanging at most 8 agents.

4 SCG-(8)Is PLS-Complete

In this section, we prove Theorem [[l We present the reduction function & and the
solution mapping ¥. Given an instance I € D32 ,).mca, WE construct an instance
&(I) = (A,w,m) € Dscg-(r) consisting of a set of agents A, a weight function
w : A — IN that maps weights to agents and a number m € IN of identical links.
We assume that in instance I € D(3 3 ,)-mca, every constraint C; € C has length 3,
where clauses are given in natural order, every variable x € X appears in 2 constraints
and takes values from [r]. Furthermore, we may assume that the sum of the weights of
two constraints is larger than the maximum weight of a single constraint (otherwise,
we can add the weight of the largest constraint to all other constraints and this does not
modify the set of local optima). Let |C| = m and |X| = n. We create an instance of
SCG-(8) with N = (r — 1) - n +m + 1 identical links,  — 1 links for every variable,
one link for every constraint, and one repository-link, and the following agents:

— Forevery1 <i¢ < n,1 <k < r,weintroduce two vqriable-agents Vik1 anc_l Vik2
with w(vigr) = M2 + k- M2~ and w(vige) = M? + (2r +1 — k) - M%—1L,
— For every constraint C;(x;1, %2, 3), with C; € C, 1 < j < mjky, ko, ks €
[r],41 < 2 < ¢3, we introduce frame-agents «(j, k1, k2, k3) with
'lU(O[(_% kl; k27k3)) — M2n+2 __7 X M2n+1 _ M2i1 _ ];1 . M2i171 _ M2i2
— kg - M2 M Ly M2 e, (K ko, Ks),

where

o — ke, if variable z;, occurs in constraint C; for the first time
Y7 (2r 4+ 1 — k), otherwise.
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— We also introduce the following base-agents: For all i € [n],k € [r — 1], we
introduce variable-base-agents by, with w(b;,) = B+ A — 2 - M* — (2r +
1)M?=1, For all j € [m], we introduce constraint-base-agents b; with w(b;) =
B+ A— M?"*2 1 5. M?"*! We also introduce a repository-base-agent by, with

’w(bo) =
Here, the constants A, B, M, W, M are defined as follows:

W = Zzzzw] ]411,]412,]4}3

J=1ky=1ky=1ka=1
M=m-r® M>"2 4+ W
B=2-M
A=A — A

. 1 n ) n )
Ay =m- M2tz - (7721+ ) 2+t S M 1) S M
i=1 i=1

ZZZZ ]?klak27k3)):W+T3'A2

J=1k1=1ka=1 k3=1

M is chosen large enough to ensure correctness of Lemmas[T5l We first need to make
the following definitions, before we are able to present the solution mapping:

Definition 3. We call an assignment admissible, if the base-agents are assigned to dif-
ferent links. For an admissible assignment, we use the following notation: A link to
which by, is assigned for i € [n|,k € [r — 1], is called an i-variable-link. The link
to which Bj is assigned for j € [m] is called j-constraint-link. The link to which by is
assigned is called repository-link.

Definition 4. Let i € [n]. An admissible assignment a of agents to links is i-regular iff
there exists a mapping  : [i : n] — [r] such that the following conditions are fulfilled:

1. Foreacht € [i : n] and for each k € [r] \ {w(t)} the two agents vij1, vk have
chosen the same t-variable-link.

2. Fort € [m]let C},,Cj, € Cwith j1 < ja, be the two constraints containing x;
in their variable list. Then, for each t € [i : n], agent Vir ()1 IS assigned to the
Ji-constraint-link and vy )2 is assigned to the jo-constraint-link.

3. For all j € [m] one frame-agent o(j, k1, ko, ks) is assigned to the j-constraint-
link. Furthermore, for each j € [m] and for each t € [i : n] if x, is contained in
the variable list of C; € Cin position p with ji € [3], then k,, = 7 (t).

Note that the number A5 defined above is the sum of the weights of all constraint-agents
assigned to the constraint-links in a 1-regular assignment.

Solution mapping. For a feasible and 1-regular solution @ € Fy(), function ¥(I,a)
returns the mapping 7. Otherwise, function ¥ (7, @) returns some assignment of values
to variables, which is not locally optimal for I € D 3 2 )-mca-
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Correctness of the Construction. In the following, we prove properties of locally op-
timal solutions a for @([I) in different move-neighborhoods up to size 6. We prove that
in every locally optimal solution the intended framework is obeyed. In detail, we show
that every locally optimal assignment a is admissible (Lemma [I)), exactly one frame-
agent is assigned to every constraint-link (Lemma[)) and eventually that a is 1-regular
(Lemmas @] and [3)).

Lemma 1. Ineverylocally-optimal assignment afor ®(I) in the 1-move-neighborhood,
the base-agents are assigned to different links.

Lemma 2. Inevery locally-optimal assignment afor ®(I) in the 2-move-neighborhood,
exactly one frame-agent is assigned to each j-constraint-link for every j € [m)]. All other
frame-agents are assigned to the repository-link.

Lemma 3. For every locally-optimal assignment a for ¢(I) in the 2-move-neighbor-
hood, the load on every link \ € [N] can be written as

2n+1
A+B+ > WM +70(N),

t=1
with vo(\) < W and v¢(\) < VM forallt € [2n + 1].

We next prove a property of ¢-regular assignments, which we need in the proof of
Lemmal[3l

Lemma 4. For all i € [n + 1], every locally-optimal assignment a for &(I) in the
2-move-neighborhood is an i-regular assignment if v(\) = 0 forallt € [2i — 1 :
2n+ 1], A € [N].

Lemma 5. Every locally optimal solution a for ®(I) in the 6-move-neighborhood is a
1-regular assignment.

Proof. We will show for all ¢ € [2n + 2] by downward induction on ¢ that y,(\) = 0
holds for all A € [N]. From this, the claim follows because of Lemma] We introduce
a new notation: For some agent a, denote by w;(a) the factor k that M' is multiplied
with in the weight w(a) of agent a.

Basis for t = 2n + 2. Follows from Lemma[lland Lemmal[2l

Induction Step. Next consider ¢ = 2n + 1. Because of Lemma 2] no frame-agent is
assigned to a variable-link and therefore ~yo,,+1(\) = 0 holds for all variable-links .
We assume now that 2,41 (A) # 0 holds for some link A. We distinguish three cases
defined by the load on the repository-link Ay and show that in each case the assignment
is not locally optimal in the 6-move-neighborhood.

(@) If y2,4+1(Ao) > 0 holds, then there exists some constraint-link \; with ~a,,+1(\1)
< 0. Let \; be a j-constraint-link and let j be the largest number with this prop-
erty. Consider some frame-agent & = «(J, -, -, -). a has chosen some link A which
is either a constraint-link or the repository-link Ag. If A is a constraint-link then
~Yon+1(A) > 0 due to the choice of j. In both cases, the coalition formed by « and
the frame-agent that has chosen link A; improves by a swap.
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(b) For the case vy2,,+1(A\g) < 0 a contradiction is shown in the same way. In this case,
some j-constraint-link \; exists with y2,,41 (A1) > 0. j is chosen to be the smallest

number with this property. Let « be some frame-agent « = «(j, -, -, -). Then, the
coalition formed by « and the frame-agent that has chosen link A; improves by a
swap.

(c) In the third case y2,,+1(Ao) = 0 holds and there exist some j-constraint-links \,,,
where p € {1,2}, with y9,,41 (A1) > 0 and 2,41 (A2) < 0. Let j; be the smallest
number with v, 41(A1) > 0 and let j5 be the largest number with 72,41 (A2) < 0.
Consider some arbitrary frame-agents o1 = «(j1,-,, ) and as = a(jo, -, -, ). If
a1 has chosen some constraint-link A, then 2,41 (A) < 0 holds due to the defini-
tion of j;. The coalition formed by «; and the frame-agent that has chosen A; can
improve by a swap. If cs has chosen some constraint-link A, then 72,41(A) > 0
holds due to the definition of j5. The coalition formed by « and the frame-agent
that has chosen A2 can improve by a swap. So, there remains to consider the case
that a; and o, both have chosen the repository-link \g. In this case, the coalition
formed by a1, ae, frame-agent &1 that has chosen A1, and frame-agent &5 that has
chosen Ay can improve by a simultaneous swap between «; and &; and between
(%) and dg.

Now, assume that the claim holds for ¢ + 1 < 2n + 1 and we have to show that it holds
also for ¢. By induction hypothesis 7,-(A) = 0 holds for all » € [t + 1,2n + 1] and for
all links \. We distinguish two cases:

1. t is an even number, i.e. ¢ = 2¢ for some . Because of Lemmald] a is an (i + 1)-
regular assignment. In order to prove the claim, we have to look mainly at the
placements of the agents v;x1, vik2, k € [r]. Let I; be the set of these agents. Fur-
thermore, let (2; be the set containing all i-variable-links, & € [r — 1], and those
j-constraint-links such that 2; occurs in C; € C. Then, in an {-regular assignment,
all agents from I; are assigned to links from (2;. Up to now, we only know that a
is an (i + 1)-regular assignment. This implies that v5;(A) > 0 holds for all links
A ¢ £2; and if y2;(A) > 0 holds for some link A ¢ (2; then the following two
properties hold:

— There exists a link A" € £2; with v9;(\) < 0.
— An agent 8 € I, is assigned to A and even after removing 3 from A, still
’}/22'(/\) Z 0 holds.
Therefore, 8 can improve by moving from A to \’. Thus, we have shown that
~v2i(A) = 0 holds for all links A ¢ (2;. Now, consider A € §2;. If y2;(A) > 0
holds for some A € (2; then there exists also A’ € (2; with y9;()\) < 0 and an
agent 3 € I; is assigned to \. The agent 3 can improve by moving from A to \'.

2. tis an odd number, i.e. t = 2¢ — 1 for some i. Let I;, 2; be defined as in (). Let
Cj,,Cj, € C, with j; < j2, be the two constraints containing variable ¢. By induc-
tion hypothesis a is an (i + 1)-regular assignment. To each variable-link in {2; there
are assigned two variable-agents from /; and the remaining two variable-agents
from I; are assigned to the two constraint-links (one to each) in {2;. This implies
that 2,1 (A) = 0 holds for A ¢ £2; U {)\¢} and that no variable agent from I, is
assigned to the repository-link Ao. Thus, we know that . . ;13,3 12i-1(A) = 0
holds and we have to show that y2;,_1(A) = 0 holds for all A € 2, U {\g}. We
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introduce a new notion. Let p € [r]o. We call an assignment (4, p)-regular iff the

following conditions are fulfilled:

@ (A =0forallt € [2¢:2n+ 1] andall A € N

(i1) ’}/Qi_1(>\) =0for A e U {/\o}

(iii) Forevery( € [p] the two agents v;;1, v;2 are assigned to some subset £2;(p) C
£2; of links with ~9;_1(\) = 0 for all A € £2;(p).

Note that property (i, p)-regular implies that for all 1 < [ < p the two agents

Vi1, Ui are assigned to the same variable-link from (2; (and no other agent from

I; is assigned to this link) or they are assigned to the jj-constraint-link and the

J2-constraint-link (and no other agent from I; is assigned to these constraint-links)

and some frame-agents a1 = «a(j1, -, -, ), @2 = a(Ja, -, -, -) With we;_1 (1) = —I,

wa;—1(ae) = —(2r + 1 — [) have chosen these constraint-links. We have to show

that a is (¢, p)-regular for p = r and we will do it by induction on p. For p = 0, the
claim follows from the induction hypothesis as seen above. Now, assume that a is

(p — 1)-regular. We will show that a is also p-regular. Let v;;,, be assigned to link

Ag € £2; for g € [2]. Then A1, A2 ¢ £2;(p—1). If Ay = A, then the claim is proved

also for [ = p. Now, let A\ # A\o. We distinguish 4 cases:

(a) A1 and Ag are both variable-links. Let 9,,q € [2] be the other i-variable-
agent assigned to \;. Then, w(vip1) < w(dy) < w(vip2) for ¢ € [2]. So,
~2i—1(A2) > 0 holds and the coalition formed by Vip1 and 9o would improve
by a swap, a contradiction.

(b) A1 and \; are both constraint-links. Then, y2;—1 (A1) +72i—1(A2)+72i—1(Xo) =
0 holds, since exactly all constraint-agents for constraints C}, , C},, and the two
variable-agents for variable 7 with value p have chosen the links Ay, A1, Ao. If
Y2i—1 ()\1) = ’}/21'71()\2) = Y2i—1 ()\0) = 0 holds, then the claim is proved also
for | = p. Otherwise, two cases have to be considered. If \; is a jo-constraint-
link and A; is a ji-constraint-link, then 2,1 (A2) > 0, v2;—1(A1) < 0 and
the coalition formed by v;;,1 and v;,2 can improve by a swap. If, on the other
hand, A\, is j,-constraint-link for ;z € {1, 2}, then the coalition formed by the
two frame-agents assigned to A; and A, and two suitably chosen frame-agents
assigned to Ao could improve by a simultaneous swap.

(c) A1 is a constraint-link and A5 is a variable-link. Let 0 be the other i-variable-
agent assigned to Ao and let 9; be the ¢-variable-agent assigned to the other
constraint-link A3 from £2;. Then w(vip1) < w(?4) < w(vip2) holds for g € [2]
and v2,-1(A2) > 0. Let a; = a(jAl, -y, +) be the frame-agent that has chosen
A1 and let ay = a(ja, -, -, -) be the frame-agent that has chosen \3. Note that
{jAl,jAg} = {j1,j2}. If y25—1(A1) < 0, then the coalition formed by v;,; and
Uy can improve by a swap. It is wo;—1((j2,+,+,)) < —(r + 1) and there-
fpre, J1 = Jjo iplplies v2i—1(A1) < 0. So, we assume now ~y2;_1(A1) > 0,
J1 = ji, and jo = jo. If y2;—1(No) > 0, then wai—1 (1) + wai—1(a2) <
—(2r+1) and together with w(vp1)+w(v1) < 2r+1, this implies ya;_1 (A1) +
~2i—1(A3) < 0 and therefore v2;_1(A3) < 0. If y9;_1(Ag) > 0, then the coali-
tion formed by ay and some frame-agent 5 = «(jo, -, -, -), which has chosen
Ao, With wg;—1(8) = wa;—1(a2) + 1 improves by a swap. If y2;,_1(Ag) = 0,
then the coalition formed by a1, o, U1, vip2, and the two frame-agents c; =
a(ji,-,-,-) and dy = afja,-,-,-) with wy;_1(d1) = —p and wo;_1(ci2) =
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—(2r + 1 — p) improves by a simultaneous swap between agents «; and a1,
between agents o and cia, and between agents v;,2 and ©;. The last case to
consider is that v9;_1(Ag) < 0. If v9;,_1 (A1) > 0, then the coalition formed by
o and some frame-agent @ = «a(j1, -, -, -) with we;—1 (@) = wa;—1 (1) —1im-
proves by a swap. If y2,_1 (A1) = 0, then the coalition formed by v;p2, V1, a2,
and some frame-agent & = «(ja, -, -, -) With wg;_1 () = —(2r + 1 — p) im-
proves by a simultaneous swap between agents ag and «, and between agents
Vip2 and ’Ul.

(d) A1 is a variable-link and A5 is a constraint-link. Let 91 be the other ¢-variable-
agent assigned to A\; and let U3 be the ¢-variable-agent assigned to the other
constraint-link A3 from £2;. Then ya; 1 (Vip1) <¥2i—1(w(0q)) < Y2i—1 (W (Vip2)
holds for ¢ € {1,3} and ~2;—1 (A1) < 0 holds. Furthermore, let oy, ¢ € {2, 3},
be the frame-agent assigned to Ag. If 72,1 (A2) > 0, then the coalition formed
by 01 and v;p2 could improve by a swap. Especially, it is y2;_1(A2) > 0,
if Ay is the ji-constraint-link. So, we can assume now that v5;_1(A2) < 0,
where )\ is the j;-constraint-link and )\ is the jo-constraint-link. This implies
Yoi—1(A2) + 2r + 1 — p < 0. We distinguish now two cases:

If wgi_l(az) + wzi_l(ag) < —(2T + 1), then 721‘—1(/\0) > (0 and the
coalition formed by 91, v1 (4, p, 2), a2 and some frame-agent &5 assigned to Ag
with wa;_1(Ae) = wa;—1(a2) + 1 improves by a simultaneous swap between
01 and ;2 and between s and éo.

If, on the other hand, wa; —1 (2)+wa;—1 (a3) > —(2r+1) then v9;_1(Xg) <
0. Y2i—1 ()\2) < 0 implies Woi—1 (ag) > —(27"4-].)—1021‘,1 (OZQ) > —p. This im-
plies that v2;_1 (A3) = wai—1 () +w2i—1(03) > wai—1(a3) +wai—1(Vip1) >
0. It is y9;—1(A3) = wa;—1(a3) + we;—1(0) > 0 and therefore there exists a
frame-agent &3 assigned to \g with weo;_1(d&3) = wa;—1(c3) — 1. Further-
more, Y2;—1(A2) = wa;i—1(ag) + w2i—1('Uip2) = wo;—1(a2)+2r+1—p <0
and therefore, there exists a frame-agent G assigned to Ao with we;_1(&2) =
wai—1(a2) + 1 Then, the coalition formed by 01, vip2, a2, a3 and &g, &3 im-
proves by a simultaneous swap between ©; and v;p2, between g and &2, and
between a3 and &s. O

Theorem[Il (3,2,r)-MCA <p;; SCG-(8) via a tight reduction for all » € IN.

Proof. Assume that a feasible solution @ € Fgcg.(s) is locally optimal for &(7), but
¥(I,a) is not locally optimal for I € D35 ,)mca. This implies that there exists a
variable € X, which can be set from value & € [r] to a value I € [r] in some
constraints C;,,C;, € C, with j; < ja, such that ¢35 ,).mca strictly increases by
some A > 0. By Lemmal3] a is a 1-regular assignment and all frame-agents that do not
chose a constraint-link are on the repository-link, which also has the largest load. Then,
there exists a coalition of 8 agents that can improve their coalitional cost. Frame-agents
a(j1,Tik1, -, ) and a(j1, Tq1, -, -) and frame-agents a(j2, Tik2, -, -) and a(ja, T2, -, )
swap links and variable-agents v;;; and v;2 and variable-agents v;;o and v;o swaps
links. Thereby, the makespan decreases by A on the repository-link. Thus, a is not
locally optimal, a contradiction.
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We define % to be the set Fycg.(s). It is obvious to see that our reduction is tight,
since the assignment of new values to two variables would require at least 12 agents to

swap. O
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Abstract. We consider resource allocation games with heterogeneous
users and identical resources. Most of the previous work considered cost
structures with either negative or positive congestion effects. We study
a cost structure that encompasses both the resource’s load and the job’s
share in the resource’s activation cost.

We consider the proportional sharing rule, where the resource’s acti-
vation cost is shared among its users proportionally to their lengths. We
also challenge the assumption regarding the existence of a fixed set of
resources, and consider settings with an unlimited supply of resources.

We provide results with respect to equilibrium existence, computation,
convergence and quality. We show that if the resource’s activation cost is
shared equally among its users, a pure Nash equilibrium (NE) might not
exist. In contrast, under the proportional sharing rule, a pure NE always
exists, and can be computed in polynomial time. Yet, starting at an
arbitrary profile of actions, best-response dynamics might not converge
to a NE. Finally, we prove that the price of anarchy is unbounded and
the price of stability is between 18/17 and 5/4.

1 Introduction

In resource allocation applications, tasks are assigned to resources to be per-
formed. For example, in job scheduling models, jobs are assigned to servers to
be processed, and in network routing models, traffic is assigned to network links
to be routed. In the last decade, algorithmic game theory has introduced game
theoretic considerations to many of these problems [T7IT3I2TI3I2]. At the heart
of the game theoretic view is the assumption that the players have strategic
considerations and act to minimize their own cost, rather than optimizing the
global objective. In resource allocation settings, this would mean that the jobs
choose a resource instead of being assigned to one by a central designer.

The literature is divided into two main approaches with respect to the cost
function. The first class of models emphasizes the negative congestion effect, and
assumes that the cost of a resource is some non-decreasing function of its load.
Job scheduling [1T23] and selfish routing [T0J2I] belong to this class of models.
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The second class assumes that each resource has some activation cost, which
should be covered by its users, thus a user wishes to share its resource with
additional users in attempt to decrease its share in the activation cost. Roughly
speaking, the cost of using a resource in this class is some decreasing function
of its load. Positive congestion effects have been considered in network design
games [SU512].

We claim that in practice both the positive and the negative congestion effect
take place. On the one hand, a heavy-loaded resource might be less preferred
due to negative congestion effects; on the other hand, resources do have some
activation cost, and sharing this cost with other users releases the burden on
a single user. Our goal is to combine these two components into a unified cost
function. Consequently, the cost function in our model is composed of (i) the
load on its resource, and (ii) its share in the activation cost of its chosen resource.

An additional assumption we wish to challenge is the existence of an a pri-
ori given set of resources. In many practical settings a set of users controlling
some jobs have the opportunity to utilize a new resource at their own cost. For
example, a user might be able to purchase a dedicated server for his job if he is
willing to cover its cost. Consequently, we consider settings in which the number
of resources is unlimited a priori. (Obviously, the number of resources will never
exceed the number of users.)

In our model, each resource is associated with some fixed activation cost, which
should be jointly incurred by the set of jobs using it. A crucial question in this
setting is how to divide the resource cost among its users. Sharing of joint costs
among heterogeneous players is a common problem, and a large number of shar-
ing rules have been proposed for this problem, each associated with different effi-
ciency and fairness properties [I5JT6I12]. Here, our focus is not on the mechanism
design point of view. Rather, we analyze two specific sharing rules with respect to
equilibrium existence, computation, convergence and quality. The first rule is the
uniform sharing rule, under which the resource’s cost is shared evenly among its
users. The second rule is the proportional sharing rule, under which the resource’s
cost is shared among its users in proportion to their sizes. Note that under both
sharing rules, for a sufficiently small activation cost, the unique NE will be one
in which each job is processed by a different resource. In the other extreme, for
a sufficiently large activation cost (in a sense that will be formalized below), the
unique NE will be one in which all the jobs will be assigned to a single resource.

1.1 Our Results

Equilibrium existence: Our game in its general form does not comply with
the family of potential games (or congestion games), which always admit a NE
in pure strategies [I9/I4]. Thus we need to pursue new techniques for proving
equilibrium existence. In particular, as we show, the cost sharing method strongly
affects the equilibrium existence. Specifically, in the uniform sharing model a
pure NE might not exist, while in the proportional sharing model a pure NE
always exists. This motivates the use of this sharing model in our study of the
remaining aspects.
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Computational complexity: Under a job scheduling model with a fixed num-
ber of machines and where a user’s cost is the load of its chosen machine, the
longest processing time (LPT) algorithm always results in a NE [10]. Here, we
devise an algorithm that computes a NE for our setting in polynomial time. The
main challenge of the algorithm is to determine the number of active machines.

Convergence to equilibrium: Even if a NE exists, it is not necessarily the case
that natural dynamics (like best-response dynamics (BRD), where each job, in
turn, performs a best-response to the current profile) always lead to a NE. Yet,
in potential games [14], BRD is guaranteed to converge to a NE. BRD is known
to converge to a NE both in resource allocation games that ignore the negative
congestion effects and in those ignoring the activation costs [6]. However, as we
show, this is not the case in our unified model, that is, BRD might not converge
to a NE. Yet, if all the jobs are of equal size, the game is a congestion game (as
in [2]), and convergence of BRD is guaranteed.

Equilibrium quality: A NE may not be socially optimal. In order to quantify
the inefficiency we define an objective function, and compare its value under the
optimal solution and its value under some NE.

We quantify the inefficiency according to well-established measurements,
namely the price of anarchy (PoA) [I3I18] and the price of stability (PoS) [2].
The PoA is defined as the ratio between the cost of the worst NE and the cost
of the optimal solution, while the PoS is defined as the ratio between the cost
of the best NE and the cost of the optimal solution. These metrics have been
studied in a variety of applications, such as selfish routing [20], job scheduling
[134], network formation [712], facility location [22] and more. The objective
function we consider is the egalitarian one, i.e., we wish to minimize the cost of
the job that incurs the highest cost. We show that the PoA is not bounded. For
the PoS we give an upper bound of 5/4 and a lower bound of 18/17.

All missing proofs are given in the full version of this paper [9].

2 Model and Preliminaries

An instance of our game, G = (I, B), consists of a set of n jobs, each as-
sociated with length p; (processing time, bandwidth requirement, etc.). Let
I ={p1,...,pn} denote the job lengths. Also given is a set of identical resources
M = {My, Ms,...} (machines, links, etc.), each associated with an activation
cost B. If the set of machines is limited, we denote m = |M|. While our model
is general, we use terminology of job scheduling for simplicity of presentation.

The action space S; of player j is defined as all the individual resources, i.e.,
Sj = M. The joint action space is S = x7_;.5;. In a joint action s € S, player j
selects machine s; as its action. We denote by R; the set of players on machine
M; in the joint action s € S, i.e.,, R = {j : s; = M;}. The load of M; in s,
denoted by L;(s), is the sum of the weights of the players that chose machine
M;. In particular, a player can chose to be on a dedicated machine (i.e., assigned
to a machine with no additional jobs). In this case, L;(s) = p;.
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The cost function of player j, denoted by c;, maps a joint action s € S to a
real number, and is composed of two components; one depends on the total load
on the chosen resource, and the other is its share in the resource’s activation
cost. Formally, the cost of player j under a joint action s in which s; = M;
is ¢j(s) = f(Li(s),b;(s)), where L;(s) = ZjeR; p; is the total load of players
served by M;, and b;(s) is j’s share in the cost B. The function f is increasing
in both L;(s) and b;(s). In this paper, we assume that c;(s) = L;(s) + b;(s).

The resource’s activation cost may be shared among its users accordlng to
different sharing rules, two of which we consider in this paper. Under the uniform
sharing rule, all the jobs assigned to a particular resource share its cost equally.
Formally, a job assigned to M; under joint action s pays b;(s) = B/|R}|. Under
the proportional sharing rule, the jobs assigned to a particular resource share
its cost proportionally to their sizes. Formally, a job assigned to M; under joint
action s pays b;(s) = fjé}). For example, let G = (I = {1,2}, B = 12), and let
s be the schedule in which both jobs are assigned to the same machine. Then,
under uniform sharing ¢1(s) = ca(s) = 3+ 12/2 = 9, while under proportional
sharing, ¢1(s) =34+ 12/3 =17, c2(s) =3 +2-12/3 =11.

Nash Equilibrium (NE): A joint action s € S is a pure Nash Equilibrium if
no player j € N can benefit from unilaterally switching his action.

Let g(s) denote the social cost function under the joint action s. The optimal
social cost is OPT = mingeg g(s). We consider the egalitarian objective function,
in which the goal is to minimize the highest cost some player incurs. Formally,
g(s) = max;c;(s). Let &(G) be the set of Nash equilibria of the game G. If

&(G) # 0 then the PoA (PoS) is the ratio between the maximal (minimal)
cost of a Nash equilibrium and the social optimum, i.e., maxsce () 9(s)/OPT
(minca() 9(s)/OPT).

2.1 Proportional Sharing Rule — Useful Observations

In this section we present several observations that provide some intuition re-
garding proportional sharing. These observations will be used repeatedly in the
sequel. The first observation specifies the conditions under which a job prefers to
migrate from one machine to another. Note that in the standard model (where
a job’s cost depends only on the load on its chosen machines), the equivalent
condition is simply Ly (s)+p; > L;(s). In our model, however, a migration might
be beneficial even if it involves an increase of load.

Li(s)(Lir (s)+p;)

s

Job j reduces its cost by a migration to machine i if and only if Li/(s)]—l— D; >
L;(s) and B > p or Ly(s) +p; < L;(s) and B < p.

Lemma 1. Consider a schedule s. Suppose j € R, and let p =

Proof. The cost of job j under schedule s is ¢j(s) = Li(s) + p;B/Ls(s). Let
s' be the obtained schedule after j’s migration to machine M; . It holds that
¢j(s") = Ly (s)+p; +p;jB/(Li (s) +pj). The assertion follows immediately from
comparing ¢;(s) and ¢;(s’).
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The following observations provide lower and upper bounds for an agent’s indi-
vidual cost.

Observation 1. In any joint action s, for every job j, c;j(s) > 2\/ij. Addi-
tionally, for every j s.t. p; > B, ¢;j(s) > p; + B.

Observation 2. In any NE, s, for every job j, cj(s) < p; + B.

The following observation, whose proof can be easily derived by Lemma [Il, pro-
vides some insight into beneficial and non-beneficial migrations of jobs.

Observation 3. (i) A job j of length p; < B which is assigned to a machine
with load smaller than B cannot reduce its cost by migrating to a machine with
load greater than B or to a dedicated machine. (ii) Given an assignment s of jobs
of lengths smaller than B s.t. Ly (s) + pj > L;(s) for every i,i' and j assigned
to machine M;, if L;(s) + Li/(s) > B, then no migration is beneficial.

2.2 Longest Processing Time (LPT) Rule

LPT is a well-known scheduling heuristic [II]. The LPT rule sorts the jobs
in a non-increasing order of their lengths and greedily assigns each job to the
least loaded machine. In the traditional load-balancing problem, the LPT rule is
known to produce a NE [I0]. However, the stability of an LPT assignment in our
setting is not clear since LPT cares about the machines’ loads solely and does not
consider the activation costs. Obviously, under an unlimited supply of resources,
LPT will simply assign each job to a new machine, and the resulting schedule
is not necessarily a NE. A natural generalization of LPT, in which each job is
assigned to a machine minimizing its cost, does not necessarily lead to a NE
either, even with unit-size jobs (consider for example G = (I = {1,1,1,1},B =
4 — ¢)). In this paper we use a variant of LPT (see Sections Bl and H). The next
lemma provides an important non-trivial property of the LPT algorithm, to be
used in the sequel.

Lemma 2. Let I be a set of jobs s.t. pj < C' for every j. Let m be the minimal
number of machines s.t. an LPT-schedule of I on m machines has makespan at
most C. The total load on any two machines in the LPT-schedule on m machines
1s greater than C.

3 Equilibrium Existence and Computation

3.1 No Equilibrium under the Uniform Sharing Rule

Under the uniform sharing rule a pure NE might not exist. Consider for example
the instance G = (I = {1,10}, B = 4). On dedicated machines, the jobs’ costs
are b and 14 respectively. If they are assigned together, each job pays 13. Thus, no
schedule is stable: the short job will escape to a dedicated machine, while the long
job will join it. This example motivates the use of the proportional sharing rule.
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3.2 Equilibrium under the Proportional Sharing Rule

In this section we prove that under the proportional sharing rule and unlimited
supply of resources a pure NE always exists. Moreover, a NE can be found in time
O(nlog®n). Our algorithm, denoted LPT*, uses as a subroutine the assignment
rule Longest Processing Time (LPT) [I1]. Given an instance I, let Isport C I be
the subset of jobs having length less than B, and let Ijong = I\ Ishort-

Algorithm LPT*:

1. Schedule each of the jobs in Ijong on a dedicated machine.

2. The jobs of Ispo+ are scheduled by algorithm LPT. The number of machines,
m, is the minimal number of machines such that LPT produces a schedule
having makespan at most B (i.e., LPT on m—1 machines produces a schedule
having makespan more than B).

Note that the number of machines used in the second step is well defined,
since all the participating jobs are shorter than B, therefore, a schedule having
makespan less than B exists. The running time of LPT* is O(nlog®n). Long
jobs are identified and scheduled in time O(n), the short jobs are sorted in time
O(nlogn) and then LPT is executed at most logn times (binary search for the
right value of m - which is an integer in the range [1,n]).

Theorem 4. The profile s obtained by LPT* is a NE.

Minimal Lexicographic Assignment: In the traditional load balancing game
with a fixed number of machines, the minimal lexicographic profile is known to
be a NE [I0]. In our model, this profile is not well-defined as the number of
machines is not fixed. Let 5} be the lexicographically minimal assignment of
Isport on k machines. Let m be such that the makespan under 5}, is smaller
than B whereas the makespan under §;,_, is at least B. Let §* be the profile
in which: (i) every long job is assigned to a dedicated machine, and (ii) the jobs
of Isport are assigned according to §F,. The proof of Theorem M can be easily
tuned to show that §* is a NE. However, this profile cannot be found efficiently.
Moreover, as shown in Theorem [, both 5 and §* might incur arbitrarily large
cost compared to the social optimum.

Identical Jobs: A simpler case is when all the jobs have the same length. Note
that for this case the uniform and the proportional sharing rule coincide.

Theorem 5. If all jobs have the same length, a NE can be computed in linear
time.

Limited Supply of Resources: Assume that the number of machines that can
be used is limited. Let m = |M| be the given number of machines, and let m*
be the number of machines required by algorithm LPT*. If m* < m then clearly
LPT* produces a NE. Otherwise, it can be seen that the assignment according
to LPT rule on m machines results produces a NE. Thus,

Theorem 6. FEvery resource allocation game under the proportional sharing rule
and a limited supply of resources admits a Nash equilibrium in pure strategies.
The NE can be computed efficiently
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3.3 Convergence of Best-Response Dynamics

In this section we show that unlike other job scheduling games, in our model best-
response-dynamics (BRD) do not necessarily converge to a Nash equilibrium.
BRD is a local-search method in which, starting from an arbitrary joint action,
in each step, some player is chosen and plays its best-response strategy (i.e.,
the strategy that minimizes its cost, given the strategies of the other players).
By considering the instance (I = {10, 10,10,20}, B = 72), and the initial joint
action {(10,10); (10,20)}, we get:

Theorem 7. Under proportional sharing, BRD might not converge to a NE.

Yet, with unit-size jobs the resulting game is a congestion game [I9], thus BRD
is guaranteed to converge to a NE (note that while the set of resources is not
given, a game with a fixed set of n resources is equivalent to our game, thus it
is a congestion game). Moreover, one can easily verify that the function P(s) =
>, B-Hy + éxf where x; denotes the number of jobs on machine 7, Hy = 0,
and Hy, =14 1/2..4+ 1/k, is a potential function for the game.

4 Equilibrium Quality

In this section we provide bounds for the price of anarchy (PoA) and the price of
stability (PoS). In particular, we present sufficient condition for having PoA =
PoS = 1, we show that the PoA is unbounded, and finally, we prove that the
PoS is less than 5/4 and provide an example in which the PoS is 18/17.

Theorem 8. If there exists a job j s.t. pj > B, then PoA = PoS = 1.

Therefore, we would like to analyze the PoA and PoS for instances in which all
the jobs have load less than B. We first present an upper bound for the PoA
which depends on the length of the longest job. Let p = aB be the length of the
longest job in the instance, for some a < 1,

14+«
Lemma 3. PoA < v

However, a can be arbitrarily small, therefore, the PoA is not bounded, as we
show below.

Theorem 9. For any given r, there exist instances for which PoA > r, even
with unit-size jobs.

Proof. Givenr,let B =4 [r] ? and consider an instance with B unit-length jobs.
An optimal schedule groups the jobs in sets of /B = 2 [r], each paying 2v/B. A
possible NE is to schedule all the jobs on a single machine. This is a NE because
each job incurs a cost of B 4+ 1 which cannot be reduced by migrating to a new
machine. In particular, this is the NE produced by LPT*, and by finding the
minimal lexicografic assignment. For this instance, a = 1/B, and the analysis
in the proof of Theorem [3 is tight. Moreover, the above construction can be
repeated with B>t jobs, each of length 1/B* to get PoA = 2(B°(*/2),
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For standard load balancing games, it is well-known that the price of stability
is 1, even for the model of unrelated machines [23]. We show that this is not the
case in our model. By analyzing the instance G = (I = {2,1,1}, B = 4), we get

Theorem 10. In the resource allocation game under the proportional sharing
rule, PoS > %575

On the other hand, the price of stability is bounded by a small constant:

Theorem 11. In any resource allocation game under the proportional sharing
rule, PoS < i.

Proof. Let aB be the length of the longest job in the instance, for a < 1.
If @ > 0.25 then by Theorem B PoA < 2, and the assertion follows since
PoS < PoA.

Thus, assume that o < 0.25, and let ¢ = y/a. Let m be the minimal number
of machines such that algorithm LPT on m machines produces a schedule whose
makespan is at most 2c¢B. Let s be the profile obtained by LPT on m machines.
We show that s is a NE: Note that for any a < 0.25, ¢ < 0.5 and thus the
makespan is at most B. Therefore, by Observation[3|(i), no job will migrate to a
dedicated machine. Also, by Lemma[2] (applied with C' = 2¢B), the total load on
any two machines is at least 2¢B, and since the maximal gap in the load between
any two machines is at most aB, we have that for any two machines having
loads L;, Ly, it holds that L;Ly > (¢ — §)B(c+ §)B = (o — o?/4) B%. Finally,
the load on any machine is at least (¢ — a)B. A known property of schedules
produced by LPT is that any migration involves increase in the load. By Lemma
[ such a migration is profitable for a job of length p migrating from load L; into
load Ly only if B > L;(Ly + p)/p. However L;(Ly + p)/p = (LiLy/p) + L; >
((« —a?/4)B?*/aB) + (¢ — a)B = (1 — a/4 + ¢ — a)B > B for any a < 0.25
(since /oo > 2a).

The maximal cost of a job in s is at most 2¢B + aBB/2cB = g\/ozB. By
Observation [Tl the cost of the longest job is at least 24/aB, thus PoS < i.
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Abstract. We study the price of malice in linear congestion games using
the technique of no-regret analysis in the presence of Byzantine players.
Our assumptions about the behavior both of rational players, and of
malicious players are strictly weaker than have been previously used to
study the price of malice. Rather than assuming that rational players
route their flow according to a Nash equilibrium, we assume only that
they play so as to have no regret. Rather than assuming that malicious
players myopically seek to maximize the social cost of the game, we study
Byzantine players about whom we make no assumptions, who may be
seeking to optimize any utility function, and who may engage in an arbi-
trary degree of counter-speculation. Because our assumptions are strictly
weaker than in previous work, the bounds we prove on two measures of
the price of malice hold also for the quantities studied by Babaioff et al.
[2] and Moscibroda et al. [I5] We prove tight bounds both for the special
case of parallel link routing games, and for general congestion games.

1 Introduction

The price of anarchy measures the deterioration of performance in a system due
to selfishness and lack of coordination. It is a brittle measure however, since it
assumes that all agents in the system are perfectly rational and adeptly seek to
minimize their own cost. In real systems, agents vary in their rationality, com-
putational power, access to information, and objectives. In the case of malicious
users, they may seek to harm particular individuals or general social welfare, and
may be myopic or able to engage in a high degree of counter-speculation. We
would therefore like to be able to characterize the deterioration of performance in
a system containing both selfish but rational agents, as well as Byzantine agents.
We have a choice as to how to model both the rational agents and the Byzantine
agents, and in both cases, we make very weak assumptions: we assume that the
rational agents play so as to experience no regret, and we make no assumptions
at all about the behavior of the Byzantine agents.

We bound the degradation in social welfare due to Byzantine players for the
class of non-atomic congestion games with linear edge costs. In non-atomic con-
gestion games, there are a set of source-sink pairs, and for each source-sink
pair (s;,t;) there exists a continuum of players who each choose among s; — ¢;
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paths, which induces a flow along the edges of the paths. Each edge has a load-
dependent latency function, which in this paper takes the form £.(x) = acx + b
for ae,be > 0. In a game with a set of agents of measure 1, we model a set of
measure (1 — v) rational agents who wish to minimize their own latency, and a
set of measure v Byzantine agents about whom we make no assumptions.

We define social cost to be the average latency experienced by the rational
players, and we consider two measures of the degradation of social welfare due
to the presence of the Byzantine players. The price of malice measures the ra-
tio of the social cost in the presence of v Byzantine flow to the optimal social
cost without Byzantine flow, and is the analogue of the quantity studied by
Moscibroda, Schmid, and Wattenhofer [I5] (also termed “price of malice”). The
differential price of malice measures the marginal cost to the rational players in-
curred by introducing € Byzantine flow — in effect the brittleness of the Nash flow
to Byzantine players — and is the analogue of the quantity studied by Babaioff,
Kleinberg, and Papadimitriou [2] (also termed “price of malice”). Upper bound-
ing this quantity was posed in [2] as an important open problem. Our definitions
of the price of malice and the differential price of malice allow for a far wider
range of adversarial behavior than those defined by Moscibroda et al. [I5] and
Babaioff et al. [2], and the upper bounds we prove hold also for the quantities
studied in the more restricted settings of [I5] and [2].

We model Byzantine players who may behave arbitrarily by using the no-
regret framework recently introduced by Blum et al. [5] to bound the price of
total anarchy. The price of total anarchy compares the average social cost over T'
rounds of repeated play to the cost of the optimal flow, when the rational play-
ers have no regret. This is a strictly more general assumption than that rational
players play according to a Nash equilibrium, since players in a Nash equilibrium
all experience no regret. Studying the price of total anarchy instead of the price
of anarchy has the advantage that it allows one naturally to model a game in
which only a fraction of the players are rational, allowing the others to behave
arbitrarily. Moreover, it is known that in both nonatomic and atomic congestion
games, the price of total anarchy exactly matches the price of anarchy [4l5] Fi-
nally, bounding the price of malice in terms of the price of total anarchy has the
attraction that there exist simple and efficient algorithms that guarantee regret
quickly approaching 0, even in the case that the number of paths is exponen-
tial in the description length of the game, and even in the case when players
receive information only about their own costs, and not the costs of other paths
[T2/9ITIT3IT0]. Therefore, bounds on the price of malice proven in terms of the
price of total anarchy can plausibly be achieved by rational agents with limited
computational power and informational awareness.

We consider both the special case in which the congestion game is defined over
a graph consisting of m parallel links, and also the general case of congestion
games in which the path set of the game need not correspond to any graph.
In the case of parallel links, we prove tight bounds on both the price of malice
and the differential price of malice, and show that Byzantine flow cannot hurt
social welfare at all. In the general case, we prove a tight bound on the price of
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malice and a tight bound the differential price of malice for congestion games
with scalar latency functions of the form f.(z) = arxz. We omit all proofs for
space; they can be found in the full version of this paper.

1.1 Related Work

Moscibroda et al. study a virus inoculation game in which a certain fraction
of players are malicious and seek to maximize the sum costs of the rational
players. [I5]. They define an equilibrium concept in which rational players are
extremely risk-averse, and assume that all malicious players are playing a worst-
case strategy profile with respect to their own utility. They then define the
price of malice with k malicious players to be the ratio of the social cost in
equilibria with k& malicious players to the social cost in Nash equilibria without
any malicious players, which is akin to our definition of the price of malice.
Moscibroda et al. also observe that malicious play can improve social welfare,
by causing rational players to cooperate [I5].

Two papers by Karakostas and Viglas [§] and Babaioff, Kleinberg, and Pa-
padimitriou [2] initiate the study of malicious users in non-atomic congestion
games. Both papers consider congestion games in which a fraction of players
are rational and wish to minimize their own costs, and a fraction are malicious,
and wish to maximize the sum costs of the rational players. They then study
(slightly different) notions of equilibria among these rational and malicious play-
ers. Babaioff et al. [2] show lower bounds for an alternative definition for price of
malice [2]. They also observe that malicious players can improve social welfare
(even in the case of linear edge costs), and term this phenomenon the ‘windfall
of malice’.

Blum et al. [5] define the price of total anarchy as an alternative to the price
of anarchy in quantifying the degradation of social welfare in the presence of
selfish players. They show that in many classes of games, the price of total
anarchy exactly matches the price of anarchy, and they analyze the price of
total anarchy in the presence of Byzantine players in several games. [5].

Chung et al. [7] study the price of stochastic anarchy in which players are
imperfect and play random actions rather than best responses with some prob-
ability. They show that imperfect play can actually improve social welfare, by
showing that the price of stochastic anarchy in the load balancing game on un-
related machines is a bounded function of the number of players and machines,
whereas the price of anarchy can be unboundedly large.

Our results are most similar to those from Blum et al. [5] and differ from
other previous work [GIT4I7TEI8I2] in that we make no assumptions about how
irrational or malicious agents should behave. As a result, in our model there
cannot exist a windfall of malice as there does in the models of malicious but
myopic adversaries from [2JT5R], since if nothing else, an adversary can behave
like a selfish, rational player. However, since we are modeling more general ad-
versaries, the bounds we prove on the price of malice and the differential price
of malice also hold for equilibrium models of adversarial behavior.



The Price of Malice in Linear Congestion Games 121
2 Preliminaries

2.1 Nonatomic Congestion Games

A nonatomic congestion game is defined by a four-tuple G = (E, {{.},{P;},
{R;}). E is a finite set of elements which we will refer to as edges. There are k
player types, and for each player type i there is a set of feasible paths P; where
for each P; € P;, P; is a subset of E. R; is a Lebesgue measurable continuum
of agents of type i represented by the interval [0, p;]. In total, we say that a
congestion game has s = Zi;l p; units of flow. In this paper we will generally
assume without loss of generality that s = 1. Finally, associated with each edge
is a traffic-dependent latency function £.(x), which in this paper will take the
form l.(z) = acx + be for ae,be > 0. The names ‘edge’ and ‘path’ suggest a
graph, and indeed, we often think of congestion games as traffic routing games,
in which there is an underlying graph G for which F is the edge set, each player
type @ corresponds to a source sink pair (s;,t;), and P; corresponds to the set
of simple s; — t; paths. However, our results hold for general congestion games
which need not correspond to any underlying graph.

A flow f partitions the set of players according to the set of paths (we say that
players in the partition corresponding to path P; play on path P;). We denote by
A{ the set of players who play on path P; in flow f, and write fp, = fA{ 1. Note

that Zle > pep, fr = 1. A flow f induces a unique flow on edges: we write
that the flow on edge e is f(e) = > p..cp fp,- Given a flow f, the latency of each
edge e is £c(f(e)), and the latency of each path P; is £p,(f) = > cp Le(f(e)).
We say that a player who plays on a path P; experiences cost £p,(f). We will let
F(G) denote the set of all possible flows in a game G.

The social cost of a flow is the aggregate of player costs. We define a social cost

function v, and say that the cost of a flow f is: y(f) = (Zle 2_p,ep, Jartp, (f))

= 1 (X.cp fle)le(f(e))). We write f* € argmin e z(g) v(f) to denote an opti-
mal flow, and write OPT = ~(f*) to denote the cost of the optimal flow. When
the game instance is not clear from context, we will write f; and OPTg,

We will often speak of flows in which a portion of flow of measure v is con-
trolled by (possibly adversarial) Byzantine players, and the remaining 1 — v flow
is controlled by rational players. In this case, we write f(e) = f7(e)+ f°(e) where
f7(e) represents the portion of flow on edge e due to rational players, and f°(e)
represents the portion of flow on edge e due to Byzantine players. The Byzantine
players can be of any player type. In the presence of Byzantine players, the social
cost that we are concerned with is simply the aggregate of rational player costs:

V(f) = 1iv (ZeGE fr<e)€e(f(e))) .

Definition 2.1. A flow f in a congestion game G is a Nash equilibrium if for
each player type i and for all Py, Po € P; with fp, >0, £p, (f) < Lp,(f).

Intuitively, a flow f is a Nash equilibrium if no player would like to change his
path. In an equilibrium flow, all paths of each type have the same latency.
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Proposition 2.2 (Beckmann et al. [3]). For f, f two Nash equilibrium flows

of G, v(f) =~(f)-

Therefore we may refer to the cost of a Nash flow of G which we will write as

7(G).

2.2 Anarchy, Regret, and Malice

In this section we define quantities that we will use to characterize the loss of
efficiency due to selfishness and “malice.”

Definition 2.3 ([I1]). The price of anarchy of an instance of a congestion

game G is defined to be: PoA(G) = O'Ylggr)g. The price of anarchy of the class of

congestion games is: PoA = maxg PoA(G).

In this paper, we will assume that rational players play so as to have no regret.
Play proceeds in a series of T timesteps, and at time ¢ each player chooses a
path, which results in a flow f*.

Definition 2.4. A player who has played on paths Py, , ..., Py, afterT timesteps
experiences e-regret if his average cost is no more than that of his best fixed path
in hindsight plus an additive €. That is, for a player of type i: % Zthl lp,, (fH <
711 minpsep, th:l Lps (fY)+e. Ife = 0, we say that the player satisfies the no regret
property.
Assuming that rational players play so as to have no regret is a strictly weaker
assumption than that they play according to a Nash equilibrium, since in a Nash
equilibrium, players experience no regret. A number of efficient algorithms can
guarantee players e regret with e quickly approaching 0 with 7', even in the
case when the number of paths is exponential in the description length of the
game, and even when players receive information only about their own costs
[T209ITIT3IT0]. For simplicity in our paper, we will assume that rational players
actually satisfy the no regret property, but all of our results can be carried
through with players who experience €(T) regret with ¢(T) = o(1).

Throughout this paper, we study the time averaged cost of the rational players
in the presence of Byzantine players. We write COST(v) = 7, ZtT:1 ~y(fH).

Definition 2.5 (Blum et al. [5]). The price of total anarchy in a game in-
stance G with v Byzantine flow is the ratio of the worst case average social cost
(among the rational players) over T' rounds of repeated play to OPT, when 1 —wv
flow corresponds to players with the no-regret property, and the remaining v flow
behaves arbitrarily. PoTA(G,v) = maxy _ sr oPT - where the max is taken

over flows (f*,...,fT) € F(G)T such that a set of players of measure 1 — v
satisfy the no-regret property and the remaining players behave arbitrarily. The
price of total anarchy with v Byzantine flow of the class of congestion games is

PoTA(v) = maxg PoTA(G,v).

Observation 2.6 (Blum et al. [5]). Since when playing a Nash equilibrium all
players satisfy the no regret property, for any class of games, PoTA(0) > PoA.
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In many classes of games, the price of total anarchy matches the price of anarchy
exactly, including in congestion games [5/4].

Proposition 2.7 (Blum et al. [4]). For the class of non-atomic congestion
games, PoTA(0) = PoA.

We now define the price of malice. Our definition is parallel to the quantity
studied by Moscibroda et al. [15] (also termed price of malice). In particular,
any upper bound that applies to our definition of price of malice also applies to
the price of malice in [I5].

Definition 2.8. The price of malice in an instance of a congestion game G
with v Byzantine flow is the ratio of the price of total anarchy with v Byzantine
flow and the price of anarchy. PoM(G,v) = P?,Zﬁ((g’)v) = iﬁ;ﬁgg’é; The price of
malice of the class of congestion games is PoM(v) = maxg PoM(G).

Finally, we define the differential price of malice, which parallels the quantity
studied by Babaioff et al. [2] (also called price of malice). Any upper bound that
applies to the differential price of malice also applies to the price of malice as
defined in [2].

Definition 2.9. The differential price of malice is the mazimum marginal cost
incurred in any game instance when an € fraction of flow is converted from
rational to Byzantine: DPoM = maxg & (PoM(G, €))|c—o-

In principle, a game may have a large price of total anarchy and a small price
of malice or vice versa, although in linear congestion games the two quantities
differ only by a factor of 4/3 [1].

Tt is not sufficient to upper bound PoTA(v) to find an upper bound to DPoM,
since the slope of the price of total anarchy is measured on an instance by instance
basis for DPoM. We require further conditions:

Observation 2.10. If the following conditions are met: 1. g(v) > PoTA(v) for
all non-negative v 2. g(0) = PoA(G,0) for all game instances G then: DPoM <
it (g(€)/ PoA)|e=o

3 Parallel Links

We first consider the case in which the underlying graph G consists of two
vertices s and ¢ (the source and sink for all players), and m s — ¢ edges with
linear latency functions of the form f¢.(z) = a.x + b.. This is an interesting
special case because instances of parallel link congestion games can have a price
of anarchy as high as in the general case [I6], and it also serves as a model
of the load balancing game on related machines. We bound the price of total
anarchy in terms of (G), the social cost at Nash equilibrium of the instance in
question.
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Theorem 3.1. In the parallel links congestion game with linear edge costs,
PoM(v) =1 and DPoM = 0.

Since in the Byzantine adversary model, PoM(v) > 1 and DPoM > 0, Theorem
B is tight.

4 General Congestion Games

In this section, we consider the general case of linear congestion games. Instances
of these congestion games may or may not be defined over an underlying (arbi-
trary) graph, although we will continue using the language of paths and edges.
The game is played over T timesteps, where at time ¢, the flow on edge e is
fte) = (f*(e) + f*(e)) where fr*(e) is the flow on edge e due to the rational
players and f%(e) is the flow on edge e due to the Byzantine players. For simplic-
ity of presentation, in this section, we consider adding v units of Byzantine flow,
rather than converting rational flow to Byzantine flow (and so we always have
one unit of rational flow). The case in which Byzantine flow replaces rational
flow is similar (but leads to more unwieldy equations). We first prove a tight
bound on the price of malice for congestion games with linear edge costs of the
form f.(x) = aex + be for ae,be > 0. We then consider congestion games with
scalar edge costs of the form /.(z) = a.x for a. > 0, and bound both the price
of malice and the differential price of malice in such games.

The bounds given here are asymptotically tight; Proofs appear in the full
version.

Theorem 4.1. In non-atomic congestion games with linear edge costs: PoM(v)

< PoTA(v) < 5 + \/a-rgg;v) where a = MaXeep ae and 1 = maxp, |[{e € P; :
Le(z) # 0}] is the length of the longest path (not including edges with no latency
cost).

We now consider congestion games with scalar edge costs of the form ¢.(z) = a.x
for some a, > 0.

Theorem 4.2. In non-atomic congestion games with scalar edge costs: PoM(v)
= PoTA(v) <1+ \/a-rgﬁ;v) where @ = MaXeecp e and r = maxp, |{e € P; :

le(z) # O},

Theorem 4.3. In non-atomic single-source single-sink congestion games with
scalar edge costs, the differential price of malice is at most DPoM < r =
maxp, [{e € P, : L.(x) Z 0}
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Abstract. We focus on a permutation betting market under parimutuel
call auction model where traders bet on final rankings of n candidates.
We present a Proportional Betting mechanism for this market. Our mech-
anism allows traders to bet on any subset of the n? ‘candidate-rank’
pairs, and rewards them proportionally to the number of pairs that ap-
pear in the final outcome. We show that market organizer’s decision
problem for this mechanism can be formulated as a convex program of
polynomial size. Further, the formulation yields a set of n? unique mar-
ginal prices that are sufficient to price the bets in this mechanism, and
are computable in polynomial-time. These marginal prices reflect the
traders’ beliefs about the marginal distributions over outcomes. More
importantly, we propose techniques to compute the joint distribution
over n! permutations from these marginal distributions. We show that
using a maximum entropy criterion, we can obtain a concise parametric
form (with only n? parameters) for the joint distribution which is defined
over an exponentially large state space. We then present an approxima-
tion algorithm for computing the parameters of this distribution. In fact,
our algorithm addresses a generic problem of finding the maximum en-
tropy distribution over permutations that has a given mean, and is of
independent interest.

1 Introduction

Prediction markets are increasingly used as an information aggregation device
in academic research and public policy discussions. The fact that traders must
“put their money where their mouth is” when they say things via markets helps
to collect information. To take full advantage of this feature, however, we should
ask markets the questions that would most inform our decisions, and encourage
traders to say as many kinds of things as possible, so that a big picture can emerge
from many pieces. Combinatorial betting markets hold great promise on this front.
Here, the prices of contracts tied to the events have been shown to reflect the
traders’ belief about the probability of events. Thus, the pricing or ranking of pos-
sible outcomes in a combinatorial market is an important research topic.

* Research supported in part by NSF DMS-0604513 and Boeing.

C. Papadimitriou and S. Zhang (Eds.): WINE 2008, LNCS 5385, pp. 126 2008.
© Springer-Verlag Berlin Heidelberg 2008
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We consider a permutation betting scenario where traders submit bids on final
rankings of n candidates, for example, an election or a horse race. The possible
outcomes are the n! possible orderings among the candidates, and hence there
are 2" subset of events to bid on. In order to aggregate information about the
probability distribution over the entire outcome space, one would like to allow
bets on all these event combinations. However, such betting mechanisms are
not only intractable, but also exacerbate the thin market problems by dividing
participants attention among an exponential number of outcomes [I][2]. Thus,
there is a need for betting languages or mechanisms that could restrict the
possible bid types to a tractable subset and at the same time provide substantial
information about the traders’ beliefs.

1.1 Previous Work

Previous work on parimutuel combinatorial markets can be categorized under
two types of mechanisms: a) posted price mechanisms including the Logarithmic
Market Scoring Rule (LMSR) of Hanson [2][3] and the Dynamic Pari-mutuel
Market-Maker (DPM) of Pennock [4] b) call auction models developed by Lange
and Economides [5], Peters et al. [0], in which all the orders are collected and
processed together at once. An extension of the call auction mechanism to a dy-
namic setting similar to the posted price mechanisms, and a comparison between
these models can be found in Peters et al. [7].

Chen et al. (2008) []] analyze the computational complexity of market maker
pricing algorithms for combinatorial prediction markets under LMSR model.
They examine both permutation combinatorics, where outcomes are permuta-
tions of objects, and Boolean combinatorics, where outcomes are combinations of
binary events. Even with severely limited languages, they find that LMSR pric-
ing is #P-hard, even when the same language admits polynomial-time matching
without the market maker. Chen, Goel, and Pennock [9] study a special case of
Boolean combinatorics and provide a polynomial-time algorithm for LMSR, pric-
ing in this setting based on a Bayesian network representation of prices. They
also show that LMSR pricing is NP-hard for a more general bidding language.

More closely related to our work are the studies by Fortnow et al. [L0] and Chen
et al. (2006) [11] on call auction combinatorial betting markets. Fortnow et al. [10]
study the computational complexity of finding acceptable trades among a set of
bids in a Boolean combinatorial market. Chen et al. (2006) [11] analyze the auc-
tioneer’s matching problem for betting on permutations, examining two bidding
languages: subset bets, which are bets of the form candidate i finishes in positions
x, y, or z or candidate i, j, or k finishes in position x, and pair bets, which take
the form candidate ¢ beats candidate j. They give a polynomial-time algorithm
for matching divisible subset bets, but show that matching pair bets is NP-hard.

1.2 Our Contribution

In this paper, we focus on the problem of pricing a call auction under permuta-
tion betting scenario. We consider a new mechanism called Proportional Betting
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for betting on permutations, which is a slightly more generalized form of Subset
Betting [11]], and will be shown to include it as a special case (details in Section
B2). In proportional betting mechanism, the traders bet on one or more of the
n? ‘candidate-position’ pairs, and receive rewards proportional to the number
of pairs that appear in the final outcome. For example, a trader may place an
order of the form “Horse A will finish in position 2 OR Horse B will finish in
position 4”. He [] will receive a reward of $2 if both Horse A & Horse B finish at
the specified positions 2 & 4 respectively; and a reward of $1 if only one horse
finishes at the position specified. The market organizer collects all the orders and
then decides which orders to accept in order to maximize his worst case profit.

We propose this proportional betting mechanism as a relaxation of Fized
reward Betting where a trader receives a fixed reward (say $1) if any of his horse-
position pairs appear in the outcome permutation. We show that the market
organizer’s problem is NP-hard for fixed reward betting. Note that a further
relaxation of proportional betting would be to allow traders to bet only on
individual candidate position pairs (or individual columns or rows like in subset
betting [11]), and allow each trader to submit multiple bets. Here, a difference
from our model is that in the relaxed model, a trader may place different bids
for different bets and an arbitrary subset of his bets could be accepted, rather
than all or nothing.

Our results for proportional betting model are described as follows:

— We show that the market organizer’s decision problem for this mechanism
can be formulated as a convex program with only O(n? 4 m) variables and
constraints, where m is the number of bidders. Further we show that we can
obtain, in polynomial-time, a small set (n?) of dual ‘marginal prices’ that
satisfy the desired price consistency constraints, and are sufficient to price
the bets in this mechanism. The polynomial-time computability of marginal
prices in our call auction setting seems particularly interesting considering
that computing the n? marginal prices that correspond to Hanson’s log-
arithmic market scoring rule is #P-hard, even under a restricted form of
“proportional betting” where traders are allowed to bet only on individual
candidate-position pairs [§].

— In the second, and perhaps more interesting part of our work, we suggest a
maximum entropy criteria to obtain a joint distribution over n! outcomes from
the n? marginal prices. Although defined over an exponential space, this distri-
bution is shown to have a concise parametric form involving only n? parame-
ters. Moreover, it is shown to agree with the maximum-likelihood distribution
when prices are interpreted as observed statistics from the traders’ beliefs.

We present an approximation algorithm to compute the parameters of
the maximum entropy joint distribution to any given accuracy in (pseudo)-
polynomial time B fact, this algorithm can be directly applied to a generic
problem of finding the maximum entropy distribution over permutations that
has a given expected value, and is of independent interest.

! ‘he’ shall stand for ‘he or she’.
2 The approximation factors and running time will be established precisely in the text.
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To the best of our knowledege, this is the first result on pricing a parimutuel
call auction under permutation betting scenario.

2 Parimutuel Call Auction Model

In this section, we briefly describe the Convex Parimutuel Call Auction Model
(CPCAM) developed by Peters et al. [6] that will form the basis of our betting
mechanism. Consider a market with one organizer and m traders or bidders.
There are S states of the world in the future on which the traders are submitting
bids. For each bid that is accepted by the organizer and contains the realized
future state, the organizer will pay the bidder some fixed amount of money,
which is assumed to be $1 without loss of generality. The organizer collects all
the bids and decides which bids to accept in order to maximize his worst case
profit.

Let a;; € {0,1} denote the trader k’s bid for state i. Let g and 7 denote
the limit quantity and limit price for trader k, i.e., the maximum number of
orders requested by trader k, and the maximum price he is willing to pay for the
contract, respectively. The number of contracts accepted for trader k is denoted
by z. i is allowed to take fractional values, that is, the orders are ‘divisible’
in the terminology of [I1]. Also, let p; denote the price computed for outcome
state ¢. Below is the convex formulation of the market organizer’s problem given
by [6]:

max e —r+ Zle 6; log(s;)

x,8,T
s.t. > akTr+si=r 1<i< 8 (1)
0<z<q
s>0

The above convex program maximizes the worst case proft of the organizer which
is given by the difference between the total amount of money collected (77x)
and the worst case payment made (r). A “parimutuel” state price vector {p; }5_,
is given by the dual variables associated with the first set of constraints. The
parimutuel property implies that if the bidders are charged a price of {", aipi},
instead of their limit price, the payouts made to the bidders are exactly funded
by the money collected from the accepted orders in the worst-case outcome.
6 > 0 represents starting orders needed to guarantee uniqueness of the state
price vector. They capture the prior belief of the organizer. The market organizer
could actually lose this seed money in some outcomes. However, as shown in [6],
infinitesimal quantity of starting orders are sufficient. That is, if we reduce 6
uniformly to 0, the price vector converges to a unique limit.

3 Permutation Betting Mechanisms

In this section, we propose new mechanisms for betting on permutations under
the parimutuel call auction model described above. Consider a permutation bet-
ting scenario with n candidates. Traders bet on rankings of the candidates in
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the final outcome. The final outcome is represented by an n x n permutation
matrix, where ij'" entry of the matrix is 1 if the candidate i takes position j in
the final outcome and 0 otherwise. We propose betting mechanisms that restrict
the admissible bet types to ‘set of candidate-position pairs’. Thus, trader k’s bet
will be specified by an n xn (0, 1) matrix A, with 1 in the entries corresponding
to the candidate-position pairs he is bidding on. We will refer to this matrix as
the ‘bidding matrix’ of the trader. If a trader’s bid is accepted, he will receive
some payout in the event that his bid is a “winning bid”.

Depending on how this payout is determined, two variations of this mecha-
nism are examined: a) Fixed Reward Betting and b) Proportional Betting. The
intractability of fixed reward betting will provide motivation to examine propor-
tional betting more closely, which is the focus of this paper.

3.1 Fixed Reward Betting

In this mechanism, a trader receives a fixed payout (assume $1 w.l.o.g.) if any
entry in his bidding matrix matches with the corresponding entry in the out-
come permutation matrix. That is, if M is the outcome permutation matrix,
then the payout made to trader k is given by I(Ay @ M > 0). Here, the operator
‘e’ denotes the Frobenius inner productE‘7 and I(-) denotes an indicator function.
The market organizer must decide which bids to accept in order to maximize the
worst case profit. Using the same notations as in the CPCAM model described
in Section [2] for limit price, limit quantities, and accepted orders, the problem
for the market organizer in this mechanism can be formulated as follows:

max 7TT.73 -T

s.t.r >3 I(Ay e M, > 0)x, Vo €S, (2)
0<z<gq

Here, S,, represents the set of n dimensional permutations, M, represents the
permutation matrix corresponding to permutation o. Note that this formulation
encodes the problem of maximizing the worst-case profit of the organizer with
no starting orders.

Above is a linear program with exponential number of constraints. We prove
the following theorem regarding the complexity of solving this linear program.

Theorem 1. The optimization problem in (3) is NP-hard even for the case when
there are only two non-zero entries in each bidding matrix.

Proof. The separation problem for the linear program in (2]) corresponds to
finding the permutation that “satisfies” maximum number of bidders. Here, an

3 The Frobenius inner product, denoted as A e B in this paper, is the component-wise
inner product of two matrices as though they are vectors. That is,

A e B = ZA”B”

0,7
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outcome permutation is said to “satisfy” a bidder, if his bidding matrix has
at least one coincident entry with the permutation matrix. We show that the
separation problem is NP-hard using a reduction from maximum satisfiability
(MAX-2-SAT) problem. Then, using the result on equivalence of separation and
optimization problem from [12], the theorem follows. A detailed proof can be
found in our technical report [13].

This result motivates us to examine the following variation of this mechanism
which makes payouts proportional to the number of winning entries in the bid-
ding matrix.

3.2 Proportional Betting

In this mechanism, the trader receives a fixed payout (assume $1 w.l.o.g.) for each
coincident entry between the bidding matrix Ay and the outcome permutation
matrix. Thus, the payoff of a trader is given by the Frobenius inner product of
his bidding matrix and the outcome permutation matrix. The problem for the
market organizer in this mechanism can be formulated as follows:

max 7TT$ -T

s.t.r >3 (A e My)xp Vo €S, (3)
0<z<gq

The above linear program involves exponential number of constraints. How-
ever, the separation problem for this program is polynomial-time solvable, since
it corresponds to finding the maximum weight matching in a complete bipartite
graph, where weights of the edges are given by elements of the matrix (), Arxy).
Thus, the ellipsoid method with this separating oracle would give a polynomial-
time algorithm for solving this problem. This approach is similar to the algo-
rithm proposed in [I1] for Subset Betting. Indeed, for the case of subset betting
[11], the two mechanisms proposed here (fixed and proportional) are equiva-
lent. This is because subset betting can be equivalently formulated under our
framework, as a mechanism that allows non-zero entries only on a single row or
column of the bidding matrix Ag. Hence, the number of entries that are coin-
cident with the outcome permutation matrix can be either 0 or 1, resulting in
I(Ay e M, > 0) = Ay  M,, for all permutations o. Thus, subset betting forms
a special case of the proportional betting mechanism proposed here, and all the
results derived in the sequel for proportional betting will directly apply to it.

4 Pricing in Proportional Betting

In this section, we reformulate the market organizer’s problem for Proportional
Betting into a compact linear program involving only O(n?+m) constraints. The
new formulation is not only faster to solve in practice (using interior point meth-
ods) but also generates a compact dual price vector of size n?. These ‘marginal
prices’ will be sufficient to price the bets in Proportional Betting, and are shown
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to satisfy some useful properties. The reformulation will also allow introducing
n? starting orders in order to obtain unique prices.

Observe that the first constraint in (B]) implicitly sets r as the worst case payoff
over all possible permutations (or matchings). Since the matching polytope is
integral [12], r can be equivalently set as the result of following linear program
that computes maximum weight matching;:

r = max O wAg) o M

st. MTe=¢e (4)
Me=¢
MZ]ZO i,jE{l,.../I’L}

Here e denotes the vector of all 1s (column vector). Taking dual, equivalently,
r = min eTv + eTw

v m - (5)
st.ovi+w; > > (e Ak i,je{l,...,n}

Here, (zrAg)i; denotes the ij*" element of the matrix (rjAx). The market or-
ganizer’s problem in [B]) can now be formulated as:

T T T

max mmxr —e v —e w

T,0,w

s.t. v+ wj > Zzn:l(xkAk)ij 1,] € {1, . ,n} (6)
0<z<q

Observe that this problem involves only n? 4+ 2m constraints.

Let Q € R™ ™ represent the dual variables corresponding to the first n?
constraints in the above problem. It is easy to show that the dual matrix @ is
well interpreted as a “parimutuel price”. That is, @@ > 0; and, if we charge each
trader k a price of Ay e @ instead of their limit price (), then the optimal
decision remains unchanged and the total premium paid by the accepted orders
will be equal to the total payout made in the worst case. Further, ) satisfies the
following extended definition of “price consistency condition” introduced in [5].

Definition 1. The price matrix Q satisfies price consistency constraints if and

only if for all k: 2 =0 =>QeA;, =c >

0<zp <qr=QeA,=cp=m (7)
Ty = Qg = QoA =c, <y

That is, a trader’s bid is accepted only if his limit price is greater than the
calculated price for the order.

These properties can be shown using the KKT conditions for (@), in a manner
similar to [6] where a non-combinatorial setting is considered. However, the dual
price @ thus computed is not guaranteed to be unique. To ensure uniqueness,
we can use starting orders as discussed for the CPCAM model in Section 21 We
introduce one starting order #;; > 0 for each candidate-position pair (i,j). These
starting orders can be of possibly infinitesimal quantity and represent the prior
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belief of organizer. Refer [13] for detailed proofs of properties of price matrix @
and the implications of introducing starting orders.
To summarize, we have shown that:

Theorem 2. One can compute in polynomial-time, an n X n marginal price
matriz QQ which is sufficient to price the bets in the Proportional Betting mech-
anism. Further, the price matriz is unique, parimutuel, and satisfies the desired
price-consistency constraints.

5 Pricing the Outcome Permutations

There is analytical as well as empirical evidence that prediction market prices
provide useful estimates of average beliefs about the probability that an event oc-
curs [I4][15] [I6]. Therefore, prices associated with contracts are typically treated
as predictions of the probability of future events. The marginal price matrix @
derived in the previous section associates a price to each candidate-position pair.
Also, it is easy to observe that @ is a doubly stochastic matrix (use KKT con-
ditions of problem in (@l)). Thus, the distributions given by a row (column) of
Q could be interpreted as marginal distribution over positions for a given candi-
date (candidates for a given position). One would like to compute the complete
price vector that assigns a price to each of the n! outcome permutations. This
price vector would provide information regarding the joint probability distri-
bution over the entire outcome space. In this section, we discuss methods for
computing this complete price vector from the marginal prices given by Q.

Let p, denote the price for permutation o. Then, the marginal constraints on
the price vector p are represented as:

ZUESn pUMU = Q (8)
ps >0 Vo €S,

Finding a feasible solution under these constraints is equivalent to finding
a decomposition of doubly-stochastic matrix @ into a convex combination of
n X n permutation matrices. There are multiple such decompositions possible.
For example, one such solution can be obtained using Birkhoff-von Neumann
decomposition [I7][I8]. Next, we propose a criterion to choose a meaningful
distribution p from the set of distributions satisfying constraints in (g]).

5.1 Maximum Entropy Criterion

Intuitively, we would like to use all the information about the marginal distrib-
utions that we have, but avoid including any information that we do not have.
This intuition is captured by the ‘Principle of Maximum Entropy’. It states
that the least biased distribution that encodes certain given information is that
which maximizes the information entropy. Therefore, we consider the problem of
finding the maximum entropy distribution over the space of n dimensional per-
mutations, satisfying the above constraints on the marginal distributions. The
problem can be represented as follows:
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min e, Pologps
st D ges, PoMs =Q (9)
po >0

The maximum entropy distribution obtained from above has many nice prop-
erties. Firstly, as we show next, the distribution has a concise representation
in terms of only n? parameters. This property is crucial for combinatorial bet-
ting due to the exponential state space over which the distribution is defined.
Let Y € R™ "™ be the Lagrangian dual variable corresponding to the marginal
distribution constraints in (@), and s, be the dual variables corresponding to
non-negativity constraints on p,. Then, the KKT conditions for (@) are given by:

log(ps) +1—5, =Y e M,

Yoo PeMs =Q
S,Ps = 0 Vo (10)
PsSe =0 Vo

Assuming p, > 0 for all o, this gives p, = e¥*Mo~1 Thus, the distribution is
completely specified by the n? parameters given by Y. Once Y is known, it is
possible to perform operations like computing the probability for a given set of
outcome permutations, or finding the most probable outcomes.

Further, we show that the dual solution Y is a maximum likelihood estimator
of distribution parameters under suitable interpretation of Q.

Mazimum likelihood interpretation. For a fixed set of data and an assumed un-
derlying probability model, maximum likelihood estimation method picks the
values of the model parameters that make the data “more likely” than any other
values of the parameters would make them. Let us assume in our model that the
traders’ beliefs about the outcome come from an exponential family of distrib-
utions D,,, with probability density function of the form f, o« e”* for some
parameter n € R™ ™. Suppose @ gives a summary statistics of s sample ob-
servations { M1, M2 ... M*} from the traders’ beliefs, i.e., Q = i >, M*. This
assumption is inline with the interpretation of the prices in prediction markets as
mean belief of the traders. Then, the maximum likelihood estimator is given by

7 = argmax, log f,,(M*, M? ... M?)
oMK
= argmax, log (I}, Ze"en.MU )

(11)

The optimality conditions for the above unconstrained convex program are:
b Sy e en, = L5, M (12)

where Z is the normalizing constant, Z = Y _e"Ms. Since quZk MF = Q,
observe from the KKT conditions for the maximum entropy model given in (I0)
that n = Y satisfies the above optimality conditions. Hence, the parameter Y
computed from the maximum entropy model is also the maximum likelihood
estimator for the model parameters 7.
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5.2 Complexity of the Maximum Entropy Model

In this section, we analyze the complexity of solving the maximum entropy model
in ([@). As shown in the previous section, the solution to this model is given by the
parametric distribution p, = e¥*M>~1. The parameters Y are the dual variables
given by the optimal solution to the following dual problem of (@)

m&XQoY—ZU eYoMo—1 (13)

We prove the following result regarding the complexity of computing the pa-
rameters Y:

Theorem 3. It is #P-hard to compute the parameters of the maximum entropy
distribution {py} over m dimensional permutations o € S,, that has a given
marginal distribution.

Proof. We make a reduction from the following problem:

Permanent of a (0, 1) matrix. The permanent of an n x n matrix B is defined
as perm(B) = Y s I' 1 B; ;(;. Computing permanent of a (0,1) matrix is
#P-hard [19].

We use the observation that > _e¥*Me = perm(e'’), where the notation e

is used to mean component-wise exponentiation: (ey)ij = eY4. For complete
proof, see [13].

Y

Interestingly, there exists an FPTAS based on MCMC methods for computing
the permanent of any non-negative matrix [20]. Next, we derive a polynomial-
time algorithm for approximately computing the parameter Y that uses this
FPTAS along with the ellipsoid method for optimization.

5.3 An Approximation Algorithm

Here, we give an outline of the algorithm and present main ideas involved in the
analysis. The details along with a complete technical proof can be found in [I3].

Using the KKT conditions for the problem, we show that computing optimal
Y is equivalent to finding a feasible point in the following bounded convex set:

K: QeY —1>1t
S ereMe M, < Q (14)
0 2 }/ij Z - v%]
where v = ”qi:ign”, Gmin = min{Q;;}, and t € [-nlogn—1,0] is a fixed parameter.
Showing this equivalence involves proving upper and lower bounds on optimal Y.
Next, we use ellipsoid method to solve this feasibility problem. In each iteration,
the ellipsoid method requires to determine if the given iterate Y is feasible,
or compute a separating hyperplane, if infeasible. The gradient of a violated
constraint forms a natural candidate for separating hyperplane. In the above
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problem, both these tasks pose a problem due to the intractability of second set
of constraints. Checking feasibility requires computing the quantity:

fY) =3 _eV*Map,
And, the gradient takes the formfl:
VIY)=>,e M (M, @ M,)

Both these quantities are #P-hard to compute. We use MCMC method for com-
puting permanent [20] to compute an (1 + €)-approximation of these quantities.
For a fixed € > 0, each iteration of the resulting ellipsoid algorithm looks like
this:

Algorithm

1. If Y violates any constraints other than the constraint on f(Y'), report ¥ ¢
K. The violated inequality gives the separating hyperplane.
2. Otherwise, compute a (1 £ d)-approximation f(Y) of f(Y), where § =
min{ 5, 1}.
(a) If F(Y) < (14 38)Q, then report Y is feasible.
(b) Otherwise, say ij" constraint is violated. Compute a (1+)-approximation
@fij (Y)of the gradient V f;;(Y'), where v = d¢umn/2n*. The approximate

gradient C' = V fi;(Y') gives the desired separating hyperplane.

We show that the above algorithm gives an approximate (pseudo-)polynomial
time separating oracle for our problem, in the following sense:

Lemma 1. Given any Y € R"*", and any parameter € > 0, the algorithm with
runs time polynomial in n, 1/€ and 1/{minQ;;} and does one of the following:

— asserts that Y € K, where K. represents the set K with relaxed constraints
fY) < (1+6Q.
— or, finds C € R such that C e X < C oY for every X € K.

Thus, the ellipsoid algorithm using this oracle will terminate with either ¥ € K,
or declares that there exists no Y in K. The proof of the lemma involves proving
bounds on the diameter of set K, and gradient V f;;(Y"). The details are available
n [I3]. Overall, we prove the following theorem (refer [I3] for proof):

Theorem 4. Using the proposed approximate ellipsoid method, a distribution

{ps ~ e¥*Ms} over permutations can be constructed in time poly(n, i, qrjin),
such that

- (1 - G)Q S nga'Mo S Q
— p has close to mazimum entropy, i.e., > pologp, < (1 —€)OPTg, where
OPTg(<0) is the optimal value of ([9).

4 A ® B denotes ‘Kronecker product’ of matrix A and B.



Parimutuel Betting on Permutations 137

Acknowledgements. We thank Arash Asadpour and Erick Delage for valuable
insights and discussions.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Chen, Y., Fortnow, L., Nikolova, E., Pennock, D.M.: Combinatorial betting. SIGe-
com Exch. 7(1), 61-64 (2007)

Hanson, R.: Combinatorial information market design. Information Systems Fron-
tiers 5(1), 107-119 (2003)

Hanson, R.D.: Logarithmic market scoring rules for modular combinatorial infor-
mation aggregation. Journal of Prediction Markets (2007)

Pennock, D.M.: A dynamic pari-mutuel market for hedging, wagering, and infor-
mation aggregation. In: ACM conference on Electronic commerce (2004)

Lange, J., Economides, N.: A parimutuel market microstructure for contingent
claims. European Financial Management 11(1) (2005)

Peters, M., So, A.M.C., Ye, Y.: A convex parimutuel formulation for contingent
claim markets. Working Paper (2005),
http://www.stanford.edu/~yyye/cpcam-ec.pdf

Peters, M., So, A.M.C., Ye, Y.: Pari-mutuel markets: Mechanisms and performance.
In: Workshop on Internet and Network Economics (2007)

Chen, Y., Fortnow, L., Lambert, N., Pennock, D.M., Wortman, J.: Complexity of
combinatorial market makers. CoRR abs/0802.1362 (2008)

. Chen, Y., Goel, S., Pennock, D.M.: Pricing combinatorial markets for tournaments.

In: ACM Symposium on Theory of Computing (2008)

Fortnow, L., Kilian, J., Pennock, D.M., Wellman, M.P.: Betting boolean-style: a
framework for trading in securities based on logical formulas. In: ACM conference
on Electronic commerce (2003)

Chen, Y., Fortnow, L., Nikolova, E., Pennock, D.M.: Betting on permutations.
ACM conference on Electronic commerce (2007)

Grotschel, M., Lovész, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1988)

Agrawal, S., Wang, Z., Ye, Y.: Parimutuel betting on permutations. Technical
report (2008), http://arxiv.org/abs/0804.2288

Manski, C.: Interpreting the predictions of prediction markets. Economic Let-
ters 91(3) (2006)

Ottaviani, M., Sgrensen, P.N.: Aggregation of information and beliefs in prediction
markets. Mimeo, London Business School (2006)

Wolfers, J., Zitzewitz, E.: Interpreting prediction market prices as probabili-
ties. Working Paper 12200, National Bureau of Economic Research (May 2006),
http://www.nber.org/papers/w12200

Birkhoff, G.: Three observations on linear algebra. Univ. Nac. Tucuman Rev. A 5
(1946)

Dulmage, L., Halperin, I.: On a theorem of Frobenius-Koénig and J. von Neumann’s
game of hide and seek. Trans. Roy. Soc. Canada Sect. III 49 (1955)

Valiant, L.: The complexity of computing the permanent. Theoretical Computer
Science (1979)

Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm
for the permanent of a matrix with non-negative entries. In: ACM symposium on
Theory of computing (2001)


http://www.stanford.edu/~yyye/cpcam-ec.pdf
http://arxiv.org/abs/0804.2288
http://www.nber.org/papers/w12200

Strategies in Dynamic Pari-Mutual Markets

Tian-Ming Bu'*, Xiaotie Deng?**, Qianya Lin?, and Qi Qi®

! Shanghai Key Laboratory of Trustworthy Computing
East China Normal University
Shanghai, P.R. China
tmbu@sei.ecnu.edu.cn
2 Department of Computer Science
City University of Hong Kong
Hong Kong SAR
csdeng@cityu.edu.hk, lgianya2@student.cityu.edu.hk
3 Department of Management Science and Engineering
Stanford University
kaylaqi@stanford.edu

Abstract. We present a strategic model for pari-mutual markets by
traders using a cumulative utility function. Under this model, we derive
guidelines for the traders on how much to buy or sell. Those guidelines
can be implemented with three action combinations, called strategies.
We prove that those strategies are payoff equivalent for both the involved
trader and the others in the current transaction. However, in the long
run, their payoffs can be quite different.

We show that the buy-only strategy(BOS) achieves the highest market
capitalization for the current transaction. In addition, simulation results
also prove that BOS always yields the fastest growth of market capitaliza-
tion even when multiple stages are taken into consideration. Simulation
results also show that BOS is a better revelation of the traders’ personal
beliefs, though it exhibits a higher risk in traders’ payoffs.

1 Introduction

The Internet has not only made it possible to create a global electronic market
but also allowed for creations of new market models by providing a boundary-
less testing base through its powerful communication infrastructures. Prediction
markets have been among those that have benefited from such global medium.
It builds on an idea that combines the characteristics of investing and betting
to create a type of financial markets for wagers on different types of activities
such as political events, horse racing, sports, entertainments, or other uncer-
tain events. Despite of a short history of its introduction into the Internet life,
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prediction markets have a remarkable list of successful records in probability
forecasting of uncertain events.

Created as a type of financial markets to predict future [IJI6/I5], predic-
tion market models are based on the efficient markets hypothesis [6] that states
that traders’ information about the outcomes is aggregated into prices. In other
words, market prices on the predicted outcomes of future events reflect the collec-
tive estimation. It has been known that when a rational expectation equilibrium
is reached [III752], the information distributed among traders will indeed be
aggregated on the market in the form of the market-clearing price.

Double auctions have been the most used mechanisms in prediction markets
where sales take place only when both sides of trades accept the same trading prices
and quantities. However, it may suffer from the thin market problem [8] when there
is a large gap between bid and ask prices because of a low level of participation.

Hanson’s market scoring rule [8](MSR) offered a new approach to solve the
above thin market problem with an automatic market maker who accepts orders
from traders sequentially and determine the prices by a proper scoring rule. Sub-
sequently, Hanson proposed a logarithmic version [9](LMSR) which he advocated
for its advantages in terms of both cost and modularity.

Pennock [13] invented a new mechanism combining the advantages of tra-
ditional pari-mutuel markets and continuous double auctions. In this pricing
mechanism, prices change dynamically according to a price function. It allows
traders to buy or sell securities at any moment from the system according to the
price function. Payoff per share is calculated according to the quantity of the
winning security and the amount of losing money or of total money. Pennock
proposed and studied several types of price functions. A share-ratio version [3]
is now the most commonly used pricing model.

1.1 Related Work

Nikolova and Sami [I2] introduced the method of projection games for the design
and analysis of prediction markets. The projection game was shown to serve as a
strategic model of DPM to capture the essence of strategics in MSR. Their studies
concluded that DPM and MSR are deeply connected to each other such that they
may be regarded as two different interfaces to the same underlying game.

Chen et al. [3], Dimitrov and Sami [4] independently studied traders’ untruth-
ful betting behaviors to mislead the next trader in LMSR markets. [3] found out
that, in LMSR, traders with joint probability distributions on signals have the
incentive to bet against their own information. [4] used a projection game to
study non-myopic strategies in LMSR in an infinite number of periods of plays.
[3] also showed that when there’re two players in DPM market, the penultimate
trader will withhold information.

Peters et al. [I4] gave a performance comparison among MSR, DPM and
sequential convex pari-mutuel mechanism(SCPM) under the purely pari-mutuel,
full charge and tax penalty situations. They established that LMSR has a less
stable pricing function and outperforms DPM in the pure pari-mutuel setting in
which the total money pool is redistributed to the traders.
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1.2 Owur Contributions

The utility functions in the previous works [13] and [12] consider a trader’s utility
for one transaction. However, a trader may trade in the market for several times
and the previous lost and gain should be also taken into account. We introduce
a cumulative utility function in which the profit not only concerns the shares
bought in the current transaction, but also the previous one. So a trader can
maximize his utility in total by this utility function. Furthermore, our model is
based on the independent belief distribution while previous ones are dependent.

Strategic analysis of DPM market [12] requires the knowledge of the true
probability of the event which is hard to obtain in reality. Our analysis is based
on the traders’ personal beliefs. Moreover, in [12], the utility function is also
used to maximize a trader’s payoff in the current transaction, which is different
from our work.

We provide actions for traders in general cases giving concrete guidelines
about how much to trade and what type of actions should be taken. From these
actions, we study three action combinations, called strategies, including first-
prior strategy, second-prior strategy and buy-only strategy. We prove that these
three strategies yield the same expected payoffs for all traders in the current
transaction. We should call this property the payoff equivalence property.

We also prove that the buy-only strategy achieves the highest market capi-
talization for the current trader. In addition, our simulation results show that
it also yields the fastest growth of market capitalization in the long run. By
simulations, we find that the market capitalization has an impact on traders’
payoffs. The higher market capitalization is, the higher risk traders may suffer.
The buy-only strategy, which is most commonly used in pari-mutual markets,
exhibits a riskier performance than the other two implying traders using this
strategy tend to win more or lose more.

On the other hand, from simulations, higher market capitalization leads to
a better fitting of market probability into traders’ beliefs, resulting in a better
revelation of traders’ private information. Hence, the market capitalization is a
double-edged sword for market designers.

2 Dynamic Parimutuel Markets

The dynamic parimutuel market is first proposed by Pennock [I3] and imple-
mented in an on-line prediction market named Yahoo! Buzz market [10].

Suppose there’re n securities in the market. Each security i represents a mu-
tual exclusive outcome i and I is the collection of all outcomes. So i € I and
|I| = n. The market is initialized with a number of outstanding shares on all
securities which in fact is a subsidy from the market maker. Traders trade with
the market maker by choosing appropriate securities to buy or sell according to
their personal beliefs. Prices vary dynamically all the time as the total money
pool changes. After the true outcome is revealed, the market is liquidated and
the winning security is cashed by re-distributing the money pool.
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Let ¢ = {q1, g2, ---, ¢n} be the quantities of outstanding shares in the market.
In a share-ratio version of DPM market [I3I3], the price function is related to
the ratio of quantities of securities. So the spot price for shares on outcome 7 is :

~ qi
P = .
\/ 21
The aggregating market estimation (i.e. market probability) on outcome i is:

2
PTZ‘ = nql

Zj:l q]2 .

The market capitalization (i.e. cost function) is:

Clg) = /¥4
The transition cost (or the trader’s payment) is:
C = C(qafter) o C(qbef.).

Here g®¢¥- and q®fte" denote the quantity of securities before and after trans-
action respectively.

As the word “parimutuel” implies, traders who wager on the true outcome
win the money re-distributed by the total pool. Due to the dynamic changes of
shares on different events, the winning security’s return money, which we called
redemption price in such a market is not fixed. This adds some difficulties for
traders to report their beliefs since traders can not simply buy or sell securities
until prices reach their personal estimations such as in MSR, but they should take
the redemption price into account also. So the traders’ actions of maximizing
their expected payoffs a bit more complicated.

The redemption price of outcome ¢ in DPM is the total market capitalization
divided by the quantity of outstanding shares of 7 if it happens,

i \/ Xiagf
pi = .
qi

Vi, the spot price for shares on outcome i, always varies between (0,1), while

the redemption price for shares on outcome ¢ always greater than 1. So traders

will be guaranteed positive utilities if they holds the securities of true outcome.
In order to simplify the model, in the rest of the paper we follow the same

assumption as in Pennock’s paper [13].

Assumption 2.1. [I3] The current value for the payoff per share of security ¢
is the same as the expected final value of the payoff per share of ¢ given that ¢
occurs. That is,

Elpili] = pi (2.1)
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3 Strategic Model of DPM

We consider two mutual exclusive outcomes A and B with « and y outstanding
shares respectively, i.e., I = {4, B}, |I| = 2 and ¢ = {x,y}. All the results in
this paper can be generalized to multi-event cases easily.

3.1 Symmetry Property

Nikolova and Sami [12] give some insight about actions when traders have no
possession on their hands. But after several rounds of transactions, traders who
have securities will keep an closer eye on the market, waiting for the decisions
to sell or to buy more. So the strategies for traders who have involved in the
market seem to play more important roles for the reason that those traders are
more active and incentive.

We seek to propose a general action model for traders in all situations. Given
a trader having w4 shares of security A and wp shares of security B, and the
total payment of these shares is C'. There are x outstanding shares of A and y of
B in the market currently. After purchasing Az and Ay extra shares on outcome
A and B, the trader’s total utility will be:

V(@ + Az)? + (y + Ay)?
T+ Ax

— (Vo +A2) + (y+ Ay)? = Va2 +y?) - C

V(@ + Az)? + (y + Ay)?
y+ Ay

L =p(ra + Ax) + (1 =p)(75 + Ay)

(3.1)

Note that C' is the total payment in the previous transactions, which is indepen-
dent of Az and Ay.
In order to maximize his utility, we take the partial derivative by Az,

oL P T —Ty
Az = Ay)§ - 2
o e = anif | T (32)
Similarly,
oL B J1—py—7B
aAy—OéAy—(m—l—Am)\/ P, (3.3)

Theorem 3.1. In DPM, the way to purchase shares on outcome A and outcome
B to maximize trader’s utility is not unique.

Corollary 3.2. In DPM, in order to maximize the payoff, a trader can always
purchase securities only on one side.

Similarly, we can get the following corollary.

Corollary 3.3. In DPM, in order to maximize the payoff, a trader can always
sell securities only on one side.

From Corollary and Corollary B.3] we assume that a trader never buys or
sells shares simultaneously on both sides.
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3.2 Strategic Actions

In DPM, the redemption price depends on the quantity of outstanding shares
and changes dynamically, a trader couldn’t simply compare his personal belief
to the market probability when deciding which action to take. The number of
shares he possesses currently also has an impact on the decision. Hence, we
introduce a new concept called virtual market probability which depends on the
number of shares the current holding.

Definition 3.4 (Virtual Market Probability 157“). If a trader has w4 shares
of security A and wg of B on hand, his virtual market probability on A is Pr =

13 —T . g
$a(y,,r§)’+yf(ifm) and on Bis1— Pr.

Likewise, in the rest of the paper, we use Pr to denote the market probability on
outcome A and 1 — Pr on outcome B. Now we can summarize the action model.

Theorem 3.5. Given a trader with probability estimation p on A and 1 —p on
B, suppose he has w4 shares of security A and wp of B on hand. The current
market outstanding shares on A are x, and on B are y. He will compare his
personal belief to the virtual market probability to mazimize his expected payoff.

1. Ifp> Pr:

he should purchase Ax = yi/lfp ”y”::;‘ — x on outcome A, or,

sell Ay =y — acf/l;p y_r= on outcome B.
2. Ifp < Pr:

he should sell Ax = x — yf‘/lf LTTA on outcome A, or,
PY—TB

purchase Ay = axf/l_p Y™TE _ 4 on outcome B.

P T—TA

Theorem provides a set of actions for general context. When a trader has
no shares on hand as follows, we can simplify the formula by setting m4 = 0
and mp = 0. Furthermore, short sell is forbidden. In this case, things become so
straightforward that a trader just needs to compare his personal estimation to
the market probability and choose one type of securities to buy.

Remark 3.6. 1f a trader has no shares on hand, his virtual market probability
equals the market probability, i.e., Pr = Pr. Thus,

1. If p > Pr:

he should purchase Az = f/lfprm — x on outcome A.
2. If p < Pr:

he should purchase Ay = f/ 1;1’ x2y — y on outcome B.

3.3 Definition of Strategies

According to Theorem [3.5] there’re two alternative actions under each case. We
define three strategies which are combinations of these actions as Figure @ (See

Appendix [B]).
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Definition 3.7

1. First-prior Strategy (FPS): If a trader’s personal belief about A is higher

than his virtual market probability on A, he will buy Ax = yi/lfp ;:;“; —x

on A. Otherwise, he will sell Av = x — yi/lfp z:;g on A when Ax < m4.

And he will sell mq on A, then buy Ay =y — (v — WA)i/lzp y_'B on B
when Ax > my.

2. Second-prior Strategy (SPS): If a trader’s personal belief about A is higher

r3/l-Py—TB
P T—TA

on B when Ay < wg. And he will sell 7g on B, then buy Az’ = (y —

TB) \3/131) v_na—x on A when Ay > wp. Otherwise, he will choose buying B.

than his virtual market probability on A, he will sell Ay =y —

1-py—7B
on A when his personal estimation about A is higher than his virtual market

probability on A and buying Ay = xf/l_p Y™TE _ 4 on B otherwise. He will

P T—TA

3. Buy-only Strategy (BOS): A trader will choose buying Az = yi/ P rmA _g

never sell his shares in this case.

So far we’ve generalized the strategic model of DPM. In the following sections,
we will focus on the properties of these strategies.

4 Strategies Comparison

4.1 Payoff Equivalence

Lemma 4.1. [Payoff Equivalence For Others] FPS, SPS and BOS yield the
same expected payoff for the other traders in the market.

Intuitively, payoff of these three strategies for the involved trader himself should
be equal too. Now we proof this conjecture.

Lemma 4.2. [Payoff Equivalence of the Involved Trader] FPS, SPS and BOS
yield the same expected payoff for the involved trader himself.

As Lemma (1] and conclude, from the myopic point of view, three strate-
gies are equivalent to the involved trader himself and to the others which is
summarized by Theorem (3]

Theorem 4.3. FPS, BOS and SPS yield the same expected payoff for all traders
in the current transaction.

The expected utilities under these three strategies currently is the same too.
Even so, these three strategies have different impact on the total capitalization
of the market and the outstanding shares on events. Analysis below gives a closer
insight to this influence.

Proposition 4.4. If a trader chooses BOS rather than FPS and SPS, market
capitalization will raise the highest among the three strategies.
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Proposition [£4] proves that BOS achieves the highest market capitalization for
the current transaction. Now we turn to see what happens if all traders choose
BOS. Intuitively, in BOS markets, which use BOS as the dominant strategies,
capitalization should also exceed the one that in FPS and SPS markets in the
long run. We design simulations to validate our conjecture.

5 Simulations and Observations

The market is open with two mutual exclusive events A and B, and initialized
with 100 shares on each event. A number of traders with a normal distribution
of beliefs are prepared. At each round, a trader is chosen randomly and enters
the market with the goal of achieving a maximal payoff by using his private
estimation. The choice of the trader draws from a uniform distribution so that
traders are selected with equal chances. After a number of trading rounds the
market closes and each trader attains a profit (may be negative). We always
assume event A comes out to be true in the end.

w10t 10"
14 7 i T
:  FPS = FPS w
2H + gps F J| + oPs ]
saml ¥ e 1 5 - &
E i E
M H o3 s 4
w B H [
= # z T
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ot # = i
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Fig. 1. Market Capitalization of FPS, SPS and BOS
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5.1 Observation: Market Capitalization

In our experiments, we found that no matter what belief distribution is, BOS
always yields the highest market capitalization among the three strategies. Three
concrete examples are shown in Figure Each curve represents one case that
all traders choose one type of the strategies as their dominant strategy.

5.2 Observation: Payoff

We put 10 traders into the market, with 4 = 0.5 and ¢ = 0.2. In our all experi-
ments, the higher market capitalization suffers higher risk of payoff at all time.
Take Figure 2] for example. In (a) it shows the growth of market capitalization.
BOS, which always achieves the highest capitalization among the three tends to
win more but lose more in Figure 2] (b). The reason may be that traders have to
give higher investment to report their estimations when market capitalization is
higher. Hence, one may win more if his report is close to the true probability of
the outcome but lose more on the other hand.
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Fig. 2. Capitalization and Payoffs of FPS, SPS and BOS with 10 Traders and 40
Rounds

5.3 Observation: Share Ratio and Market Probability

In fact, the market probability can be looked on as a function of share ratio(x/y),

2
I;fyz = (;7;)”2‘)4_1. However, in DPM, a trader compares his per-

sonal estimation to his virtual market probability, not market probability, thus
the share ratio doesn’t simply change along with the beliefs of the traders. We
try to keep track of the share ratios in these three strategies.

because Pr =

! (a) 10 traders whose beliefs draw from a normal distribution between (0,1) with
mathematical expectation p = 0.5, standard deviation o = 0.2. (b) 20 Traders
whose beliefs draw from a normal distribution between (0.4,1) with mathematical
expectation p = 0.8, standard deviation o = 0.1. (c) 3 Traders with p1 = 0.2,
p2 = 0.4 and p3 = 0.8.
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For simplicity, we only make comparisons between FPS and BOS. The analysis
for SPS is quite similar. Suppose the initial state of the market is xy shares on
outcome A and yg shares on outcome B with zy = yg. At the first k& rounds,
assume no trader has the chance to take his second transaction in the market.
So traders all take1 buying actions and the 1Share ratio after round k equals to
o= H?:l(lf(;()j) ¥ )(Zg)slk = H?:l(lf(;()j) ). At k + 1st round, assume trader
m (m < k) taking his second transaction. If his action is buying A at his 1st
transaction, then wfqm) > 0 and ngm) = 0 currently. For FPS and BOS, he will buy
Ax when his personal estimation is higher than his virtual market probability.
So in this case FPS and BOS yield the same share ratio, even the same number
of shares on both sides. For the case when his personal estimation is lower than
his virtual market belief, FPS will sell A and BOS will buy B.

T —A (m) _ - (m)

FPS, sellingAzjyy : FH =T8T STL PTG TR T TA s
Yr+1 Yk 1-— p(m) Yk
Ty T, p(m™ zp —

BOS, buyingAyp1 : 1 = = 1/3 A 1/3

YIS Y1 Yk + AYkia (1 —p(m)) ( Yk )
.'.EI_ ZEII
So, y;’:i - y:? but .4y < TY1s i1 < Yigr

At k 4 2nd round, assume trader n taking his second transaction. Suppose
7754”) > 0 and 7753”) = 07 (TL(L) = ¢ In the case p™ > Pr, FPS and BOS will
both buy A. If p < Pr, FPS will sell A and BOS will buy B. As a result,
(1) = <n><”+1 ) (e = e md ) o e T When

yk+2 yk+ yl,c+1 yk yk-+1 yk’+1 , Vi k42 yk+2
1 = 0 and 7Y > 0, FPS will be (m”?)3 = (")), and BOS is
Ykt2 Yer1— 7B

CE ZL‘ ZL‘ CE
( k+2) = e(n)( kﬂ(ﬂ) ), s0 Ft2 > £+ From the above deduction we can see

yk 2 yfc'+1—7rB Ykt2 yk+
share ratio depends on the securities one already possessed and may be different
for FPS and BOS after a few rounds of transactions.

Our simulations conform to our analysis. We put three traders into the market,
with beliefs p(!) = 0.1, p® = 0.3, and p® = 0.8. Figure Bl is the evolution of
share ratio from 6th to 18th round. It shows the irregular change. When other
variables are fixed, share ratio still depends on the type and amount of shares
the current trader holding.

Next we analyze the strategies’ performances from another aspect. We record
the market probabilities of the three strategies in each transaction, then com-
pare them with the involved trader’s personal belief. As we mentioned above,
during each transaction, the trader will try to maximize his expected payoff
by changing virtual market probability to his personal belief. After each trans-
action, virtual market belief equals to the involved trader’s belief regardless
of which strategy he chose. Table [Il computes the mean value g and the
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Fig. 3. Share Ratio Evolution of 3 Traders: A Closer Look

Table 1. Market Probabilities VS Personal Beliefs

FPS SPS BOS
= 0.0700 0.0703 0.0680
o= 0.0897 0.0902 0.0866

standard deviation o by taking the personal beliefs as the benchmark @ The
market probability of BOS always varies most closely to personal belief in our
experiments, suggesting Pr in the BOS market is closest to Pr. This may
be due to the huge amount of market capitalization of BOS market, since

lim=a o =5 _oPr = limea_g = #*(y—mp) — = Pr. Whil
LT —0,75 —o £ = HILTA 0,75 0 43 (y—rp)+y3(z—ma) ~ @?+y? " te
the higher of the market capitalization, the weaker role of a trader’s personal
possession plays, so Pr tends to converge to Pr.

In DPM market, traders can’t obtain the current trader’s belief directly because
the virtual market probability depends on the involved trader’s possession which
is private information to the others. For this reason, BOS, which is better fitting in
with traders’ personal beliefs, has the advantage of revealing aggregating market
belief. However, markets adopting BOS result in a huge amount of capitalization
so that traders in such markets suffer higher risk than the others. Market designer
should make the risk-fitting trade-off when designing a DPM market.

6 Conclusions and Discussions

The previous work usually focuses on maximizing traders’ expected payoffs at
the current step. In our paper, we take traders previous possessions into consid-
eration, seeking to get a maximal payoff in its entirety.

2= E{;l(in‘*m% where Pr; is the market probability on A in transaction i and p;

n e —p:)2
is the involved trader’s personal belief. o = \/Zi:l(P PO

n
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By using this cumulative utility function, we summarize actions for traders
in general cases. There’re three strategies covering all actions a trader may take
in different situations. They yield the same expected payoffs for all traders in
myopic, called payoff equivalence.

We observe in experiments that BOS, most commonly used in pari-mutual
markets, achieves the highest market capitalization than the other two strategies.
Traders in such a rapid growing capitalization market tend to win more and
lose more, exhibiting a riskier performance. But higher capitalization drives the
market probability to be a better indication of traders’ beliefs. Market designers
have to take this double-sided effect into account when open a DPM market.

In reality, traders’ behaviors may be some variations since people adjust their
estimations as they observe others’ behaviors and as more and more information
is revealed to the public. Moreover, people may have budget constraint, which
limit their buying power to report their personal beliefs. In our experiments,
traders’ beliefs remain unchanged during the transactions. Our future work will
introduce the dynamic changes of beliefs and budget control to the analysis of
the strategies.
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A Appendix: Proofs

A.1 Proof of Theorem [3.1]

Proof. In fact, Equation (8:2)) and (33) are the same equations, we re-arrange
them and get

x—!—Ax:i/ p T —Ta (A1)
y+ Ay l-py—7p

Equation (AJ]) implies that for an arbitrary Az, we can find one correspond-
ing Ay which maximizes the utility. O

A.2 Proof of Corollary

Proof. We can prove it directly from Equation (ATl). By either setting Az = 0
or Ay = 0, maximal utility by purchasing shares on one side only could be
obtained. O

A.3 Proof of Theorem

Proof. Proof of Case 1:
In Equation (31]), let Ay = 0, then,

V(T + Az)? + y2 V(T + Az)? + y2

L:p(A.T—i—?TA) v+ Az —I—(l—p)?TB y
— (V(z+ An)2 +y2 — /22 +y2) - C
oL ] p r—Ta
BAm_O:Ax_y\/l—py—WB x

When Az > 0, we have:

r—T7 T -
yi‘/ P Ar>0= i/y B<§/ P
1l—py—mp yVax—my 1—p

2*(y — 7p)

_ B
w3(y — ) +y3(r —7ma)

—p>
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Similarly, if the trader sells Ay shares of event B instead of buying A,

Va2 + (y — Ay)? V72 + (y — Ay)?
z

L=pra + (1 =p)(mp — Ay)

— (V22 + (y — Ay)? — Va2 +y2) - C

Let 8Ay = 0, then, Ay :y_xi/kpy,m.

P T—TA

When Ay > 0, we also have p > Pr.

Proof of Case 2:

The trader should sell security A or buy security B when his estimation is lower
than the virtual market probability. We first consider selling A.

The expected utility of selling Ax shares of A is:

L:p(ﬂA—Am)\/(x;_AZ);+ 2+(1_p)ﬂB\/(x—Ayx)2+ 2

— (Vo= A2 42 = /a2 ) - C

Take the first order derivative, we have, Ax = = — yi/lfp ;::’;

When Az > 0, we have p < Pr.
Similarly, if the trader buys Ay shares of event B instead of selling A,

Va4 (y + Ay)? V72 + (y + Ay)?
L= 1-— Ay)
pTA . + (1 —p)(7p + Ay) y+Ay
